搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外尔半金属WTe2/Ti异质结的热稳定性拉曼散射研究

刘娜 王译 李文波 张丽艳 何世坤 赵建坤 赵纪军

引用本文:
Citation:

外尔半金属WTe2/Ti异质结的热稳定性拉曼散射研究

刘娜, 王译, 李文波, 张丽艳, 何世坤, 赵建坤, 赵纪军

Thermal stability study of Weyl semimetal WTe2/Ti heterostructures by Raman scattering

Liu Na, Wang Yi, Li Wen-Bo, Zhang Li-Yan, He Shi-Kun, Zhao Jian-Kun, Zhao Ji-Jun
PDF
HTML
导出引用
  • 外尔半金属Td-WTe2是一种新型的拓扑量子材料, 具有很强的自旋轨道耦合作用和独特的拓扑能带结构, 被认为是一种非常有潜力的自旋电子材料. 通过构造WTe2/Ti异质结构, 能够解决原本在WTe2上无法直接制备出具有垂直磁各向异性铁磁层的难题. 与现有半导体工艺相兼容, 器件集成需要经受高温处理过程, 因此WTe2/Ti的热稳定性对于实际器件制备和应用至关重要. 然而, WTe2/Ti界面的热稳定性目前仍然不清楚. 本文利用显微拉曼散射技术系统研究了不同温度退火后的WTe2/Ti异质结的热稳定性, 发现WTe2和Ti的界面热稳定性与WTe2纳米片的厚度相关, WTe2纳米片厚度适当增加, WTe2/Ti异质结更加稳定. 此外, 高温退火会导致更加强烈的界面反应, 在473 K退火30 min后, WTe2 (12 nm)与Ti发生明显界面反应, 生成Ti-Te化合物, 该现象与高分辨透射电子显微镜测量和元素分析结果高度一致. 研究结果为进一步探究WTe2/Ti界面对于自旋轨道转矩效应的影响提供有用信息, 激发基于WTe2等拓扑材料的低功耗自旋器件研究.
    Weyl semimetal Td-phase WTe2, a novel topological matter, possesses a strong spin-orbit coupling and non-trivial topological band structure, and thus becomes a very promising superior spin current source material. By constructing the WTe2/Ti heterostructures, the issue that the ferromagnetic layer with perpendicular magnetic anisotropy cannot be directly prepared on WTe2 layer can be well addressed, and meet the requirements for high-performance spin-orbit torque devices. To be compatible with the semiconductor technology, the device integration usually involves a high temperature process. Therefore, the thermal stability of WTe2/Ti is critical for practical device fabrication and performance. However, the thermal stability of WTe2/Ti interface has not been very clear yet. In this work, the micro-Raman scattering technique is used to systematically study the WTe2/Ti interface annealed at different temperatures. It is found that the thermal stability of the interface between WTe2 and Ti is related to the thickness of WTe2 flake; appropriate increase of the WTe2 thickness can lead to the improvement of thermal stability in WTe2/Ti heterostructures. In addition, high temperature annealing can cause a significant interfacial reaction. After annealed at 473 K for 30 min, the interface between WTe2 (12 nm) and Ti changes dramatically, leading to the formation of Ti-Te interface layer. This observation is highly consistent with the observations by high-resolution transmission electron microscopy and the elemental analysis results as well. This study will provide useful information for further exploring the influence of the WTe2/Ti interface on the spin-orbit torque effect, and greatly invigorate the research area of energy efficient spintronic devices based on WTe2 and other novel topological materials.
      通信作者: 王译, yiwang@dlut.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 12074052) 、辽宁省自然科学基金优秀青年基金计划 (批准号: 2021-YQ-06) 和中央高校基本科研业务费专项资金 (批准号: DUT20LK30) 资助的课题.
      Corresponding author: Wang Yi, yiwang@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12074052), the Natural Science Foundation for Outstanding Young Scientists of Liaoning Province, China (Grant No. 2021-YQ-06), and the Fundamental Research Funds for the Central Universities, China (Grant No. DUT20LK30).
    [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [2]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [3]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [4]

    Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S N 2017 Mater. Today 20 530Google Scholar

    [5]

    Lee K S, Lee S W, Min B C, Lee K J 2013 Appl. Phys. Lett. 102 112410Google Scholar

    [6]

    Fukami S, Anekawa T, Zhang C, Ohno H 2016 Nat. Nanotechnol. 11 621Google Scholar

    [7]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [8]

    Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [9]

    Wang Y, Deorani P, Qiu X P, Kwon J H, Yang H 2014 Appl. Phys. Lett. 105 152412Google Scholar

    [10]

    Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [11]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [12]

    Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett. 114 257202Google Scholar

    [13]

    Wang Y, Zhu D P, Wu Y, Yang Y M, Yu J W, Ramaswamy R, Mishra R, Shi S Y, Elyasi M, Teo K L, Wu Y H, Yang H 2017 Nat. Commun. 8 1364Google Scholar

    [14]

    Wang Y, Zhu D P, Yang Y M, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K M, Liu E, Pollard S D, Shi S Y, Lee J, Teo K L, Wu Y H, Lee K J, Yang H 2019 Science 366 1125Google Scholar

    [15]

    Han X F, Wan C H, Yu G Q 2021 Appl. Phys. Lett. 118 180401Google Scholar

    [16]

    何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国 2021 物理学报 70 127501Google Scholar

    He C L, Xu H J, Tang J, Wang X, Wei J W, Shen S P, Chen Q Q, Shao Q M, Yu G Q, Zhang G Y, Wang S G 2021 Acta Phys. Sin. 70 127501Google Scholar

    [17]

    强晓斌, 卢海舟 2021 物理学报 70 027201Google Scholar

    Qiang X B, Lu H Z 2021 Acta Phys. Sin. 70 027201Google Scholar

    [18]

    MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2017 Nat. Phys. 13 300Google Scholar

    [19]

    MacNeill D, Stiehl G M, Guimaraes M H D, Reynolds N D, Buhrman R A, Ralph D C 2017 Phys. Rev. B 96 054450Google Scholar

    [20]

    Shi S Y, Liang S H, Zhu Z F, Cai K M, Pollard S D, Wang Y, Wang J Y, Wang Q S, He P, Yu J W, Eda G, Liang G C, Yang H 2019 Nat. Nanotechnol. 14 945Google Scholar

    [21]

    Li P F, Kang Y, Zhao Y B, Qin J H, Song W G 2018 ISA Trans. 80 1Google Scholar

    [22]

    Shi S Y, Li J, Hsu C H, Lee K, Wang Y, Yang L, Wang J Y, Wang Q S, Wu H, Zhang W F, Eda G, Liang G C, Chang H X, Yang H 2021 Adv. Quantum Technol. 4 2100038Google Scholar

    [23]

    Yang Y M, Xie H, Xu Y J, Luo Z Y, Wu Y H 2020 Phys. Rev. Appl. 13 034072Google Scholar

    [24]

    Wu H, Zhang P, Deng P, Lan Q Q, Pan Q J, Razavi S A, Che X Y, Huang L, Dai B Q, Wong K, Han X F, Wang K L 2019 Phys. Rev. Lett. 123 207205Google Scholar

    [25]

    Xie H, Talapatra A, Chen X, Luo Z Y, Wu Y H 2021 Appl. Phys. Lett. 118 042401Google Scholar

    [26]

    Lee H Y, Kim S, Park J Y, Oh Y W, Park S Y, Ham W, Kotani Y, Nakamura T, Suzuki M, Ono T, Lee K J, Park B G 2019 APL Mater. 7 031110Google Scholar

    [27]

    Zhang L Y, Liu N, Li W B, Luo L M, Wang Y 2022 Solid State Commun. 342 114620Google Scholar

    [28]

    Ma X L, Guo P J, Yi C J, Yu Q H, Zhang A M, Ji J T, Tian Y, Jin F, Wang Y Y, Liu K, Xia T L, Shi Y G, Zhang Q M 2016 Phys. Rev. B 94 214105Google Scholar

    [29]

    Kong W D, Wu S F, Richard P, Lian C S, Wang J T, Yang C L, Shi Y G, Ding H 2015 Appl. Phys. Lett. 106 081906Google Scholar

    [30]

    Lv Y Y, Cao L, Li X, Zhang B B, Wang K, Pang B, Ma L G, Lin D J, Yao S H, Zhou J, Chen Y B, Dong S T, Liu W C, Lu M-H, Chen Y L, Chen Y F 2017 Sci. Rep. 7 44587Google Scholar

    [31]

    Zhou Y H, Chen X L, Li N N, Zhang R R, Wang X F, An C, Zhou Y, Pan X C, Song F Q, Wang B G, Yang W G, Yang Z R, Zhang Y H 2016 AIP Adv. 6 075008Google Scholar

    [32]

    Salmón Gamboa J U, Barajas Aguilar A H, Ruiz Ortega L I, Garay Tapia A M, Jiménez Sandoval S J 2018 Sci. Rep. 8 8093Google Scholar

    [33]

    Cao Y, Sheremetyeva N, Liang L B, Yuan H, Zhong T T, Meunier V, Pan M H 2017 2 D Mater. 4 035024

    [34]

    Kim M, Han S, Kim J H, Lee J U, Lee Z, Cheong H 2016 2 D Mater. 3 034004

    [35]

    Cordes H, Schmidfetzer R 1995 J. Mater. Sci. -Mater. Electron. 6 118

    [36]

    Cooley K A, Mohney S E 2019 J. Vac. Sci. Technol. A 37 061510Google Scholar

    [37]

    Yu C C, Wu H J, Agne M T, Witting I T, Deng P Y, Snyder G J, Chu J P 2019 APL Mater. 7 013001Google Scholar

    [38]

    Hangyo M, Nakashima S I, Mitsuishi A 1983 Ferroelectrics 52 151Google Scholar

    [39]

    Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B, Sahoo S, Peter S C, Kanchana V, Narayana C 2018 Phys. Rev. B 97 085107Google Scholar

    [40]

    Ding H, Xu B 2012 J. Chem. Phys. 137 224509Google Scholar

    [41]

    Khan J, Nolen C M, Teweldebrhan D, Wickramaratne D, Lake R K, Balandin A A 2012 Appl. Phys. Lett. 100 043109Google Scholar

  • 图 1  (a) 外尔半金属Td-WTe2单晶的晶体结构示意图; (b)机械剥离的WTe2纳米片的光学显微镜照片; (c) 机械剥离的WTe2纳米片的室温拉曼光谱图, 测量区域为图(b)中红色虚线框所示

    Fig. 1.  (a) Schematic diagram of the crystal structure of Weyl semimetal Td-WTe2 single crystal; (b) optical image of mechanically exfoliated WTe2 flake; (c) room temperature Raman spectra of mechanically exfoliated WTe2 flake, the measurement area is indicated by the red dashed box in panel (b).

    图 2  (a) WTe2/Ti异质结的光学显微镜照片, 图中①—⑤代表具有不同WTe2厚度的异质结区域; (b) AFM扫描图, 测量区域为图(a)中红色虚线框所示; (c)从AFM扫描图中沿着红色虚线的异质结台阶高度图

    Fig. 2.  (a) Optical image of WTe2/Ti heterostructures with different WTe2 thickness denoted by ①–⑤; (b) AFM image of WTe2/Ti heterostructure, the scanned area is denoted by the red dashed box in panel (a); (c) the height of one WTe2/Ti step along the red dashed line in panel (b).

    图 3  室温下WTe2 (12—32 nm)/Ti异质结的(a) 非偏振拉曼光谱图, (b) 垂直偏振拉曼光谱图, (c) 平行偏振拉曼光谱图. 图中数字代表不同的WTe2厚度, “WTe2”代表机械剥离的WTe2单晶对照样品, 其厚度大于100 nm

    Fig. 3.  (a) Unpolarized Raman spectra, (b) vertically polarized Raman spectra, and (c) parallel polarized Raman spectra of WTe2 (12–32 nm)/Ti heterostructures at room temperature. The numbers in all figures represent WTe2 thickness, “WTe2” denotes the mechanically exfoliated WTe2 single crystal with thickness larger than 100 nm.

    图 4  不同温度退火的WTe2 (12—32 nm)/Ti异质结的室温拉曼光谱 (a) WTe2 (12 nm)/Ti异质结分别在制备态和323—523 K退火后的非偏振拉曼光谱图; (b) WTe2 (12 nm)/Ti异质结在473 K退火后界面反应生成Ti-Te化合物的非偏振拉曼光谱放大图; (c) WTe2 (32 nm)/Ti异质结分别在制备态和 323—523 K退火后的非偏振拉曼光谱图; (d) WTe2 (12, 18, 19, 20, 32 nm)/Ti异质结退火后界面生成Ti-Te的拉曼峰峰强随着退火温度的变化曲线

    Fig. 4.  Room temperature Raman spectra of WTe2 (12–32 nm)/Ti heterostructures annealed at different temperatures: (a) Unpolarized Raman spectra of WTe2 (12 nm)/Ti heterostructure at as-grown state and annealed at 323-523 K, respectively; (b) enlarged unpolarized Raman spectra of Ti-Te interfacial reaction layer in WTe2 (12 nm)/Ti heterostructure annealed at 473 K; (c) unpolarized Raman spectra of WTe2 (32 nm)/Ti heterostructure at as-grown state and annealed at 323–523 K, respectively; (d) Raman intensity of the Ti-Te interfacial reaction layer in WTe2 (12, 18, 19, 20, 32 nm)/Ti heterostructures as a function of the annealing temperature.

    图 5  (a) WTe2/Ti (30 nm) 异质结的高分辨TEM图片, 样品在473 K退火30 min; (b) 放大的WTe2/Ti界面高分辨TEM图片; (c) EDS元素分析图像; (d) 沿着图 (c) 中箭头方向的EDS线扫结果

    Fig. 5.  (a) High-resolution TEM image of WTe2/Ti (30 nm) heterostructure annealed at 473 K for 30 min; (b) enlarged high-resolution TEM image of WTe2/Ti interface; (c) EDS mapping image; (d) EDS line scanning along the arrow direction in panel (c).

  • [1]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [2]

    Berger L 1996 Phys. Rev. B 54 9353Google Scholar

    [3]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189Google Scholar

    [4]

    Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S N 2017 Mater. Today 20 530Google Scholar

    [5]

    Lee K S, Lee S W, Min B C, Lee K J 2013 Appl. Phys. Lett. 102 112410Google Scholar

    [6]

    Fukami S, Anekawa T, Zhang C, Ohno H 2016 Nat. Nanotechnol. 11 621Google Scholar

    [7]

    Liu L Q, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555Google Scholar

    [8]

    Liu L Q, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602Google Scholar

    [9]

    Wang Y, Deorani P, Qiu X P, Kwon J H, Yang H 2014 Appl. Phys. Lett. 105 152412Google Scholar

    [10]

    Liu L Q, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601Google Scholar

    [11]

    Pai C F, Liu L Q, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Appl. Phys. Lett. 101 122404Google Scholar

    [12]

    Wang Y, Deorani P, Banerjee K, Koirala N, Brahlek M, Oh S, Yang H 2015 Phys. Rev. Lett. 114 257202Google Scholar

    [13]

    Wang Y, Zhu D P, Wu Y, Yang Y M, Yu J W, Ramaswamy R, Mishra R, Shi S Y, Elyasi M, Teo K L, Wu Y H, Yang H 2017 Nat. Commun. 8 1364Google Scholar

    [14]

    Wang Y, Zhu D P, Yang Y M, Lee K, Mishra R, Go G, Oh S H, Kim D H, Cai K M, Liu E, Pollard S D, Shi S Y, Lee J, Teo K L, Wu Y H, Lee K J, Yang H 2019 Science 366 1125Google Scholar

    [15]

    Han X F, Wan C H, Yu G Q 2021 Appl. Phys. Lett. 118 180401Google Scholar

    [16]

    何聪丽, 许洪军, 汤建, 王潇, 魏晋武, 申世鹏, 陈庆强, 邵启明, 于国强, 张广宇, 王守国 2021 物理学报 70 127501Google Scholar

    He C L, Xu H J, Tang J, Wang X, Wei J W, Shen S P, Chen Q Q, Shao Q M, Yu G Q, Zhang G Y, Wang S G 2021 Acta Phys. Sin. 70 127501Google Scholar

    [17]

    强晓斌, 卢海舟 2021 物理学报 70 027201Google Scholar

    Qiang X B, Lu H Z 2021 Acta Phys. Sin. 70 027201Google Scholar

    [18]

    MacNeill D, Stiehl G M, Guimaraes M H D, Buhrman R A, Park J, Ralph D C 2017 Nat. Phys. 13 300Google Scholar

    [19]

    MacNeill D, Stiehl G M, Guimaraes M H D, Reynolds N D, Buhrman R A, Ralph D C 2017 Phys. Rev. B 96 054450Google Scholar

    [20]

    Shi S Y, Liang S H, Zhu Z F, Cai K M, Pollard S D, Wang Y, Wang J Y, Wang Q S, He P, Yu J W, Eda G, Liang G C, Yang H 2019 Nat. Nanotechnol. 14 945Google Scholar

    [21]

    Li P F, Kang Y, Zhao Y B, Qin J H, Song W G 2018 ISA Trans. 80 1Google Scholar

    [22]

    Shi S Y, Li J, Hsu C H, Lee K, Wang Y, Yang L, Wang J Y, Wang Q S, Wu H, Zhang W F, Eda G, Liang G C, Chang H X, Yang H 2021 Adv. Quantum Technol. 4 2100038Google Scholar

    [23]

    Yang Y M, Xie H, Xu Y J, Luo Z Y, Wu Y H 2020 Phys. Rev. Appl. 13 034072Google Scholar

    [24]

    Wu H, Zhang P, Deng P, Lan Q Q, Pan Q J, Razavi S A, Che X Y, Huang L, Dai B Q, Wong K, Han X F, Wang K L 2019 Phys. Rev. Lett. 123 207205Google Scholar

    [25]

    Xie H, Talapatra A, Chen X, Luo Z Y, Wu Y H 2021 Appl. Phys. Lett. 118 042401Google Scholar

    [26]

    Lee H Y, Kim S, Park J Y, Oh Y W, Park S Y, Ham W, Kotani Y, Nakamura T, Suzuki M, Ono T, Lee K J, Park B G 2019 APL Mater. 7 031110Google Scholar

    [27]

    Zhang L Y, Liu N, Li W B, Luo L M, Wang Y 2022 Solid State Commun. 342 114620Google Scholar

    [28]

    Ma X L, Guo P J, Yi C J, Yu Q H, Zhang A M, Ji J T, Tian Y, Jin F, Wang Y Y, Liu K, Xia T L, Shi Y G, Zhang Q M 2016 Phys. Rev. B 94 214105Google Scholar

    [29]

    Kong W D, Wu S F, Richard P, Lian C S, Wang J T, Yang C L, Shi Y G, Ding H 2015 Appl. Phys. Lett. 106 081906Google Scholar

    [30]

    Lv Y Y, Cao L, Li X, Zhang B B, Wang K, Pang B, Ma L G, Lin D J, Yao S H, Zhou J, Chen Y B, Dong S T, Liu W C, Lu M-H, Chen Y L, Chen Y F 2017 Sci. Rep. 7 44587Google Scholar

    [31]

    Zhou Y H, Chen X L, Li N N, Zhang R R, Wang X F, An C, Zhou Y, Pan X C, Song F Q, Wang B G, Yang W G, Yang Z R, Zhang Y H 2016 AIP Adv. 6 075008Google Scholar

    [32]

    Salmón Gamboa J U, Barajas Aguilar A H, Ruiz Ortega L I, Garay Tapia A M, Jiménez Sandoval S J 2018 Sci. Rep. 8 8093Google Scholar

    [33]

    Cao Y, Sheremetyeva N, Liang L B, Yuan H, Zhong T T, Meunier V, Pan M H 2017 2 D Mater. 4 035024

    [34]

    Kim M, Han S, Kim J H, Lee J U, Lee Z, Cheong H 2016 2 D Mater. 3 034004

    [35]

    Cordes H, Schmidfetzer R 1995 J. Mater. Sci. -Mater. Electron. 6 118

    [36]

    Cooley K A, Mohney S E 2019 J. Vac. Sci. Technol. A 37 061510Google Scholar

    [37]

    Yu C C, Wu H J, Agne M T, Witting I T, Deng P Y, Snyder G J, Chu J P 2019 APL Mater. 7 013001Google Scholar

    [38]

    Hangyo M, Nakashima S I, Mitsuishi A 1983 Ferroelectrics 52 151Google Scholar

    [39]

    Rajaji V, Dutta U, Sreeparvathy P C, Sarma S C, Sorb Y A, Joseph B, Sahoo S, Peter S C, Kanchana V, Narayana C 2018 Phys. Rev. B 97 085107Google Scholar

    [40]

    Ding H, Xu B 2012 J. Chem. Phys. 137 224509Google Scholar

    [41]

    Khan J, Nolen C M, Teweldebrhan D, Wickramaratne D, Lake R K, Balandin A A 2012 Appl. Phys. Lett. 100 043109Google Scholar

  • [1] 罗杰, 张子秋, 徐俊豪, 秦兆婷, 赵元帅, 何洪, 李冠男, 唐剑锋. 稀土掺杂Gd2Te4O11亚碲酸盐荧光粉的合成及其发光性能. 物理学报, 2023, 72(1): 017801. doi: 10.7498/aps.72.20221341
    [2] 刘骏杭, 朱照照, 毕林竹, 王鹏举, 蔡建旺. 重金属缓冲层和覆盖层对TbFeCo超薄膜磁性及热稳定性的影响. 物理学报, 2023, 72(7): 077501. doi: 10.7498/aps.72.20222239
    [3] 康亚斌, 袁小朋, 王晓波, 李克伟, 宫殿清, 程旭东. 分层化金属陶瓷光热转换涂层的微结构构筑与热稳定性. 物理学报, 2023, 72(5): 057103. doi: 10.7498/aps.72.20221693
    [4] 何宽鱼, 邱天宇, 奚啸翔. 二维WTe2晶格对称性的光学研究. 物理学报, 2022, 71(17): 176301. doi: 10.7498/aps.71.20220804
    [5] 鲍冬, 华灯鑫, 齐豪, 王骏. 基于拉曼-布里渊散射的海水盐度精细探测遥感方法. 物理学报, 2021, 70(22): 229201. doi: 10.7498/aps.70.20210201
    [6] 刘乐, 汤建, 王琴琴, 时东霞, 张广宇. 石墨烯封装单层二硫化钼的热稳定性研究. 物理学报, 2018, 67(22): 226501. doi: 10.7498/aps.67.20181255
    [7] 卢顺顺, 张晋敏, 郭笑天, 高廷红, 田泽安, 何帆, 贺晓金, 吴宏仙, 谢泉. 碳纳米管包裹的硅纳米线复合结构的热稳定性研究. 物理学报, 2016, 65(11): 116501. doi: 10.7498/aps.65.116501
    [8] 田曼曼, 王国祥, 沈祥, 陈益敏, 徐铁峰, 戴世勋, 聂秋华. ZnSb掺杂的Ge2Sb2Te5薄膜的相变性能研究. 物理学报, 2015, 64(17): 176802. doi: 10.7498/aps.64.176802
    [9] 许蓉, 贾光一, 刘昌龙. Cu, Zn离子注入SiO2纳米颗粒合成及氧气氛围下的热稳定性研究. 物理学报, 2014, 63(7): 078501. doi: 10.7498/aps.63.078501
    [10] 张章, 熊贤仲, 乙姣姣, 李金富. Al-Ni-RE非晶合金的晶化行为和热稳定性. 物理学报, 2013, 62(13): 136401. doi: 10.7498/aps.62.136401
    [11] 鲁东, 金冬月, 张万荣, 张瑜洁, 付强, 胡瑞心, 高栋, 张卿远, 霍文娟, 周孟龙, 邵翔鹏. 新型宽温区高热稳定性微波功率SiGe 异质结双极晶体管. 物理学报, 2013, 62(10): 104401. doi: 10.7498/aps.62.104401
    [12] 崔晓, 徐保臣, 王知鸷, 王丽芳, 张博, 祖方遒. 1 at% Ag替代Zr57Cu20Al10Ni8Ti5 金属玻璃中各组元对玻璃形成能力及热稳定性的作用分析. 物理学报, 2013, 62(1): 016101. doi: 10.7498/aps.62.016101
    [13] 许雪芹, 汤晨毅, 王璇, 程玲, 姚忻. 面内和面外取向对RBa2Cu3Oz薄膜热稳定性影响的研究. 物理学报, 2010, 59(2): 1294-1301. doi: 10.7498/aps.59.1294
    [14] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性. 物理学报, 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [15] 林琼斐, 夏海平, 王金浩, 张约品, 张勤远. Ga2O3组分对Tm3+掺杂GeO2-Ga2O3-Li2O-BaO-La2O3玻璃的光谱性能影响. 物理学报, 2008, 57(4): 2554-2561. doi: 10.7498/aps.57.2554
    [16] 赵建华, 陈 勃, 王德亮. 纳米晶锐钛矿相TiO2的非简谐效应和声子局域. 物理学报, 2008, 57(5): 3077-3084. doi: 10.7498/aps.57.3077
    [17] 吴延昭, 于 平, 王玉芳, 金庆华, 丁大同, 蓝国祥. 非共振条件下单壁碳纳米管拉曼散射强度的计算. 物理学报, 2005, 54(11): 5262-5268. doi: 10.7498/aps.54.5262
    [18] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究. 物理学报, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [19] 杨慎东, 宁兆元, 黄峰, 程珊华, 叶超. a-C:F薄膜的热稳定性与光学带隙的关联. 物理学报, 2002, 51(6): 1321-1325. doi: 10.7498/aps.51.1321
    [20] 张纪才, 戴伦, 秦国刚, 应丽贞, 赵新生. 离子注入GaN的拉曼散射研究. 物理学报, 2002, 51(3): 629-634. doi: 10.7498/aps.51.629
计量
  • 文章访问数:  3805
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-16
  • 修回日期:  2022-05-17
  • 上网日期:  2022-09-23
  • 刊出日期:  2022-10-05

/

返回文章
返回