搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电场调控双层WSe2转角同质结激子莫尔势

石蓓蓓 陶广益 戴宇琛 何霄 林峰 张酣 方哲宇

引用本文:
Citation:

电场调控双层WSe2转角同质结激子莫尔势

石蓓蓓, 陶广益, 戴宇琛, 何霄, 林峰, 张酣, 方哲宇

Exciton moiré potential in twisted WSe2 homobilayers modulated by electric field

Shi Bei-Bei, Tao Guang-Yi, Dai Yu-Chen, He Xiao, Lin Feng, Zhang Han, Fang Zhe-Yu
PDF
HTML
导出引用
  • 二维过渡金属硫化物构成的范德瓦耳斯异质结由于存在晶格失配或层间相对旋转角度会产生周期性的莫尔条纹结构, 由此引入的纳米尺度莫尔周期势可以影响激子的空间传输过程. 目前有关双层过渡金属硫化物转角同质结中激子莫尔势调控的研究比较有限, 本工作利用第一性原理计算研究了外加垂直电场对不同旋转角度的双层WSe2同质结激子莫尔势的影响, 发现层间激子莫尔势的大小和势垒/势阱的位置与层间相对旋转角度及电场强度有关, 不同旋转角度的双层WSe2同质结激子莫尔势大小及势垒/势阱的位置随电场强度($\leqslant $1 V/nm)的变化不同. 这些结果为调控层间激子的局域与非局域转变提供了理论依据和数据预测, 在推动人工激子晶体及纳米阵列激光器等半导体器件的发展方面具有重要指导意义.
    The nanoscale periodic energy potential is introduced by moiré pattern in two stacked transition metal dichalcogenide monolayers with lattice mismatch or crystal orientation misalignment. It is demonstrated that the moiré potential can act as a diffusion barrier that affects interlayer exciton transport, providing an opportunity for studying the electronic and optical properties of moiré excitons. However, the current research on the modulation of exciton moiré potential in twisted homobilayers is limited. In this paper the effect of externally applied perpendicular electric field on the exciton moiré potential in twisted WSe2 homobilayers with different rotation angles is studied by using first principle calculations. It is found that the amplitude and shape of the interlayer exciton moiré potential are dependent on the relative rotation angle between the layers and electric field intensity. The amplitude and shape of the moiré potential in the twisted WSe2 homobilayers with different rotation angles vary with the electric field intensity ($\leqslant $1 V/nm). These results provide theoretical basis and data prediction for modulating the local and the non-local transition of interlayer excitons, and are of great significance in promoting the development of semiconductor devices such as artificial excitonic crystals and nanoarray lasers.
      通信作者: 方哲宇, zhyfang@pku.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0210203)、北京市自然科学基金(批准号: Z180011)和国家自然科学基金(批准号: 21790364, 12027807)资助的课题
      Corresponding author: Fang Zhe-Yu, zhyfang@pku.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0210203), the Natural Science Foundation of Beijing, China (Grant No. Z180011), and the National Natural Science Foundation of China (Grant Nos. 21790364, 12027807).
    [1]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [2]

    卢晓波, 张广宇 2015 物理学报 64 077305Google Scholar

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305Google Scholar

    [3]

    吕新宇, 李志强 2019 物理学报 68 220303Google Scholar

    Lv X Y, Li Z Q 2019 Acta Phys. Sin. 68 220303Google Scholar

    [4]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M 2013 Nature 497 598Google Scholar

    [5]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P 2013 Science 340 1427Google Scholar

    [6]

    Ponomarenko L, Gorbachev R, Yu G, Elias D, Jalil R, Patel A, Mishchenko A, Mayorov A, Woods C, Wallbank J 2013 Nature 497 594Google Scholar

    [7]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E 2018 Nature 556 80Google Scholar

    [8]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [9]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B 2012 Nat. Commun. 3 1Google Scholar

    [10]

    Rivera P, Yu H, Seyler K L, Wilson N P, Yao W, Xu X 2018 Nat. Nanotechnol. 13 1004Google Scholar

    [11]

    Shabani S, Halbertal D, Wu W, Chen M, Liu S, Hone J, Yao W, Basov D N, Zhu X, Pasupathy A N 2021 Nat. Phys. 17 720Google Scholar

    [12]

    Jin C, Regan E C, Yan A, Utama M I B, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S 2019 Nature 567 76Google Scholar

    [13]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I 2019 Nature 567 81Google Scholar

    [14]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A 2019 Nature 567 71Google Scholar

    [15]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [16]

    Yu H, Liu G B, Tang J, Xu X, Yao W 2017 Sci. Adv. 3 e1701696Google Scholar

    [17]

    Zhang C, Chuu C P, Ren X, Li M Y, Li L J, Jin C, Chou M Y, Shih C K 2017 Sci. Adv. 3 e1601459Google Scholar

    [18]

    Carr S, Fang S, Kaxiras E 2020 Nat. Rev. Mater. 5 748Google Scholar

    [19]

    Jung J, Raoux A, Qiao Z, MacDonald A H 2014 Phys. Rev. B 89 205414Google Scholar

    [20]

    Wu F, Lovorn T, MacDonald A 2018 Phys. Rev. B 97 035306Google Scholar

    [21]

    Wu F, Lovorn T, MacDonald A H 2017 Phys. Rev. Lett. 118 147401Google Scholar

    [22]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [23]

    Wu F, Lovorn T, Tutuc E, Martin I, MacDonald A 2019 Phys. Rev. Lett. 122 086402Google Scholar

    [24]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [26]

    Grimme S 2004 J. Comput. Chem. 25 1463Google Scholar

    [27]

    Yuan L, Zheng B, Kunstmann J, Brumme T, Kuc A B, Ma C, Deng S, Blach D, Pan A, Huang L 2020 Nat. Mater. 19 617Google Scholar

    [28]

    Zipfel J, Kulig M, Perea-Causin R, Brem S, Ziegler J D, Rosati R, Taniguchi T, Watanabe K, Glazov M M, Malic E, Chernikov A 2020 Phys. Rev. B 101 115430Google Scholar

    [29]

    Choi J, Hsu W T, Lu L S, Sun L, Cheng H Y, Lee M H, Quan J, Tran K, Wang C Y, Staab M 2020 Sci. Adv. 6 eaba8866Google Scholar

    [30]

    Bai Y, Zhou L, Wang J, Wu W, McGilly L J, Halbertal D, Lo C F B, Liu F, Ardelean J, Rivera P 2020 Nat. Mater. 19 1068Google Scholar

  • 图 1  (a) 转角θ接近0°晶胞AA-WSe2的图示; (b) 单层WSe2第一布里渊区(绿色六边形)及其倒格矢${\boldsymbol{G}}_{j}$; (c) WSe2晶格的${\hat{C}}_{3}$对称操作, 黑色箭头表示由${\hat{C}}_{3}$导致的相位变化; (d) 双层WSe2转角同质结莫尔单胞的布里渊区及相应的倒格矢${\boldsymbol{b}}_{j}$

    Fig. 1.  (a) Illustration of AA-WSe2 homobilayer with a small twist angle θ; (b) first-shell reciprocal lattice vectors Gj of a monolayer WSe2 triangular lattice and the corresponding Brillouin zone (green hexagon); (c) ${\hat{C}}_{3}$ transformation of the WSe2 lattice (Black arrows denote the phase change by ${\hat{C}}_{3}$); (d) moiré reciprocal lattice vectors bj and corresponding Brillouin zone.

    图 2  (a) 转角接近0°的莫尔条纹及莫尔超晶格; (b), (c) 分别为AA-WSe2和3R-WSe2晶格结构的俯视图(上)和侧视图(下); (d) 转角接近60°的莫尔条纹及莫尔超晶格; (e)—(g) 分别为2H-WSe2, AB'-WSe2A'B-WSe2晶格结构的俯视图和侧视图

    Fig. 2.  (a) Schematic of the long-period moiré superlattice formed in real space at 0°; (b), (c) top (top) and side (bottom) views of two high-symmetry stacking patterns of AA-WSe2 and 3R-WSe2; (d) schematic of the long-period moiré superlattice formed in real space at 60°; (e)–(g) top and side views of two high-symmetry stacking patterns at 60° of 2H-WSe2, AB'-WSe2 and A'B-WSe2.

    图 3  (a) 电场强度为0, 1 V/nm时2H-WSe2的能带结构图; (b) 2H-WSe2K点处对应价带的放大图; (c) 2H-WSe2Q点处CBM及K点处VBM的W原子的二维电荷密度图; (d) 不同电场强度下5种堆叠次序的双层WSe2K点对应的能隙; (e) K-K激子莫尔势随实空间位置变化的三维及二维投影示意图, 可以将激子(红色和黑色小球)束缚在莫尔势最低位置处; (f) 转角接近0°/60°的双层WSe2K-K激子莫尔势大小随电场强度的变化

    Fig. 3.  (a) Band structure diagram of 2H-WSe2 when the electric field is 0, 1 V/nm; (b) enlarged view of the valence band maximum at K-point of 2H-WSe2; (c) 2D plots of partial charge density CBM and VBM states of 2H-WSe2 at Q-point and K-point of W atom, respectively; (d) band gap corresponding to K-point in momentum space of double-layer WSe2 with five stacking orders under different electric filed intensity; (e) illustrations of the K-K moiré potentials in both 3D and 2D projections that can trap interlayer excitons (red and black spheres) in the local minima; (f) electric field intensity-dependent of K-K moiré potentials in twisted WSe2 homobilayers with rotation angle close to 0°/60°.

    图 4  电场强度不同时, 转角接近(a)—(c) 0°和(d)—(f) 60°的双层WSe2K-K激子莫尔势随实空间位置变化的二维投影图 (a), (d) 0 V/nm; (b), (e) 0.5 V/nm; (c), (f) 1.0 V/nm

    Fig. 4.  Illustrations of 2D projections of K-K moiré potentials in WSe2 homobilayers with rotation angle close to (a)–(c) 0° and (d)–(f) 60° with different electric field intensity: (a), (d) 0 V/nm, (b), (e) 0.5 V/nm; (c), (f) 1.0 V/nm.

  • [1]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [2]

    卢晓波, 张广宇 2015 物理学报 64 077305Google Scholar

    Lu X B, Zhang G Y 2015 Acta Phys. Sin. 64 077305Google Scholar

    [3]

    吕新宇, 李志强 2019 物理学报 68 220303Google Scholar

    Lv X Y, Li Z Q 2019 Acta Phys. Sin. 68 220303Google Scholar

    [4]

    Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P, Koshino M 2013 Nature 497 598Google Scholar

    [5]

    Hunt B, Sanchez-Yamagishi J D, Young A F, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M, Jarillo-Herrero P 2013 Science 340 1427Google Scholar

    [6]

    Ponomarenko L, Gorbachev R, Yu G, Elias D, Jalil R, Patel A, Mishchenko A, Mayorov A, Woods C, Wallbank J 2013 Nature 497 594Google Scholar

    [7]

    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E 2018 Nature 556 80Google Scholar

    [8]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [9]

    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J, Niu Q, Tan P, Wang E, Liu B 2012 Nat. Commun. 3 1Google Scholar

    [10]

    Rivera P, Yu H, Seyler K L, Wilson N P, Yao W, Xu X 2018 Nat. Nanotechnol. 13 1004Google Scholar

    [11]

    Shabani S, Halbertal D, Wu W, Chen M, Liu S, Hone J, Yao W, Basov D N, Zhu X, Pasupathy A N 2021 Nat. Phys. 17 720Google Scholar

    [12]

    Jin C, Regan E C, Yan A, Utama M I B, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S 2019 Nature 567 76Google Scholar

    [13]

    Alexeev E M, Ruiz-Tijerina D A, Danovich M, Hamer M J, Terry D J, Nayak P K, Ahn S, Pak S, Lee J, Sohn J I 2019 Nature 567 81Google Scholar

    [14]

    Tran K, Moody G, Wu F, Lu X, Choi J, Kim K, Rai A, Sanchez D A, Quan J, Singh A 2019 Nature 567 71Google Scholar

    [15]

    Seyler K L, Rivera P, Yu H, Wilson N P, Ray E L, Mandrus D G, Yan J, Yao W, Xu X 2019 Nature 567 66Google Scholar

    [16]

    Yu H, Liu G B, Tang J, Xu X, Yao W 2017 Sci. Adv. 3 e1701696Google Scholar

    [17]

    Zhang C, Chuu C P, Ren X, Li M Y, Li L J, Jin C, Chou M Y, Shih C K 2017 Sci. Adv. 3 e1601459Google Scholar

    [18]

    Carr S, Fang S, Kaxiras E 2020 Nat. Rev. Mater. 5 748Google Scholar

    [19]

    Jung J, Raoux A, Qiao Z, MacDonald A H 2014 Phys. Rev. B 89 205414Google Scholar

    [20]

    Wu F, Lovorn T, MacDonald A 2018 Phys. Rev. B 97 035306Google Scholar

    [21]

    Wu F, Lovorn T, MacDonald A H 2017 Phys. Rev. Lett. 118 147401Google Scholar

    [22]

    Wu F, Lovorn T, Tutuc E, MacDonald A H 2018 Phys. Rev. Lett. 121 026402Google Scholar

    [23]

    Wu F, Lovorn T, Tutuc E, Martin I, MacDonald A 2019 Phys. Rev. Lett. 122 086402Google Scholar

    [24]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [25]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [26]

    Grimme S 2004 J. Comput. Chem. 25 1463Google Scholar

    [27]

    Yuan L, Zheng B, Kunstmann J, Brumme T, Kuc A B, Ma C, Deng S, Blach D, Pan A, Huang L 2020 Nat. Mater. 19 617Google Scholar

    [28]

    Zipfel J, Kulig M, Perea-Causin R, Brem S, Ziegler J D, Rosati R, Taniguchi T, Watanabe K, Glazov M M, Malic E, Chernikov A 2020 Phys. Rev. B 101 115430Google Scholar

    [29]

    Choi J, Hsu W T, Lu L S, Sun L, Cheng H Y, Lee M H, Quan J, Tran K, Wang C Y, Staab M 2020 Sci. Adv. 6 eaba8866Google Scholar

    [30]

    Bai Y, Zhou L, Wang J, Wu W, McGilly L J, Halbertal D, Lo C F B, Liu F, Ardelean J, Rivera P 2020 Nat. Mater. 19 1068Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 姜舟, 蒋雪, 赵纪军. 二维kagome晶格过渡金属酞菁基异质结的电子性质. 物理学报, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [3] 丁莉洁, 张笑天, 郭欣宜, 薛阳, 林常青, 黄丹. SrSnO3作为透明导电氧化物的第一性原理研究. 物理学报, 2023, 72(1): 013101. doi: 10.7498/aps.72.20221544
    [4] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测. 物理学报, 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [5] 陶广益, 齐鹏飞, 戴宇琛, 石蓓蓓, 黄逸婧, 张天浩, 方哲宇. 亚波长介质光栅对单层过渡金属硫化物的发光增强. 物理学报, 2022, 71(8): 087801. doi: 10.7498/aps.71.20212358
    [6] 邓旭良, 冀先飞, 王德君, 黄玲琴. 石墨烯过渡层对金属/SiC接触肖特基势垒调控的第一性原理研究. 物理学报, 2022, 71(5): 058102. doi: 10.7498/aps.71.20211796
    [7] 胡前库, 秦双红, 吴庆华, 李丹丹, 张斌, 袁文凤, 王李波, 周爱国. 三元Nb系和Ta系硼碳化物稳定性和物理性能的第一性原理研究. 物理学报, 2020, 69(11): 116201. doi: 10.7498/aps.69.20200234
    [8] 曾周晓松, 王笑, 潘安练. 二维过渡金属硫化物二次谐波: 材料表征、信号调控及增强. 物理学报, 2020, 69(18): 184210. doi: 10.7498/aps.69.20200452
    [9] 胡前库, 侯一鸣, 吴庆华, 秦双红, 王李波, 周爱国. 过渡金属硼碳化物TM3B3C和TM4B3C2稳定性和性能的理论计算. 物理学报, 2019, 68(9): 096201. doi: 10.7498/aps.68.20190158
    [10] 俞洋, 张文杰, 赵婉莹, 林贤, 金钻明, 刘伟民, 马国宏. WS2与WSe2单层膜中的A激子及其自旋动力学特性研究. 物理学报, 2019, 68(1): 017201. doi: 10.7498/aps.68.20181769
    [11] 吴元军, 申超, 谭青海, 张俊, 谭平恒, 郑厚植. 基于磁圆二向色谱的单层MoS2激子能量和线宽温度依赖特性. 物理学报, 2018, 67(14): 147801. doi: 10.7498/aps.67.20180615
    [12] 马爽, 乌仁图雅, 特古斯, 武晓霞, 管鹏飞, 那日苏. FeMnP1-xTx(T=Si,Ga,Ge)系列化合物机械性能的第一性原理研究. 物理学报, 2017, 66(12): 126301. doi: 10.7498/aps.66.126301
    [13] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [14] 杨天兴, 成强, 许红斌, 王渊旭. 几种三元过渡金属碳化物弹性及电子结构的第一性原理研究. 物理学报, 2010, 59(7): 4919-4924. doi: 10.7498/aps.59.4919
    [15] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [16] 胡方, 明星, 范厚刚, 陈岗, 王春忠, 魏英进, 黄祖飞. 梯形化合物NaV2O4F电子结构的第一性原理研究. 物理学报, 2009, 58(2): 1173-1178. doi: 10.7498/aps.58.1173
    [17] 刘利花, 张 颖, 吕广宏, 邓胜华, 王天民. Sr偏析Al晶界结构的第一性原理计算. 物理学报, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [18] 宋庆功, 王延峰, 宋庆龙, 康建海, 褚 勇. 插层化合物Ag1/4TiSe2电子结构的第一性原理研究. 物理学报, 2008, 57(12): 7827-7832. doi: 10.7498/aps.57.7827
    [19] 明 星, 范厚刚, 胡 方, 王春忠, 孟 醒, 黄祖飞, 陈 岗. 自旋-Peierls化合物GeCuO3电子结构的第一性原理研究. 物理学报, 2008, 57(4): 2368-2373. doi: 10.7498/aps.57.2368
    [20] 宋庆功, 姜恩永, 裴海林, 康建海, 郭 英. 插层化合物LixTiS2中Li离子-空位二维有序结构稳定性的第一性原理研究. 物理学报, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
计量
  • 文章访问数:  7143
  • PDF下载量:  439
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-11
  • 修回日期:  2022-05-03
  • 上网日期:  2022-08-26
  • 刊出日期:  2022-09-05

/

返回文章
返回