搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于单畴表征的高/低黏滞磷脂膜中的相分离

朱玉洁 朱涛 盛洁 周琪 蒋中英

引用本文:
Citation:

基于单畴表征的高/低黏滞磷脂膜中的相分离

朱玉洁, 朱涛, 盛洁, 周琪, 蒋中英

Phase separation in high/low viscosity phospholipid membranes based on single domain characterization

Zhu Yu-Jie, Zhu Tao, Sheng Jie, Zhou Qi, Jiang Zhong-Ying
PDF
HTML
导出引用
  • 磷脂相分离是细胞脂质筏形成的物理驱动力, 在生命物质的空间组装中发挥着重要的作用. 本研究通过单微畴跟踪、径向波动性分析等手段定量地研究了多组分磷脂相分离动力学. 发现在低线张力差异下, 大相的黏滞性是产生微畴粗化差异的主要原因. 融合产生的流场促进微畴扩散, 加速了低黏滞大相中微畴的融合粗化; 而高黏滞大相中微畴主要依赖布朗运动扩散, 融合粗化较慢. 进一步建立微畴的扩散与融合粗化理论模型, 理解了大相黏滞性较高与较低时, 微畴尺寸与粗化时间分别满足的0.5与1幂指数关系. 此外还发现, 可以通过胆固醇相对含量调节大相黏滞性, 提高了微畴粗化的可控性. 研究深化了多组分磷脂相分离机制的理解, 为调控细胞膜表面的生物分子再分布提供了有价值的参考.
    Lipid rafts are small biomembrane functional units, resulting from the lateral phase separation of phospholipids. The phospholipid phase separation plays a crucial role in spatially organizing the biomolecules in life activities. Here, we study the kinetics of multi-component phospholipid phase separation quantitatively by using the single domain characterization methods including the movement tracking and radial fluctuation analyses, which provide valuable information about the physical and mechanical properties of the bulks and domains. The study is carried out in a low line tension condition similar to that in cells. The order of magnitude of line tension is ~0.1 pN as estimated from the radial fluctuation analysis. Fluorescence microscopy characterization shows that domains mainly coarsen through the coalescence pathways, while the evaporation-condensation is negligible. Through the tracking of domains, it is found that the bulk viscosity dominates the dynamics of domain coalescence. The coalescence of domains produces strong hydrodynamic flows in low viscosity bulk, which promotes the non-Brownian motion of surrounding domains, accelerating the lateral diffusion and coalescence of the domains. However, these hydrodynamic flows decrease significantly in high viscosity bulk. The domains rely mainly on Brownian motion to diffuse in this highly viscous medium, resulting in the slow lateral diffusion and low coalescence. Picking the domains following Brownian motion, the viscosities of liquid ordered bulk and liquid disordered bulk are determined to be, respectively, in a range of 10–8–10–7 Pa⋅s⋅m and 10–9 Pa⋅s⋅m from the Hughes-Pailthorpe-White empirical relation. Furthermore, we observe a bulk-viscosity-dependent scaling relation between the domain size and coarsening time experimentally. A theoretical model of domain diffusion and coalescence is established to understand the scaling relation. If the bulk viscosity is low, the hydrodynamic flow produces a high power exponent of 1.0. And if the bulk viscosity is high, the Brownian diffusion produces a low power exponent of 0.5. In addition, we demonstrate that the bulk viscosity can be regulated through the relative content of cholesterol. The 1,6-Diphenyl-1,3,5-hexatriene fluorescence anisotropy characterization exhibits that the increase of cholesterol in liquid ordered and liquid disordered bulks disorders and orders the phospholipid packing, thus reducing and increasing the bulk viscosity, respectively. It is expected that this viscosity regulation strategy can be used to control the multicomponent phospholipid phase separation. All in all, our study deepens the understanding of the physical mechanism behind the formation of lipid rafts. It also provides a reference for regulating the biomolecule distribution in cell membranes.
      通信作者: 朱涛, zhuttd@163.com ; 蒋中英, jiangzhying@163.com
    • 基金项目: 国家自然科学基金(批准号: 11904167)、伊犁师范大学校级博士科研启动基金(批准号: 2020YSBS006)和新疆自然科学基金联合基金(批准号: 2022D01C336)资助的课题.
      Corresponding author: Zhu Tao, zhuttd@163.com ; Jiang Zhong-Ying, jiangzhying@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11904167), the Research Fund for the Doctoral Program in Yili Normal University, China (Grant No. 2020YSBS006), and the Joint Funds of Xinjiang Natural Science Foundation, China (Grant No. 2022D01C336).
    [1]

    Sezgin E, Levental I, Mayor S, Eggeling C 2017 Nat. Rev. Mol. Cell Biol. 18 361Google Scholar

    [2]

    Wang X J, Tian L F, Ren Y S, Zhao Z Y, Du H, Zhang Z Z, Drinkwater B W, Mann S, Han X J 2020 Small 16 1906394Google Scholar

    [3]

    Zhou R H, Weikl T, Ma Y Q 2020 Nanoscale 12 10426Google Scholar

    [4]

    Fu M F, Li J B 2018 Angew. Chem. Int. Ed. 57 11404Google Scholar

    [5]

    梁燚然, 梁清 2019 物理学报 68 028701Google Scholar

    Liang Y R, Liang Q 2019 Acta Phys. Sin. 68 028701Google Scholar

    [6]

    Maekawa T, Chin H, Nyu T, Sut T N, Ferhan A R, Hayashi T, Cho N J 2019 PCCP 21 16686Google Scholar

    [7]

    Veatch S L, Keller S L 2003 Biophys. J. 85 3074Google Scholar

    [8]

    Baumgart T, Hess S T, Webb W W 2003 Nature 425 821Google Scholar

    [9]

    Li W W, Lin Z, Yuan B, Yang K 2020 Chin. Phys. B 29 128701Google Scholar

    [10]

    Ding H M, Yin Y W, Ni S D, Sheng Y J, Ma Y Q 2021 Chin. Phys. Lett. 38 018701Google Scholar

    [11]

    Ye X Q, Hao C C, Yang J J, Sun R G 2018 Colloids Surf., B 172 480Google Scholar

    [12]

    Chen J X, Chen Y G, Kapral R 2018 Adv. Sci. 5 1800028Google Scholar

    [13]

    Chen J X, Yuan R, Cui R F, Qiao L Y 2021 Nanoscale 13 1055Google Scholar

    [14]

    Stanich C A, Honerkamp-Smith A R, Putzel G G, Warth C S, Lamprecht A K, Mandal P, Mann E, Hua T A D, Keller S L 2013 Biophys. J. 105 444Google Scholar

    [15]

    Garcia-Saez A J, Chiantia S, Schwille P 2007 J. Biol. Chem. 282 33537Google Scholar

    [16]

    Rozovsky S, Kaizuka Y, Groves J T 2005 JACS 127 36Google Scholar

    [17]

    Li J F, Zhang H D, Qiu F 2013 J. Phys. Chem. B 117 843Google Scholar

    [18]

    Talbot E L, Parolini L, Kotar J, Di Michele L, Cicuta P 2017 PNAS 114 846Google Scholar

    [19]

    Wongsirojkul N, Shimokawa N, Opaprakasit P, Takagi M, Hamada T 2020 Langmuir 36 2937Google Scholar

    [20]

    Zhou Q, Wang P, Ma B B, Jiang Z Y, Zhu T 2022 Chin. Phys. B 31 098701Google Scholar

    [21]

    Zhu T, Jiang Z Y, Ma Y Q, Hu Y 2016 ACS Appl. Mater. Interfaces 8 5857Google Scholar

    [22]

    Veatch S L, Keller S L 2005 Phys. Rev. Lett. 94 148101Google Scholar

    [23]

    Hormel T T, Reyer M A, Parthasarathy R 2015 Biophys. J. 109 732Google Scholar

    [24]

    Duan Y, Mahault B, Ma Y Q, Shi X Q, Chate H 2021 Phys. Rev. Lett. 126 178001Google Scholar

    [25]

    Cicuta P, Keller S L, Veatch S L 2007 J. Phys. Chem. B 111 3328Google Scholar

    [26]

    Bhuyan N N, Pattnaik G P, Mishra A, Chakraborty H 2021 J. Mol. Liq. 325 115152Google Scholar

    [27]

    Liang X Y, Li L, Qiu F, Yang Y L 2010 Physica A 389 3965Google Scholar

    [28]

    Usery R D, Enoki T A, Wickramasinghe S P, Weiner M D, Tsai W C, Kim M B, Wang S, Torng T L, Ackerman D G, Heberle F A, Katsaras J, Feigenson G W 2017 Biophys. J. 112 1431Google Scholar

    [29]

    Yanagisawa M, Imai M, Masui T, Komura S, Ohta T 2007 Biophys. J. 92 115Google Scholar

    [30]

    Almeida P F F, Vaz W L C, Thompson T E 1992 Biochem. 31 6739Google Scholar

    [31]

    Nagao M, Kelley E G, Faraone A, Saito M, Yoda Y, Kurokuzu M, Takata S, Seto M, Butler P D 2021 Phys. Rev. Lett. 127 078102Google Scholar

    [32]

    Petrov E P, Schwille P 2008 Biophys. J. 94 L41Google Scholar

    [33]

    Sakuma Y, Kawakatsu T, Taniguchi T, Imai M 2020 Biophys. J. 118 1576Google Scholar

    [34]

    Chakraborty S, Doktorova M, Molugu T R, Heberle F A, Scott H L, Dzikovski B, Nagao M, Stingaciu L R, Standaert R F, Barrera F N, Katsaras J, Khelashvili G, Brown M F, Ashkar R 2020 PNAS 117 21896Google Scholar

    [35]

    Kim K, Choi S Q, Zell Z A, Squires T M, Zasadzinski J A 2013 PNAS 110 E3054Google Scholar

    [36]

    Tayebi L, Ma Y, Vashaee D, Chen G, Sinha S K, Parikh A N 2012 Nat. Mater. 11 1074Google Scholar

    [37]

    Saeki D, Hamada T, Yoshikawa K 2006 J. Phys. Soc. Jpn. 75 013602Google Scholar

    [38]

    Taniguchi T 1996 Phys. Rev. Lett. 76 4444Google Scholar

  • 图 1  DOPC/DPPC/Chol三组分相分离 (a) 32 °C的相图, 红色点线表示LoLd面积相同的组分, 标尺为 10 μm; (b) 微畴尺寸分布图; (c) 微畴面密度分布图

    Fig. 1.  Phase diagram for vesicles of DOPC/DPPC/Chol: (a) Phase diagram at 32 °C. Red dotted line denotes the composition whose Lo and Ld phases occupy the same surface area. Scale bar is 10 μm. (b) Size distribution of the domains. (c) Surface density of the domains.

    图 2  微畴的粗化 (a) M1和(b) M4的微畴融合粗化. 部分典型微畴的扩散和融合被标记出来. 其中绿色圆环表示发生融合, 红色箭头表示相邻时刻间微畴的扩散方向. (c) 2.5—4.0 min中M1—M4单位膜面积的融合次数. (d) 微畴的尺寸演变. 微畴Ⅱ, Ⅲ, Ⅳ融合生成微畴Ⅵ, 产生了显著的微畴粗化. 而未发生融合的微畴Ⅰ尺寸没有发生变化. 标尺为10 μm

    Fig. 2.  Coarsening of domains. Coarsening by coalescence of domains in (a) M1 and (b) M4. The diffusion and coalescence of some typical domains are marked. The green circles denote the coalescence. The red arrows denote the diffusion direction of domains between the adjacent images. (c) Number of coalescences in unit surface area between 2.5–4.0 min. (d) Time evolution of domain size. Coarsening of domains is produced by the coalescence of the domains Ⅱ, Ⅲ, Ⅳ to form domain Ⅵ. Size of the domain Ⅰ remains unchanged without coalescence. Scale bar is 10 μm.

    图 3  基于微畴径向波动性计算的线张力 (a) M1—M4微畴的荧光显微图; (b) 微畴极角(θ)对应的径向波动性; (c) 由傅里叶级数展开的波数(k)和系数(ak, bk)计算的$ \left\langle{{a}_{k}^{2}}\right\rangle+\left\langle{{b}_{k}^{2}}\right\rangle $$1/({k}^{2}-1)$关系; (d) 磷脂组分依赖的线张力

    Fig. 3.  Line tension calculated by domain boundary fluctuation: (a) Fluorescence microscopy of domains in M1-M4; (b) radial fluctuation as a function of polar angle (θ); (c) relationship between $ \left\langle{{a}_{k}^{2}}\right\rangle+\left\langle{{b}_{k}^{2}}\right\rangle $ and $1/(k^2-1)$ calculated from the Fourier coefficients (ak, bk) and mode number (k); (d) dependence of line tension on lipid composition.

    图 4  微畴在膜内的扩散 (a) 典型的运动轨迹与MSD, 红、蓝色分别标记了布朗运动与非布朗运动. (b) 融合促进的微畴扩散, 在微畴Ⅰ和Ⅱ融合前, 微畴Ⅲ呈布朗运动(蓝色轨迹); 在微畴Ⅰ和Ⅱ融合后, 微畴Ⅲ以近线性轨迹(红色)向Ⅰ, Ⅱ方向迁移. 微畴Ⅲ在833 ms内扩散迁移了约3 μm (右图). (c) 基于布朗运动的微畴统计获得的扩散速率-微畴尺寸关系. 标尺为10 μm

    Fig. 4.  Diffusion of domains in lipid membranes: (a) Typical trajectories and MSD. Brownian and non-Brownian motions are marked by blue and red colors. (b) Coalescence-induced domain diffusion. Before the coalescence of domains Ⅰ and Ⅱ, domain Ⅲ underwent Brownian motion (blue trajectory). After the coalescence, domain Ⅲ diffused to Ⅰ and Ⅱ through a nearly straight line (red trajectory). The diffusion distance of domain Ⅲ is around 3 μm in 833 ms (images at right). (c) Plot of diffusion coefficient versus domain size obtained from the Brownian motion of the domains. Scale bar is 10 μm.

    图 5  大相的黏滞性 (a) 数值求解的大相黏滞系数; (b) 大相黏滞系数与降温5.0 min的M1 —M4的微畴尺寸

    Fig. 5.  Bulk viscosity: (a) Numerically computed bulk viscosity; (b) plot of the bulk viscosity versus domain size in M1− M4 (5.0 min after the temperature quench).

    图 6  Chol影响的磷脂膜黏滞性 (a) 掺杂DPH的DPPC/Chol与 DOPC/Chol组分GUVs的荧光光谱与各向异性(32 °C); (b) 黏滞性变化对应的分子排布示意图. 磷脂排布有序度的提高造成膜黏滞性提高[34]

    Fig. 6.  Membrane viscosity influenced by Chol: (a) Fluorescence spectrum and anisotropy of DPH-doped DPPC/Chol and DOPC/Chol GUVs (32 °C); (b) schematic illustration for the molecular packing associated with the different membrane viscosity. The increase of the packing order increases the viscosity[34].

    图 7  大相黏滞性依赖的微畴尺寸与时间标度律. rt被归一化以方便比较(下标0代表初始时刻)

    Fig. 7.  Bulk viscosity-depended scaling relation between domain size and time. r and t are normalized for comparison of the data (the subscript 0 denotes the initial).

    表 1  微畴与大相的混合磷脂含量

    Table 1.  Lipid composition in domains and bulks.

    组分微畴大相
    DOPCDPPCCholDOPCDPPCChol
    M14%67%29%52%39%9%
    M22%66%32%60%24%16%
    M341%26%33%5%48%47%
    M462%26%12%10%70%20%
    下载: 导出CSV

    表 2  实验条件下$ \eta $$ {\eta }_{\mathrm{m}}r $的估算值(降温后2.5—4.0 min)

    Table 2.  Estimated values of $ \eta $ and $ {\eta }_{\mathrm{m}}r $ at the experiments (2.5−4.0 min after the temperature quench).

    r/μm$ {\eta }_{\mathrm{m}}r $/(10–9 Pa⋅s⋅m)$ \eta $/(10–9 Pa⋅s⋅m)
    M11.9—10.52.6—14.02.5
    M21.7—6.62.3—8.83.4
    M30.7—4.50.9—6.052.8
    M40.4—2.90.5—3.9118.0
    下载: 导出CSV
  • [1]

    Sezgin E, Levental I, Mayor S, Eggeling C 2017 Nat. Rev. Mol. Cell Biol. 18 361Google Scholar

    [2]

    Wang X J, Tian L F, Ren Y S, Zhao Z Y, Du H, Zhang Z Z, Drinkwater B W, Mann S, Han X J 2020 Small 16 1906394Google Scholar

    [3]

    Zhou R H, Weikl T, Ma Y Q 2020 Nanoscale 12 10426Google Scholar

    [4]

    Fu M F, Li J B 2018 Angew. Chem. Int. Ed. 57 11404Google Scholar

    [5]

    梁燚然, 梁清 2019 物理学报 68 028701Google Scholar

    Liang Y R, Liang Q 2019 Acta Phys. Sin. 68 028701Google Scholar

    [6]

    Maekawa T, Chin H, Nyu T, Sut T N, Ferhan A R, Hayashi T, Cho N J 2019 PCCP 21 16686Google Scholar

    [7]

    Veatch S L, Keller S L 2003 Biophys. J. 85 3074Google Scholar

    [8]

    Baumgart T, Hess S T, Webb W W 2003 Nature 425 821Google Scholar

    [9]

    Li W W, Lin Z, Yuan B, Yang K 2020 Chin. Phys. B 29 128701Google Scholar

    [10]

    Ding H M, Yin Y W, Ni S D, Sheng Y J, Ma Y Q 2021 Chin. Phys. Lett. 38 018701Google Scholar

    [11]

    Ye X Q, Hao C C, Yang J J, Sun R G 2018 Colloids Surf., B 172 480Google Scholar

    [12]

    Chen J X, Chen Y G, Kapral R 2018 Adv. Sci. 5 1800028Google Scholar

    [13]

    Chen J X, Yuan R, Cui R F, Qiao L Y 2021 Nanoscale 13 1055Google Scholar

    [14]

    Stanich C A, Honerkamp-Smith A R, Putzel G G, Warth C S, Lamprecht A K, Mandal P, Mann E, Hua T A D, Keller S L 2013 Biophys. J. 105 444Google Scholar

    [15]

    Garcia-Saez A J, Chiantia S, Schwille P 2007 J. Biol. Chem. 282 33537Google Scholar

    [16]

    Rozovsky S, Kaizuka Y, Groves J T 2005 JACS 127 36Google Scholar

    [17]

    Li J F, Zhang H D, Qiu F 2013 J. Phys. Chem. B 117 843Google Scholar

    [18]

    Talbot E L, Parolini L, Kotar J, Di Michele L, Cicuta P 2017 PNAS 114 846Google Scholar

    [19]

    Wongsirojkul N, Shimokawa N, Opaprakasit P, Takagi M, Hamada T 2020 Langmuir 36 2937Google Scholar

    [20]

    Zhou Q, Wang P, Ma B B, Jiang Z Y, Zhu T 2022 Chin. Phys. B 31 098701Google Scholar

    [21]

    Zhu T, Jiang Z Y, Ma Y Q, Hu Y 2016 ACS Appl. Mater. Interfaces 8 5857Google Scholar

    [22]

    Veatch S L, Keller S L 2005 Phys. Rev. Lett. 94 148101Google Scholar

    [23]

    Hormel T T, Reyer M A, Parthasarathy R 2015 Biophys. J. 109 732Google Scholar

    [24]

    Duan Y, Mahault B, Ma Y Q, Shi X Q, Chate H 2021 Phys. Rev. Lett. 126 178001Google Scholar

    [25]

    Cicuta P, Keller S L, Veatch S L 2007 J. Phys. Chem. B 111 3328Google Scholar

    [26]

    Bhuyan N N, Pattnaik G P, Mishra A, Chakraborty H 2021 J. Mol. Liq. 325 115152Google Scholar

    [27]

    Liang X Y, Li L, Qiu F, Yang Y L 2010 Physica A 389 3965Google Scholar

    [28]

    Usery R D, Enoki T A, Wickramasinghe S P, Weiner M D, Tsai W C, Kim M B, Wang S, Torng T L, Ackerman D G, Heberle F A, Katsaras J, Feigenson G W 2017 Biophys. J. 112 1431Google Scholar

    [29]

    Yanagisawa M, Imai M, Masui T, Komura S, Ohta T 2007 Biophys. J. 92 115Google Scholar

    [30]

    Almeida P F F, Vaz W L C, Thompson T E 1992 Biochem. 31 6739Google Scholar

    [31]

    Nagao M, Kelley E G, Faraone A, Saito M, Yoda Y, Kurokuzu M, Takata S, Seto M, Butler P D 2021 Phys. Rev. Lett. 127 078102Google Scholar

    [32]

    Petrov E P, Schwille P 2008 Biophys. J. 94 L41Google Scholar

    [33]

    Sakuma Y, Kawakatsu T, Taniguchi T, Imai M 2020 Biophys. J. 118 1576Google Scholar

    [34]

    Chakraborty S, Doktorova M, Molugu T R, Heberle F A, Scott H L, Dzikovski B, Nagao M, Stingaciu L R, Standaert R F, Barrera F N, Katsaras J, Khelashvili G, Brown M F, Ashkar R 2020 PNAS 117 21896Google Scholar

    [35]

    Kim K, Choi S Q, Zell Z A, Squires T M, Zasadzinski J A 2013 PNAS 110 E3054Google Scholar

    [36]

    Tayebi L, Ma Y, Vashaee D, Chen G, Sinha S K, Parikh A N 2012 Nat. Mater. 11 1074Google Scholar

    [37]

    Saeki D, Hamada T, Yoshikawa K 2006 J. Phys. Soc. Jpn. 75 013602Google Scholar

    [38]

    Taniguchi T 1996 Phys. Rev. Lett. 76 4444Google Scholar

  • [1] 贺华丹, 钟琦超, 解文军. 声悬浮条件下双水相液滴的蒸发与相分离. 物理学报, 2024, 73(3): 034304. doi: 10.7498/aps.73.20230963
    [2] 武博文, 胡亮, 耿德路, 魏炳波. 液态Zr35Al23Ni22Gd20合金的亚稳相分离与双相非晶形成机理. 物理学报, 2023, 72(21): 216401. doi: 10.7498/aps.72.20231002
    [3] 王晶, 焦阳, 田文得, 陈康. 低惯性与高惯性活性粒子混合体系中的相分离现象. 物理学报, 2023, 72(19): 190501. doi: 10.7498/aps.72.20230792
    [4] 刘博阳, 宋文涛, 刘争晖, 孙晓娟, 王开明, 王亚坤, 张春玉, 陈科蓓, 徐耿钊, 徐科, 黎大兵. AlGaN表面相分离的同位微区荧光光谱和高空间分辨表面电势表征. 物理学报, 2020, 69(12): 127302. doi: 10.7498/aps.69.20200099
    [5] 梁燚然, 梁清. 带电纳米颗粒与相分离的带电生物膜之间相互作用的分子模拟. 物理学报, 2019, 68(2): 028701. doi: 10.7498/aps.68.20181891
    [6] 王文彬, 朱银燕, 殷立峰, 沈健. 复杂氧化物中电子相分离的量子调控. 物理学报, 2018, 67(22): 227502. doi: 10.7498/aps.67.20182007
    [7] 马丽, 贺小龙, 李明, 胡书新. tBid蛋白引发磷脂膜透化过程的研究. 物理学报, 2018, 67(14): 148703. doi: 10.7498/aps.67.20180099
    [8] 董晓莉, 金魁, 袁洁, 周放, 张广铭, 赵忠贤. FeSe基超导单晶与薄膜研究新进展:自旋向列序、电子相分离及高临界参数. 物理学报, 2018, 67(20): 207410. doi: 10.7498/aps.67.20181638
    [9] 纪丹丹, 张劭光. 三区域膜泡相分离模式之间转变的研究. 物理学报, 2018, 67(18): 188701. doi: 10.7498/aps.67.20180828
    [10] 叶学民, 杨少东, 李春曦. 分离压和表面黏度的协同作用对液膜排液过程的影响. 物理学报, 2017, 66(19): 194701. doi: 10.7498/aps.66.194701
    [11] 任群, 王楠, 张莉, 王建元, 郑亚萍, 姚文静. 调幅分解及形核对相分离作用机理研究. 物理学报, 2012, 61(19): 196401. doi: 10.7498/aps.61.196401
    [12] 黄江涛, 谷坤明, 毛斐, 虞烈, 汤皎宁. Ti/Ti-类金刚石多层膜的制备与表征. 物理学报, 2012, 61(8): 088102. doi: 10.7498/aps.61.088102
    [13] 危洪清, 李乡安, 龙志林, 彭建, 张平, 张志纯. 块体非晶合金的黏度与玻璃形成能力的关系. 物理学报, 2009, 58(4): 2556-2564. doi: 10.7498/aps.58.2556
    [14] 刘 锐, 李寅阊, 厚美瑛. 三维颗粒气体相分离现象. 物理学报, 2008, 57(8): 4660-4666. doi: 10.7498/aps.57.4660
    [15] 靳惠明, Felix Adriana, Aroyave Majorri. 注镧Co-Cr合金表面氧化膜生长规律与微观结构表征. 物理学报, 2008, 57(1): 561-565. doi: 10.7498/aps.57.561
    [16] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究. 物理学报, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [17] 翟 薇, 王 楠, 魏炳波. 偏晶溶液相分离过程的实时观测研究. 物理学报, 2007, 56(4): 2353-2358. doi: 10.7498/aps.56.2353
    [18] 蒋中英, 郁伟中, 黄彦君, 夏元复, 马淑新. SMMA/SMA共聚物共混物的自由体积的热动态特性与相分离行为的PALS研究. 物理学报, 2006, 55(6): 3136-3140. doi: 10.7498/aps.55.3136
    [19] 倪 经, 蔡建旺, 赵见高, 颜世申, 梅良模, 朱世富. Fe/Si多层膜的层间耦合与界面扩散. 物理学报, 2004, 53(11): 3920-3923. doi: 10.7498/aps.53.3920
    [20] 窦瑞芬, 贾金锋, 徐茂杰, 潘明虎, 何 珂, 张丽娟, 薛其坤. 单畴的单原子In纳米线阵列的制备与研究. 物理学报, 2004, 53(3): 871-876. doi: 10.7498/aps.53.871
计量
  • 文章访问数:  4213
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-19
  • 修回日期:  2022-05-11
  • 上网日期:  2022-09-20
  • 刊出日期:  2022-09-20

/

返回文章
返回