搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

等离子体层嘶声波对辐射带电子投掷角散射系数的多维建模

王敬之 马新 项正 顾旭东 焦鹿怀 雷良建 倪彬彬

引用本文:
Citation:

等离子体层嘶声波对辐射带电子投掷角散射系数的多维建模

王敬之, 马新, 项正, 顾旭东, 焦鹿怀, 雷良建, 倪彬彬

Multi-dimensional modeling of radiation belt electron pitch-angle diffusion coefficients caused by plasmaspheric hiss

Wang Jing-Zhi, Ma Xin, Xiang Zheng, Gu Xu-Dong, Jiao Lu-Huai, Lei Liang-Jian, Ni Bin-Bin
PDF
HTML
导出引用
  • 等离子体层嘶声波(plasmaspheric hiss)是地球辐射带中一种常见的电磁波动. 嘶声波可以通过波粒相互作用将辐射带电子散射进入损失锥进而沉降到中性大气, 因此是导致辐射带电子损失的重要波动源. 作为电子能量和投掷角的变化函数, 嘶声波对辐射带电子的散射系数受到太阳风和地磁活动水平的显著影响, 还强烈依赖于空间位置、背景磁场和等离子体密度分布. 为了快速获取嘶声波对辐射带电子的投掷角散射系数以用于辐射带全球动态变化过程建模, 本文利用FDC(full diffusion code)系统计算了嘶声波对辐射带电子的散射系数, 建立了空间区域L = 1.5—6、冷等离子体参数α* = 3—30、电子能量1 keV—10 MeV、电子投掷角0°—90°范围内的四维散射系数矩阵数据库. 基于该数据库, 可通过线性插值快速得到不同Lα*参数下的嘶声波对辐射带电子的散射系数. 通过对比FDC计算的散射系数与线性插值的结果, 验证了基于数据库线性插值得到散射系数的准确性, 大部分误差位于10%以内. 本文建立的嘶声波对辐射带电子的投掷角散射系数四维数据库和验证的线性插值方法, 可以大幅降低获取嘶声波散射系数全球信息的时间, 从而快速提升开展长时间辐射带时空变化模拟的计算效率, 进而有望为开发地球辐射带动态预报模型提供有利条件.
    Plasmaspheric hiss is an important wave mode in the Earth’s radiation belts. Hiss waves can scatter energetic electrons into loss cones to precipitate into the atmosphere, and therefore become an important source of fluctuations, leading the radiation belt to lose electrons . As a function of electron energy and pitch angle, the diffusion coefficient of hiss waves for radiation belt electrons is significantly influenced by the solar wind and geomagnetic activity, and also strongly depends on the spatial position, the background magnetic field, and the plasma density distribution. In order to quickly obtain the diffusion coefficients of hiss waves on electrons in the radiation belt for modelling the global dynamics of the radiation belt, we systematically calculate the diffusion coefficients of hiss waves on electrons in the radiation belt by using the full diffusion code (FDC), and build a four-dimensional matrix database of diffusion coefficients for the spatial region L = 1.5–6, the cold plasma parameter α* = 3–30, electron energy 1 keV–10 MeV, and electron throw angle 0°–90°. According to the database, we can quickly obtain diffusion coefficients with different L and α* values through linear interpolations. By comparing the errors between diffusion coefficients calculated by the FDC code and those linearly interpolated from the diffusion coefficient database, the accuracies of interpolated coefficients are validated, showing that most of the errors lie in 10%. The four-dimensional database of hiss wave pitch angle diffusion coefficients for radiation belt electrons and the validated linear interpolation method established in this paper can significantly reduce the time required to obtain global information about hiss wave diffusion coefficients, thereby rapidly improving the computational efficiency of carrying out simulations of spatial and temporal changes in the radiation belts over long periods of time, which in turn is expected to provide favourable conditions for the development of dynamic forecasting models of the Earth's radiation belts.
      通信作者: 马新, whumaxin@whu.edu.cn ; 项正, xiangzheng@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 42025404, 42188101, 42174190, 41904143, 42274199, 42204160)、民用航天预研项目资助课题(批准号: D020308, D020104)、中国科学院战略性先导科技专项(B类)(批准号: XDB41000000)、中国科学院地质与地球物理研究所地球与行星物理重点实验室开放课题(批准号: DQXX2021-04)和中央高校基本科研业务费专项资金(批准号: 2042021kf0016)资助的课题.
      Corresponding author: Ma Xin, whumaxin@whu.edu.cn ; Xiang Zheng, xiangzheng@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 42025404, 42188101, 42174190, 41904143, 42274199, 42204160), the Pre-research Projects on Civil Aerospace Technologies (Grant Nos. D020308, D020104) funded by the China National Space Administration, and the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant Nos. XDB41000000) and the Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences (Grant No. DQXX2021-04), and the Fundamental Research Funds for the Central Universities (Grant No. 2042021kf0016).
    [1]

    Ni B, Gu X, Fu S, Xiang Z, Lou Y 2017 J. Geophys. Res. Space Phys. 122 3342Google Scholar

    [2]

    Lou Y, Cao X, Ni B, Tu W, Gu X, Fu S, Xiang Z, Ma X 2021 Geophys. Res. Lett. 48 e2020GL092208

    [3]

    Thorne R, Ni B, Tao X, Richard B, Nigel P 2010 Nature 467 943Google Scholar

    [4]

    Guo D, Xiang Z, Ni, B, Cao X, Fu S, Zhou R, Gu X, Yi J, Guo Y, Jiao L 2021 Geophys. Res. Lett. 48 e2021GL095714

    [5]

    Guo Y, Ni B, Fu S, Wang D, Shprits Y, Zhelavskaya I, Feng M, Guo D 2022 J. Geophys. Res. 127 e2021JA029926

    [6]

    He Q, Liu S, Xiao F, Gao Z, Li T, Shang X, Zhou Q, Yang C, He L 2022 Sci. China Technol. Sci. 65 1

    [7]

    He J, Jin Y, Xiao F, He Z, Yang C, Xie Y, He Q, Wang C, Shang X, Liu S, Zhou Q, Zhang S 2021 Sci. China Technol. Sci. 64 890

    [8]

    Liu S, Xie Y, Zhang S, Shang X, Yang C, Zhou Q, He Y, Xiao F 2020 Geophys. Res. Lett. 47 e2020GL089994

    [9]

    Ni B, Bortnik J, Thorne R, Ma Q, Chen L 2013 J. Geophys. Res. Space Phys. 118 7740Google Scholar

    [10]

    Ni B, Li W, Thorne R, Bortnik J, Ma Q, Chen L, Kletzing C, Kurth W, Hospodarsky G, Reeves G, Spence H, Blake J, Fennell J, Claudepierre S 2014 Geophys. Res. Lett. 41 1854Google Scholar

    [11]

    Zhang W, Fu S, Gu X, Ni B, Xiang Z, Summers D, Zou Z, Cao X, Lou Y, Hua M 2018 Geophys. Res. Lett. 45 4618Google Scholar

    [12]

    Fu S, Yi J, Ni B, Zhou R, Hu Z, Cao X, Gu X, Guo D 2020 Geophys. Res. Lett. 47 e2020GL086963

    [13]

    Ni B, Cao X, Zou Z, Zhou C, Gu X, Bortnil J, Zhang J, Fu S, Zhao Z, Shi R, Xie L 2015 J. Geophys. Res. Space Phys. 120 7357Google Scholar

    [14]

    Xiang Z, Tu W, Li X, Ni B, Morley S, Baker D 2017 J. Geophys. Res. Space Phys. 122 9858Google Scholar

    [15]

    Xiang Z, Tu W, Ni B, Henderson M, Cao X 2018 Geophys. Res. Lett. 45 8035Google Scholar

    [16]

    Fu S, Ni B, Lou Y, Bortnik J, Ge Y, Tao X, Cao X, Gu X, Xiang Z, Zhang W, Zhang Y, Wang Q 2018 Geophys. Res. Lett. 45 10866

    [17]

    Lou Y, Cao, X, Ni, B, Wu M, Zhang T 2021 J. Geophys. Res. Space Phys. 126 e2021JA029966

    [18]

    Zhou R, Ni B, Fu S, Teng S, Tao X, Hu Z, Guo J, Hua M, Yi J, Guo Y, Jiao L, Ma X, Gu X 2022 J. Geophys. Res. Space Phys. 127 e2021JA030093

    [19]

    Yang C, Wang Z, Xiao F, He Z, Xie Y, Zhang S, He Y, Liu S, Zhou Q 2022 Sci. China Technol. Sci. 65 131

    [20]

    Guan C, Shang X, Xie Y, Yang C, Zhang S, Liu S, Xiao F 2020 Sci. China Technol. Sci. 63 2369Google Scholar

    [21]

    Liu S, Zhang Jian, Chen L, Zhu H, He Zhao 2018 Geophys. Res. Lett. 45 10138

    [22]

    Hua M, Li W, Ni B, Ma Q, Green A, Shen X, Claudepierre S, Bortnik J, Gu X, Fu S, Xiang Z, Reeves G 2020 Nat. Comm. 11 4847Google Scholar

    [23]

    Ni B, Hua M, Gu X, Fu S, Xiang Z, Cao X, Ma X 2021 Sci. China Earth Sci. 65 391

    [24]

    Xiang Z, Lin X, Chen W, Wang Y, Lu P, Gong W, Ma W, Hua M, Liu Y 2021 Chin. J. Geophys. 64 3860

    [25]

    刘阳希子, 项正, 郭建广, 顾旭东, 付松, 周若贤, 花漫, 朱琪, 易娟, 倪彬彬 2021 物理学报 70 149401Google Scholar

    Liu Y X Z, Xiang Z, Guo J G, Gu X D, Fu S, Zhou R X, Hua M, Zhu Q, Yi J, Ni B B 2021 Acta Phys. Sin. 70 149401Google Scholar

    [26]

    Liu Y, Xiang Z, Ni B, Li X, Zhang K, Fu S, Gu X, Liu J, Cao X 2022 Geophys. Res. Lett. 49 e2021GL097443

    [27]

    Gu X, Peng R, Wang S, Ni B, Luo F, Li G, Li Z 2022 IEEE Trans. Geosci. Remote Sens. 60 1

    [28]

    Li W, Ma Q, Thorne R, Bortnil J, Kletzing C, Kurth W, Hospodarsky G, Nishimura Y 2015 J. Geophys. Res. Space Phys. 120 3393Google Scholar

    [29]

    项正, 谈家强, 倪彬彬, 顾旭东, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 贺丰明, 郑程耀, 殷倩, 王豪 2017 物理学报 66 039401Google Scholar

    Xiang Z, Tan J Q, Ni B B, Gu X D, Cao X, Zou Z Y, Zhou C, Fu S, Shi R, Zhao Z Y, He F M, Zheng C Y, Yin Q, Wang H 2017 Acta Phys. Sin. 66 039401Google Scholar

    [30]

    Meredith N, Horne R, Kersten T, Li W, Bortnik J, Sicard A, Yearby K 2018 J. Geophys. Res. Space Phys. 123 4526Google Scholar

    [31]

    Kim K, Shprits Y 2019 J. Geophys. Res. Space Phys. 124 1904Google Scholar

    [32]

    Zhang W, Ni B, Huang H, Summers D, Fu S, Xiang Z, Gu X, Cao X, Lou Y, Hua M 2019 Geophys. Res. Lett. 46 5670Google Scholar

    [33]

    Chen L, Li W, Bortnik J, Thorne R 2012 b Geophys. Res. Lett. 39 L08111

    [34]

    Cao X, Ni B, Summers D, Fu S, Shi R 2020 Astrophys. J. 896 118Google Scholar

    [35]

    Ma X, Cao X, Ni B, Zhu Q, Xiang Z 2021 Astrophys. J. 916 14Google Scholar

    [36]

    Bortnik J, Li W, Thome R, Angelopoulos V, Cully C, Bonnell J, Contel O, Roux A 2009 Science 324 775Google Scholar

    [37]

    Chen L, Bortnik J, Li W, Thorne R, Horne R 2012 J. Geophys. Res. 117 A05201

    [38]

    Chen L, Thorne R, Bortnik J, Li W, Horne R, Reeves G, Kletzing C, Kurth W, Hospodarsky G, Spence H, Blake J, Fennell J 2014 Geophys. Res. Lett. 41 5702Google Scholar

    [39]

    Lyons L, Thorne R 1973 J. Geophys. Res. 78 2142Google Scholar

    [40]

    Meredith N, Horne R, Glauert S, Baker D, Kanekal S, Albert J 2009 J. Geophys. Res. 114 A03222

    [41]

    Xiang Z, Li X, Ni B, Temerin M, Zhang K, Khoo L 2020 J. Geophys. Res. Space Phys. 125 e2020JA028042

    [42]

    Zhu Q, Cao X, Gu X, Ni B, Xiang Z, Fu S, Summers D, Hua M, Lou Y, Ma X, Guo Y, Guo D, Zhang W 2021 J. Geophys. Res. Space Phys. 126 e2020JA029057

    [43]

    Ma Q, Li W, Thorne R, Bortnik J, Reeves G, Kletzing C, Kurth W, Hospodarsky G, Spence H, Baker D, Blake J, Fennell J, Claudepierre S, Angelopoulos V 2016 J. Geophys. Res. Space Phys. 121 11737

    [44]

    Reeves G, Friedel R, Larsen B, Skoug R, Funsten H, Claudepierre S, Fennell J, Turner D, Spence H, Blake J, Baker D 2016 J. Geophys. Res. Space Phys. 121 397Google Scholar

    [45]

    Ripoll J, Reeves G, Cunningham G, Loridan V, Denton M, Santolik O, Kurth W, Kletzing C, Turner D, Henderson M, Ukhorskiy A 2016 Geophys. Res. Lett. 43 5616Google Scholar

    [46]

    Zhao H, Ni B, Li X, Baker D, Johnston W, Zhang W, Xiang Z, Gu X, Jaynes A, Kanekal S, Blake J, Claudepierre S, Temerin M, Funsten H, Reeves G, Boyd A 2019 Nat. Phys. 15 367Google Scholar

    [47]

    Ni B, Huang H, Zhang W, Gu X, Zhao H, Li X, Baker D, Fu S, Xiang Z, Cao X 2019 Geophys. Res. Lett. 46 2019GL082032

    [48]

    De S, Li W, Thorne R, Ma Q, Bortnik J, Kletzing C, Kurth W, Hospodarsky G, Spence H, Reeves G, Blake J, Fennell J 2015 J. Geophys. Res. Space Phys. 120 8681Google Scholar

    [49]

    Li W, Shen X, Ma Q, Capannolo L, Shi R, Redmon J, Rodriguez J, Reeves G, Kletzing C, Kurth W, Hospodarsky G 2019 Geophys. Res. Lett. 46 3615Google Scholar

    [50]

    Breneman A, Halford A, Millan R, Woodger L, Zhang X, Sandhu J, Capannolo L, Li W, Ma Q, Cully C, Murphy K, Brito T, Elliott S 2020 J. Geophys. Res. Space Phys. 125 e2020JA028097

    [51]

    Mourenas D, Ripoll J 2012 J. Geophys. Res. 117 A01204

    [52]

    Thorne R, Li W, Ni B, Ma Q, Bortnik J, Baker D, Spence H, Reeves G, Henderson M, Kletzing C, Kurth W, Hospodarsky G, Turner D, Angelopoulos V 2013 Geophys. Res. Lett. 40 3507Google Scholar

    [53]

    Mourenas D, Ma Q, Artemyev A, Li W 2017 Geophys. Res. Lett. 44 3009Google Scholar

    [54]

    Claudepierre S, Ma Q, Bortnik J, O’Brien T, Fennell J, Blake J 2020 Geophys. Res. Lett. 47 e2019GL086056

    [55]

    Ni B, Thorne R, Shprits Y, Bortnik J 2008 Geophys. Res. Lett. 35 L11106Google Scholar

    [56]

    Xiao F, Su Z, Zheng H, Wang S 2009 J. Geophys. Res. 114 A03210

    [57]

    Xiao F, Su Z, Zheng H, Wang S 2010 J. Geophys. Res. 115 A05216

    [58]

    Albert 2007 J. Geophys. Res. 112 A12202

    [59]

    Lyons 1974 J. Plasma Physics 12 417Google Scholar

    [60]

    Summers D, Ni B, Meredith N 2007 J. Geophys. Res.112 A04206

    [61]

    Meredith N, Horne R, Clilverd M, Horsfall D, Thorne R, Anderson R 2006 J. Geophys. Res. 111 A09217

    [62]

    Sheeley B, Moldwin M, Rassoul H, Anderson R 2001 J. Geophys. Res. 106 25631Google Scholar

  • 图 1  (a) 不同的Lα*条件下对应等离子体密度的数值; (b) 不同Lα*的值, 蓝线表示位于等离子体层以内, 黄线表示位于等离子体层以外

    Fig. 1.  (a) The values of the density at different L and α* values; (b) the values of α* at different L, the blue line indicates inside the plasmapause and the yellow line indicates outside the plasmapause.

    图 2  L = 2时常数传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)分别对应不同α*条件下的散射系数

    Fig. 2.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle $ of hiss waves for electrons with constant wave normal angle model at L = 2, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 3  L = 3时固定传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)分别对应不同α*条件下的散射系数

    Fig. 3.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle $ of hiss waves for electrons with constant wave normal angle model at L = 3, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 4  L = 4时常数传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)分别对应不同α*条件下的散射系数

    Fig. 4.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle $ of hiss waves for electrons with constant wave normal angle model at L = 4, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 5  L = 5时固定传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)分别对应不同α*条件下的散射系数

    Fig. 5.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle $ of hiss waves for electrons with constant wave normal angle model at L = 5, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 7  L = 3时随纬度变化传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)分别对应不同α*条件下的散射系数

    Fig. 7.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle$ of hiss waves for electrons with latitudinally varying wave normal angle model at L = 3, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 8  L = 4时随纬度变化传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)分别对应不同α*条件下的散射系数

    Fig. 8.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle $ of hiss waves for electrons with latitudinally varying wave normal angle model at L = 4, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 6  L = 2时随纬度变化传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)分别对应不同α*条件下的散射系数

    Fig. 6.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle $ of hiss waves for electrons with latitudinally varying wave normal angle model at L = 2, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 9  L = 5时随纬度变化传播角模型的嘶声波对电子的弹跳平均散射系数$\langle $Dαα$\rangle $, 其中(a1)—(d7)对应不同α*条件下的散射系数

    Fig. 9.  Bounce averaged diffusion coefficients $\langle $Dαα$\rangle $ of hiss waves for electrons with latitudinally varying wave normal angle model at L = 5, where (a1)–(d7) corresponds to the diffusion coefficients under different α* conditions, respectively.

    图 10  (a1)—(a3) 当α* = 4时, L = 3.25, L = 4.35, L = 5.55处计算得到的嘶声波散射系数; (b1)—(b3) 通过数据库进行线性插值计算得到的嘶声波散射系数; (c1)—(c3) 二者相对误差分析

    Fig. 10.  (a1)–(a3) The diffusion coefficients of hiss waves calculated at L = 3.25, L = 4.35, L = 5.55 when α* = 3; (b1)–(b3) the hiss wave diffusion coefficients calculated by linear interpolation from the database; (c1)–(c3) the relative error analysis.

    图 11  (a)—(c) 当α* = 4时, L = 3.25, L = 4.35, L = 5.55处选取能级为50 keV, 200 keV, 400 keV以及700 keV的散射系数对比结果; (d)—(f) 数值的比值, 虚线表示FDC计算结果, 点画线表示线性插值结果, 不同颜色代表不同能级

    Fig. 11.  (a1)–(a3) Comparison of the diffusion coefficients at α* = 4, L = 3.25, L = 4.35, L = 5.55 for selected energy levels of 50 keV, 200 keV, 400 keV and 700 keV; (d)–(f) the ratio of values, the dashed line shows the result of the FDC calculation, the dotted lines shows the result of linear interpolation, different colors represent different energy levels.

    图 12  (a1)—(a3) 当L = 4时, α* = 3.25, α* = 4.35, α* = 5.55处计算得到的嘶声波散射系数; (b1)—(b3) 通过数据库进行线性插值计算得到的嘶声波散射系数; (c1)—(c3) 表示对二者进行相对误差分析

    Fig. 12.  (a1)–(a3) The diffusion coefficients of hiss waves calculated at α* = 3.25, α* = 4.35, α* = 5.55 when L = 4; (b1)–(b3) the hiss wave diffusion coefficients calculated by linear interpolation from the database; (c1)–(c3) the relative error analysis.

    图 13  (a)—(c) 当L = 4时, α* = 3.25, α* = 4.35, α* = 5.55处选取能级为50 keV, 200 keV, 400 keV和700 keV的散射系数对比结果; (d)—(f) 数值的比值, 虚线表示FDC计算结果, 点画线表示线性插值结果, 表示不同颜色代表不同能级

    Fig. 13.  (a)–(c) The comparison of the diffusion coefficients at α* = 3.25, α* = 4.35, α* = 5.55 for L = 4 for selected energy levels of 50 keV, 200 keV, 400 keV and 700 keV; (d)–(f) the ratio of values, the dashed line shows the result of the FDC calculation, the dotted lines shows the result of linear interpolation, different colors represent different energy levels.

    表 1  随纬度变化的传播角模型主要参数

    Table 1.  Parameters of the varying latitudinal wave normal angle model.

    λ/(º)$ \varphi $m/(º)δ$ \varphi $/(º)$ \varphi $/(º)
    0—50150—25
    5—1020150—40
    10—1540200—55
    15—20503015—70
    20—25604030—75
    25—30705050—80
    30—35806065—85
    35—40807075—85
    40—45808080—85
    下载: 导出CSV

    表 2  不同L的磁纬度选取范围

    Table 2.  Range of magnetic latitude at different L values

    Lλ/(°)
    1.5—2.20—30
    2.3—2.90—40
    3.0—6.00—45
    下载: 导出CSV
  • [1]

    Ni B, Gu X, Fu S, Xiang Z, Lou Y 2017 J. Geophys. Res. Space Phys. 122 3342Google Scholar

    [2]

    Lou Y, Cao X, Ni B, Tu W, Gu X, Fu S, Xiang Z, Ma X 2021 Geophys. Res. Lett. 48 e2020GL092208

    [3]

    Thorne R, Ni B, Tao X, Richard B, Nigel P 2010 Nature 467 943Google Scholar

    [4]

    Guo D, Xiang Z, Ni, B, Cao X, Fu S, Zhou R, Gu X, Yi J, Guo Y, Jiao L 2021 Geophys. Res. Lett. 48 e2021GL095714

    [5]

    Guo Y, Ni B, Fu S, Wang D, Shprits Y, Zhelavskaya I, Feng M, Guo D 2022 J. Geophys. Res. 127 e2021JA029926

    [6]

    He Q, Liu S, Xiao F, Gao Z, Li T, Shang X, Zhou Q, Yang C, He L 2022 Sci. China Technol. Sci. 65 1

    [7]

    He J, Jin Y, Xiao F, He Z, Yang C, Xie Y, He Q, Wang C, Shang X, Liu S, Zhou Q, Zhang S 2021 Sci. China Technol. Sci. 64 890

    [8]

    Liu S, Xie Y, Zhang S, Shang X, Yang C, Zhou Q, He Y, Xiao F 2020 Geophys. Res. Lett. 47 e2020GL089994

    [9]

    Ni B, Bortnik J, Thorne R, Ma Q, Chen L 2013 J. Geophys. Res. Space Phys. 118 7740Google Scholar

    [10]

    Ni B, Li W, Thorne R, Bortnik J, Ma Q, Chen L, Kletzing C, Kurth W, Hospodarsky G, Reeves G, Spence H, Blake J, Fennell J, Claudepierre S 2014 Geophys. Res. Lett. 41 1854Google Scholar

    [11]

    Zhang W, Fu S, Gu X, Ni B, Xiang Z, Summers D, Zou Z, Cao X, Lou Y, Hua M 2018 Geophys. Res. Lett. 45 4618Google Scholar

    [12]

    Fu S, Yi J, Ni B, Zhou R, Hu Z, Cao X, Gu X, Guo D 2020 Geophys. Res. Lett. 47 e2020GL086963

    [13]

    Ni B, Cao X, Zou Z, Zhou C, Gu X, Bortnil J, Zhang J, Fu S, Zhao Z, Shi R, Xie L 2015 J. Geophys. Res. Space Phys. 120 7357Google Scholar

    [14]

    Xiang Z, Tu W, Li X, Ni B, Morley S, Baker D 2017 J. Geophys. Res. Space Phys. 122 9858Google Scholar

    [15]

    Xiang Z, Tu W, Ni B, Henderson M, Cao X 2018 Geophys. Res. Lett. 45 8035Google Scholar

    [16]

    Fu S, Ni B, Lou Y, Bortnik J, Ge Y, Tao X, Cao X, Gu X, Xiang Z, Zhang W, Zhang Y, Wang Q 2018 Geophys. Res. Lett. 45 10866

    [17]

    Lou Y, Cao, X, Ni, B, Wu M, Zhang T 2021 J. Geophys. Res. Space Phys. 126 e2021JA029966

    [18]

    Zhou R, Ni B, Fu S, Teng S, Tao X, Hu Z, Guo J, Hua M, Yi J, Guo Y, Jiao L, Ma X, Gu X 2022 J. Geophys. Res. Space Phys. 127 e2021JA030093

    [19]

    Yang C, Wang Z, Xiao F, He Z, Xie Y, Zhang S, He Y, Liu S, Zhou Q 2022 Sci. China Technol. Sci. 65 131

    [20]

    Guan C, Shang X, Xie Y, Yang C, Zhang S, Liu S, Xiao F 2020 Sci. China Technol. Sci. 63 2369Google Scholar

    [21]

    Liu S, Zhang Jian, Chen L, Zhu H, He Zhao 2018 Geophys. Res. Lett. 45 10138

    [22]

    Hua M, Li W, Ni B, Ma Q, Green A, Shen X, Claudepierre S, Bortnik J, Gu X, Fu S, Xiang Z, Reeves G 2020 Nat. Comm. 11 4847Google Scholar

    [23]

    Ni B, Hua M, Gu X, Fu S, Xiang Z, Cao X, Ma X 2021 Sci. China Earth Sci. 65 391

    [24]

    Xiang Z, Lin X, Chen W, Wang Y, Lu P, Gong W, Ma W, Hua M, Liu Y 2021 Chin. J. Geophys. 64 3860

    [25]

    刘阳希子, 项正, 郭建广, 顾旭东, 付松, 周若贤, 花漫, 朱琪, 易娟, 倪彬彬 2021 物理学报 70 149401Google Scholar

    Liu Y X Z, Xiang Z, Guo J G, Gu X D, Fu S, Zhou R X, Hua M, Zhu Q, Yi J, Ni B B 2021 Acta Phys. Sin. 70 149401Google Scholar

    [26]

    Liu Y, Xiang Z, Ni B, Li X, Zhang K, Fu S, Gu X, Liu J, Cao X 2022 Geophys. Res. Lett. 49 e2021GL097443

    [27]

    Gu X, Peng R, Wang S, Ni B, Luo F, Li G, Li Z 2022 IEEE Trans. Geosci. Remote Sens. 60 1

    [28]

    Li W, Ma Q, Thorne R, Bortnil J, Kletzing C, Kurth W, Hospodarsky G, Nishimura Y 2015 J. Geophys. Res. Space Phys. 120 3393Google Scholar

    [29]

    项正, 谈家强, 倪彬彬, 顾旭东, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 贺丰明, 郑程耀, 殷倩, 王豪 2017 物理学报 66 039401Google Scholar

    Xiang Z, Tan J Q, Ni B B, Gu X D, Cao X, Zou Z Y, Zhou C, Fu S, Shi R, Zhao Z Y, He F M, Zheng C Y, Yin Q, Wang H 2017 Acta Phys. Sin. 66 039401Google Scholar

    [30]

    Meredith N, Horne R, Kersten T, Li W, Bortnik J, Sicard A, Yearby K 2018 J. Geophys. Res. Space Phys. 123 4526Google Scholar

    [31]

    Kim K, Shprits Y 2019 J. Geophys. Res. Space Phys. 124 1904Google Scholar

    [32]

    Zhang W, Ni B, Huang H, Summers D, Fu S, Xiang Z, Gu X, Cao X, Lou Y, Hua M 2019 Geophys. Res. Lett. 46 5670Google Scholar

    [33]

    Chen L, Li W, Bortnik J, Thorne R 2012 b Geophys. Res. Lett. 39 L08111

    [34]

    Cao X, Ni B, Summers D, Fu S, Shi R 2020 Astrophys. J. 896 118Google Scholar

    [35]

    Ma X, Cao X, Ni B, Zhu Q, Xiang Z 2021 Astrophys. J. 916 14Google Scholar

    [36]

    Bortnik J, Li W, Thome R, Angelopoulos V, Cully C, Bonnell J, Contel O, Roux A 2009 Science 324 775Google Scholar

    [37]

    Chen L, Bortnik J, Li W, Thorne R, Horne R 2012 J. Geophys. Res. 117 A05201

    [38]

    Chen L, Thorne R, Bortnik J, Li W, Horne R, Reeves G, Kletzing C, Kurth W, Hospodarsky G, Spence H, Blake J, Fennell J 2014 Geophys. Res. Lett. 41 5702Google Scholar

    [39]

    Lyons L, Thorne R 1973 J. Geophys. Res. 78 2142Google Scholar

    [40]

    Meredith N, Horne R, Glauert S, Baker D, Kanekal S, Albert J 2009 J. Geophys. Res. 114 A03222

    [41]

    Xiang Z, Li X, Ni B, Temerin M, Zhang K, Khoo L 2020 J. Geophys. Res. Space Phys. 125 e2020JA028042

    [42]

    Zhu Q, Cao X, Gu X, Ni B, Xiang Z, Fu S, Summers D, Hua M, Lou Y, Ma X, Guo Y, Guo D, Zhang W 2021 J. Geophys. Res. Space Phys. 126 e2020JA029057

    [43]

    Ma Q, Li W, Thorne R, Bortnik J, Reeves G, Kletzing C, Kurth W, Hospodarsky G, Spence H, Baker D, Blake J, Fennell J, Claudepierre S, Angelopoulos V 2016 J. Geophys. Res. Space Phys. 121 11737

    [44]

    Reeves G, Friedel R, Larsen B, Skoug R, Funsten H, Claudepierre S, Fennell J, Turner D, Spence H, Blake J, Baker D 2016 J. Geophys. Res. Space Phys. 121 397Google Scholar

    [45]

    Ripoll J, Reeves G, Cunningham G, Loridan V, Denton M, Santolik O, Kurth W, Kletzing C, Turner D, Henderson M, Ukhorskiy A 2016 Geophys. Res. Lett. 43 5616Google Scholar

    [46]

    Zhao H, Ni B, Li X, Baker D, Johnston W, Zhang W, Xiang Z, Gu X, Jaynes A, Kanekal S, Blake J, Claudepierre S, Temerin M, Funsten H, Reeves G, Boyd A 2019 Nat. Phys. 15 367Google Scholar

    [47]

    Ni B, Huang H, Zhang W, Gu X, Zhao H, Li X, Baker D, Fu S, Xiang Z, Cao X 2019 Geophys. Res. Lett. 46 2019GL082032

    [48]

    De S, Li W, Thorne R, Ma Q, Bortnik J, Kletzing C, Kurth W, Hospodarsky G, Spence H, Reeves G, Blake J, Fennell J 2015 J. Geophys. Res. Space Phys. 120 8681Google Scholar

    [49]

    Li W, Shen X, Ma Q, Capannolo L, Shi R, Redmon J, Rodriguez J, Reeves G, Kletzing C, Kurth W, Hospodarsky G 2019 Geophys. Res. Lett. 46 3615Google Scholar

    [50]

    Breneman A, Halford A, Millan R, Woodger L, Zhang X, Sandhu J, Capannolo L, Li W, Ma Q, Cully C, Murphy K, Brito T, Elliott S 2020 J. Geophys. Res. Space Phys. 125 e2020JA028097

    [51]

    Mourenas D, Ripoll J 2012 J. Geophys. Res. 117 A01204

    [52]

    Thorne R, Li W, Ni B, Ma Q, Bortnik J, Baker D, Spence H, Reeves G, Henderson M, Kletzing C, Kurth W, Hospodarsky G, Turner D, Angelopoulos V 2013 Geophys. Res. Lett. 40 3507Google Scholar

    [53]

    Mourenas D, Ma Q, Artemyev A, Li W 2017 Geophys. Res. Lett. 44 3009Google Scholar

    [54]

    Claudepierre S, Ma Q, Bortnik J, O’Brien T, Fennell J, Blake J 2020 Geophys. Res. Lett. 47 e2019GL086056

    [55]

    Ni B, Thorne R, Shprits Y, Bortnik J 2008 Geophys. Res. Lett. 35 L11106Google Scholar

    [56]

    Xiao F, Su Z, Zheng H, Wang S 2009 J. Geophys. Res. 114 A03210

    [57]

    Xiao F, Su Z, Zheng H, Wang S 2010 J. Geophys. Res. 115 A05216

    [58]

    Albert 2007 J. Geophys. Res. 112 A12202

    [59]

    Lyons 1974 J. Plasma Physics 12 417Google Scholar

    [60]

    Summers D, Ni B, Meredith N 2007 J. Geophys. Res.112 A04206

    [61]

    Meredith N, Horne R, Clilverd M, Horsfall D, Thorne R, Anderson R 2006 J. Geophys. Res. 111 A09217

    [62]

    Sheeley B, Moldwin M, Rassoul H, Anderson R 2001 J. Geophys. Res. 106 25631Google Scholar

  • [1] 刘阳希子, 项正, 周晨, 倪彬彬, 董俊虎, 胡景乐, 王建行, 郭浩智. NWC人工甚低频台站信号产生“条缕状”准捕获电子能谱的模拟. 物理学报, 2024, 73(20): 209401. doi: 10.7498/aps.73.20240975
    [2] 林麦麦, 王明月, 蒋蕾. 多组分尘埃等离子体中非线性尘埃声孤波的传播特征. 物理学报, 2023, 72(3): 035201. doi: 10.7498/aps.72.20221843
    [3] 李向富, 朱晓禄, 蒋刚. 等离子体对电子间相互作用的屏蔽效应研究. 物理学报, 2023, 72(7): 073102. doi: 10.7498/aps.72.20222339
    [4] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [5] 刘阳希子, 项正, 郭建广, 顾旭东, 付松, 周若贤, 花漫, 朱琪, 易娟, 倪彬彬. 甚低频台站信号对地球内辐射带和槽区能量电子的散射效应分析. 物理学报, 2021, 70(14): 149401. doi: 10.7498/aps.70.20202029
    [6] 刘胜兴, 李整林. 海面冰层对声波的反射和散射特性. 物理学报, 2017, 66(23): 234301. doi: 10.7498/aps.66.234301
    [7] 项正, 谈家强, 倪彬彬, 顾旭东, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 贺丰明, 郑程耀, 殷倩, 王豪. 基于范阿伦卫星观测数据的等离子体层嘶声全球分布的统计分析. 物理学报, 2017, 66(3): 039401. doi: 10.7498/aps.66.039401
    [8] 周磊, 唐昌建. 不均匀等离子体中电磁波与Langmuir波的相互作用. 物理学报, 2009, 58(12): 8254-8259. doi: 10.7498/aps.58.8254
    [9] 张蕾, 董全力, 赵静, 王首钧, 盛政明, 何民卿, 张杰. 激光等离子体相互作用的受激拉曼散射饱和效应. 物理学报, 2009, 58(3): 1833-1837. doi: 10.7498/aps.58.1833
    [10] 韩久宁, 王苍龙, 栗生长, 段文山. 二维热离子等离子体中离子声孤波的相互作用. 物理学报, 2008, 57(10): 6068-6073. doi: 10.7498/aps.57.6068
    [11] 李百文, 田恩科. 强激光与等离子体相互作用中受激陷俘电子声波散射及相空间离子涡旋的形成. 物理学报, 2007, 56(8): 4749-4761. doi: 10.7498/aps.56.4749
    [12] 徐妙华, 梁天骄, 张 杰. 利用韧致辐射诊断激光等离子体相互作用产生的超热电子. 物理学报, 2006, 55(5): 2357-2363. doi: 10.7498/aps.55.2357
    [13] 吴永全, 蒋国昌, 尤静林, 侯怀宇, 陈 辉. 硅酸盐熔体微结构单元的对称伸缩模的拉曼散射系数. 物理学报, 2005, 54(2): 961-966. doi: 10.7498/aps.54.961
    [14] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布. 物理学报, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [15] 卫青, 王奇, 施解龙, 陈园园. 孤子和辐射场的非线性相互作用. 物理学报, 2002, 51(1): 99-103. doi: 10.7498/aps.51.99
    [16] 唐德礼, 孙爱萍, 邱孝明. 均匀磁化等离子体与雷达波相互作用的数值分析. 物理学报, 2002, 51(8): 1724-1729. doi: 10.7498/aps.51.1724
    [17] 余玮, 徐至展, 马锦秀, 陈荣清. 等离子体拍频波加速器中三波相互作用的时间发展. 物理学报, 1993, 42(3): 431-436. doi: 10.7498/aps.42.431
    [18] 傅荣堂, 李列明, 孙鑫, 傅柔励. 高分子中的电子-声子相互作用与非线性光学极化率. 物理学报, 1993, 42(3): 422-430. doi: 10.7498/aps.42.422
    [19] 徐至展, 殷光裕, 张燕珍, 林康春. 激光等离子体相互作用中的受激布里渊散射. 物理学报, 1983, 32(4): 481-489. doi: 10.7498/aps.32.481
    [20] 贺贤土. 等离子体中大幅波与低频振荡粒子非线性相互作用效应. 物理学报, 1982, 31(10): 1317-1336. doi: 10.7498/aps.31.1317
计量
  • 文章访问数:  3475
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-10
  • 修回日期:  2022-10-18
  • 上网日期:  2022-10-19
  • 刊出日期:  2022-11-20

/

返回文章
返回