搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低维石墨烯体系中的离域磁性

郑玉强 王世勇

引用本文:
Citation:

低维石墨烯体系中的离域磁性

郑玉强, 王世勇

Delocalized magnetism in low-dimensional graphene system

Zheng Yu-Qiang, Wang Shi-Yong
PDF
HTML
导出引用
  • 由于量子效应, 低维石墨烯体系中具有离域的p壳层磁性, 其性质迥异于局域的d/f壳层电子. 该离域特性使精准调控纳米石墨烯的磁基态和磁交换作用变得有可能, 有望精准构筑高质量的磁性石墨烯量子材料. 近年来, 由于表面化学和表面物理的深度结合, 在单原子精度下研究纳米石墨烯的磁性变为可能, 打开了一个研究有机量子磁体的新方向. 本综述首先概述纳米石墨烯磁性的发展过程和研究现状, 然后讨论纳米石墨烯中磁性的产生机制, 接着回顾近年来实验的研究进展, 最后对低维磁性石墨烯未来发展可能遇到的挑战与机遇进行展望.
    Delocalized p-shell electron magnetism emerging in a low-dimensional graphene system due to quantum effect is distinct from the localized d/f-shell electron’s. The delocalization effect allows the precise engineering of the magnetic ground state and magnetic exchange interactions in nanographenes, thus implementing the accurate construction of high-quality graphene-based magnetic quantum materials. In recent years, with the development of surface chemistry and surface physics, it has become feasible to study the magnetism of nanographenes with single-atom precision, thus opening a new research direction for studying purely organic quantum magnetism. This review starts from the summarizing of the research background of nanographene magnetism. Then, the physics nature behind the nanographene magnetism and recent experimental researches are discussed. Finally, the challenges and opportunities for further studying low-dimensional magnetic graphenes are briefly discussed.
      通信作者: 王世勇, shiyong.wang@sjtu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFA0309000)和国家自然科学基金(批准号: 11521404, 11634009, 92065201, 11874256, 11874258, 12074247, 11790313, 11861161003)资助的课题.
      Corresponding author: Wang Shi-Yong, shiyong.wang@sjtu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFA0309000) and the National Natural Science Foundation of China (Grant Nos. 11521404, 11634009, 92065201, 11874256, 11874258, 12074247, 11790313, 11861161003).
    [1]

    Yosida K, Mattis D C, Yosida K 1996 Theory of Magnetism (Vol. 122) (Springer Science & Business Media)

    [2]

    Spinelli A, Rebergen M P, Otte A F 2015 J. Phys. Condens. Matter 27 243203Google Scholar

    [3]

    Foulkes W M C, Mitas L, Needs R J, Rajagopal G 2001 Rev. Mod. Phys. 73 33Google Scholar

    [4]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [5]

    Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nat. Nanotechnol. 9 794Google Scholar

    [6]

    Khajetoorians A A, Wiebe J, Chilian B, Wiesendanger R 2011 Science 332 1062Google Scholar

    [7]

    Sanvito S 2011 Chem. Soc. Rev. 40 3336Google Scholar

    [8]

    Bogani L, Wernsdorfer W 2008 Nat. Mater. 7 179Google Scholar

    [9]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [10]

    Sarma S D, Freedman M, Nayak C 2015 Npj Quantum Inf. 1 1

    [11]

    Kurmoo M 2009 Chem. Soc. Rev. 38 1353Google Scholar

    [12]

    Dong L, Liu P N, Lin N 2015 Acc. Chem. Res. 48 2765Google Scholar

    [13]

    Cao Y, Fatemi V, Demir A, et al. 2018 Nature 556 80Google Scholar

    [14]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [15]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A 2019 Science 365 605Google Scholar

    [16]

    Chen G, Sharpe A L, Fox E J, et al. 2022 Nano Lett. 22 238Google Scholar

    [17]

    Ovchinnikov A A 1978 Theor. Chim. Acta 47 297Google Scholar

    [18]

    Lieb E H 1989 Phys. Rev. Lett. 62 1201Google Scholar

    [19]

    Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571Google Scholar

    [20]

    Lombardi F, Lodi A, Ma J, Liu J, Slota M, Narita A, Myers W K, Müllen K, Feng X, Bogani L 2019 Science 366 1107Google Scholar

    [21]

    Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L, MacDonald A H 2006 Phys. Rev. B 74 165310Google Scholar

    [22]

    Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209Google Scholar

    [23]

    Yazyev O V 2008 Nano Lett. 8 1011Google Scholar

    [24]

    Goto K, Kubo T, Yamamoto K, Nakasuji K, Sato K, Shiomi D, Takui T, Kubota M, Kobayashi T, Yakusi K, Ouyang J 1999 J. Am. Chem. Soc. 121 1619Google Scholar

    [25]

    Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K 2001 J. Am. Chem. Soc. 123 12702Google Scholar

    [26]

    Allinson G, Bushby R J, Paillaud J L, Oduwole D, Sales K 1993 J. Am. Chem. Soc. 115 2062Google Scholar

    [27]

    Grill L, Dyer M, Lafferentz L, Persson M, Peters M V, Hecht S 2007 Nat. Nanotechnol. 2 687Google Scholar

    [28]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K, Fasel R 2010 Nature 466 470Google Scholar

    [29]

    Pavliček N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D J, Gross L 2017 Nat. Nanotechnol. 12 308Google Scholar

    [30]

    Mishra S, Beyer D, Eimre K, Liu J, Berger R, Gröning O, Pignedoli C A, Müllen K, Fasel R, Feng X, Ruffieux P 2019 J. Am. Chem. Soc. 141 10621Google Scholar

    [31]

    Su J, Telychko M, Hu P, et al. 2019 Sci. Adv. 5 eaav7717Google Scholar

    [32]

    Li J, Sanz S, Corso M, Choi D J, Peña D, Frederiksen T, Pascual J I 2019 Nat. Commun. 10 200Google Scholar

    [33]

    Mishra S, Melidonie J, Eimre K, Obermann S, Gröning O, Pignedoli C A, Ruffieux P, Feng X, Fasel R 2020 Chem. Commun. 56 7467Google Scholar

    [34]

    Mishra S, Beyer D, Eimre K, Kezilebieke S, Berger R, Gröning O, Pignedoli C A, Müllen K, Liljeroth P, Ruffieux P, Feng X, Fasel R 2020 Nat. Nanotechnol. 15 22Google Scholar

    [35]

    Mishra S, Beyer D, Berger R, Liu J, Gröning O, Urgel J I, Müllen K, Ruffieux P, Feng X, Fasel R 2020 J. Am. Chem. Soc. 142 1147Google Scholar

    [36]

    Zheng Y, Li C, Zhao Y, Beyer D, Wang G, Xu C, Yue X, Chen Y, Guan D D, Li Y Y, Zheng H, Liu C, Luo W, Feng X, Wang S, Jia J 2020 Phys. Rev. Lett. 124 147206Google Scholar

    [37]

    Li J, Sanz S, Castro-Esteban J, Vilas-Varela M, Friedrich N, Frederiksen T, Peña D, Pascual J I 2020 Phys. Rev. Lett. 124 177201Google Scholar

    [38]

    Mishra S, Beyer D, Eimre K, Ortiz R, Fernández-Rossier J, Berger R, Gröning O, Pignedoli C A, Fasel R, Feng X, Ruffieux P 2020 Angew. Chem. Int. Ed. 59 12041Google Scholar

    [39]

    Su X, Li C, Du Q, Tao K, Wang S, Yu P 2020 Nano Lett. 20 6859Google Scholar

    [40]

    Sun Q, Mateo L M, Robles R, Ruffieux P, Lorente N, Bottari G, Torres T, Fasel R 2020 J. Am. Chem. Soc. 142 18109Google Scholar

    [41]

    Zhao Y, Jiang K, Li C, Liu Y, Xu C, Zheng W, Guan D, Li Y, Zheng H, Liu C, Luo W, Jia J, Zhuang X, Wang S 2020 J. Am. Chem. Soc. 142 18532Google Scholar

    [42]

    Zheng Y, Li C, Xu C, Beyer D, Yue X, Zhao Y, Wang G, Guan D, Li Y, Zheng H, Liu C, Liu J, Wang X, Luo W, Feng X, Wang S, Jia J 2020 Nat. Commun. 11 6076Google Scholar

    [43]

    Hieulle J, Castro S, Friedrich N, Vegliante A, Lara F R, Sanz S, Rey D, Corso M, Frederiksen T, Pascual J I, Peña D 2021 Angew. Chem. Int. Ed. 60 25224Google Scholar

    [44]

    Mishra S, Xu K, Eimre K, Komber H, Ma J, Pignedoli C A, Fasel R, Feng X, Ruffieux P 2021 Nanoscale 13 1624Google Scholar

    [45]

    Su J, Fan W, Mutombo P, Peng X, Song S, Ondráček M, Golub P, Brabec J, Veis L, Telychko M, Jelínek P, Wu J, Lu J 2021 Nano Lett. 21 861Google Scholar

    [46]

    Telychko M, Li G, Mutombo P, Soler-Polo D, Peng X, Su J, Song S, Koh M J, Edmonds M, Jelínek P, Wu J, Lu J 2021 Sci. Adv. 7 eabf0269Google Scholar

    [47]

    Mishra S, Yao X, Chen Q, et al. 2021 Nat. Chem. 13 581Google Scholar

    [48]

    Wang S Y, Zhao Y, Jiang K Y, Li C, Liu Y F, Zhu G C, Guan D D, Li Y Y, Zheng H, Liu C H, Jia J F, Zhuang X D 2021 PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-579482/v1]

    [49]

    Sun Q, Mateo L M, Robles R, Lorente N, Ruffieux P, Bottari G, Torres T, Fasel R 2021 Angew. Chem. Int. Ed. 60 16208Google Scholar

    [50]

    Turco E, Mishra S, Melidonie J, Eimre K, Obermann S, Pignedoli C A, Fasel R, Feng X, Ruffieux P 2021 J. Phys. Chem. Lett. 12 8314Google Scholar

    [51]

    Mishra S, Catarina G, Wu F, Ortiz R, Jacob D, Eimre K, Ma J, Pignedoli C A, Feng X, Ruffieux P, Fernández-Rossier J, Fasel R 2021 Nature 598 287Google Scholar

    [52]

    Mishra S, Fatayer S, Fernández S, Kaiser K, Peña D, Gross L 2022 ACS Nano 16 3264Google Scholar

    [53]

    Wang T, Berdonces-Layunta A, Friedrich N, Vilas-Varela M, Calupitan J P, Pascual J I, Peña D, Casanova D, Corso M, de Oteyza D G 2022 J. Am. Chem. Soc. 144 4522Google Scholar

    [54]

    Li C, Liu Y, Liu Y, Xue FH, Guan D, Li Y, Zheng H, Liu C, Jia J, Liu P N, Li D Y, Wang S 2022 CCS Chemistry 22 01895Google Scholar

    [55]

    Cheng S, Xue Z, Li C, Liu Y, Xiang L, Ke Y, Yan K, Wang S, Yu P 2022 Nat. Commun. 13 1705Google Scholar

    [56]

    Biswas K, Yang L, Ma J, Sánchez-Grande A, Chen Q, Lauwaet K, Gallego J M, Miranda R, Écija D, Jelínek P, Feng X, Urgel J I 2022 Nanomaterials 12 224Google Scholar

    [57]

    Costi T A 2000 Phys. Rev. Lett. 85 1504Google Scholar

    [58]

    Yazyev O V 2010 Rep. Prog. Phys. 73 056501Google Scholar

    [59]

    Tuček J, Błoński P, Ugolotti J, Swain A K, Enoki T, Zbořil R 2018 Chem. Soc. Rev. 47 3899Google Scholar

    [60]

    Dutta S, Pati S K 2010 J. Mater. Chem. 20 8207Google Scholar

    [61]

    Houtsma R S K, de la Rie J, Stöhr M 2021 Chem. Soc. Rev. 50 6541Google Scholar

    [62]

    Clair S, de Oteyza D G 2019 Chem. Rev. 119 4717Google Scholar

    [63]

    Sun Q, Zhang R, Qiu J, Liu R, Xu W 2018 Adv. Mater. 30 1705630Google Scholar

    [64]

    Liu J, Feng X 2020 Angew. Chem. Int. Ed. 59 23386Google Scholar

    [65]

    Song S, Su J, Telychko M, Li J, Li G, Li Y, Su C, Wu J, Lu J 2021 Chem. Soc. Rev. 50 3238Google Scholar

    [66]

    Su J, Telychko M, Song S, Lu J 2020 Angew. Chem. 132 7730Google Scholar

    [67]

    Sun K, Fang Y, Chi L 2021 ACS Mater. Lett. 3 56Google Scholar

    [68]

    Ternes M, Heinrich A J, Schneider W D 2009 J. Phys. Condens. Matter 21 053001Google Scholar

    [69]

    Ternes M 2015 New J. Phys. 17 063016Google Scholar

    [70]

    Choi D J, Lorente N, Wiebe J, von Bergmann K, Otte A F, Heinrich A J 2019 Rev. Mod. Phys. 91 041001Google Scholar

    [71]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [72]

    Hubbard J, Flowers B H 1963 Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 276 238

    [73]

    Sherrill C D, Manolopoulos D E, Martínez T J, Michaelides A 2020 J. Chem. Phys. 153 070401Google Scholar

    [74]

    Ortiz R, Fernández-Rossier J 2020 Prog. Surf. Sci. 95 100595Google Scholar

    [75]

    Ugeda M M, Brihuega I, Guinea F, Gómez-Rodríguez J M 2010 Phys. Rev. Lett. 104 096804Google Scholar

    [76]

    González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016 Science 352 437Google Scholar

    [77]

    Cui P, Zhang Q, Zhu H, Li X, Wang W, Li Q, Zeng C, Zhang Z 2016 Phys. Rev. Lett. 116 026802Google Scholar

    [78]

    Li D Y, Qiu X, Li S W, Ren Y T, Zhu Y C, Shu C H, Hou X Y, Liu M, Shi X Q, Qiu X, Liu P N 2021 J. Am. Chem. Soc. 143 12955Google Scholar

    [79]

    Mishra S, Lohr T G, Pignedoli C A, Liu J, Berger R, Urgel J I, Müllen K, Feng X, Ruffieux P, Fasel R 2018 ACS Nano 12 11917Google Scholar

    [80]

    Lohr T G, Urgel J I, Eimre K, Liu J, Di Giovannantonio M, Mishra S, Berger R, Ruffieux P, Pignedoli C A, Fasel R, Feng X 2020 J. Am. Chem. Soc. 142 13565Google Scholar

    [81]

    Wang X, Sun G, Routh P, Kim D H, Huang W, Chen P 2014 Chem. Soc. Rev. 43 7067Google Scholar

    [82]

    Piskun I, Blackwell R, Jornet-Somoza J, Zhao F, Rubio A, Louie S G, Fischer F R 2020 J. Am. Chem. Soc. 142 3696Google Scholar

    [83]

    Nguyen G D, Tsai H Z, Omrani A A, et al. 2017 Nat. Nanotechnol. 12 1077Google Scholar

    [84]

    Wang T, Sanz S, Castro-Esteban J, Lawrence J, Berdonces-Layunta A, Mohammed M S G, Vilas-Varela M, Corso M, Peña D, Frederiksen T, de Oteyza D G 2022 Nano Lett. 22 164Google Scholar

    [85]

    Kawai S, Nakatsuka S, Hatakeyama T, Pawlak R, Meier T, Tracey J, Meyer E, Foster A S 2018 Sci. Adv. 4 eaar7181Google Scholar

    [86]

    Blackwell R E, Zhao F, Brooks E, Zhu J, Piskun I, Wang S, Delgado A, Lee Y L, Louie S G, Fischer F R 2021 Nature 600 647Google Scholar

    [87]

    Fajtlowicz S, John P E, Sachs H 2005 Croat. Chem. Acta 78 195

    [88]

    Solà M 2013 Front. Chem. 1 22

    [89]

    Sun Z, Lee S, Park K H, Zhu X, Zhang W, Zheng B, Hu P, Zeng Z, Das S, Li Y, Chi C, Li R W, Huang K W, Ding J, Kim D, Wu J 2013 J. Am. Chem. Soc. 135 18229Google Scholar

    [90]

    Trinquier G, Malrieu J P 2018 J. Phys. Chem. A 122 1088Google Scholar

    [91]

    Yang Y, Davidson E R, Yang W 2016 Proc. Natl. Acad. Sci. 113 1993Google Scholar

    [92]

    Zeng W, Sun Z, Herng T S, Gonçalves T P, Gopalakrishna T Y, Huang K W, Ding J, Wu J 2016 Angew. Chem. Int. Ed. 55 8615Google Scholar

    [93]

    Di Giovannantonio M, Eimre K, Yakutovich A V, Chen Q, Mishra S, Urgel J I, Pignedoli C A, Ruffieux P, Müllen K, Narita A, Fasel R 2019 J. Am. Chem. Soc. 141 12346Google Scholar

    [94]

    Majzik Z, Pavliček N, Vilas-Varela M, Pérez D, Moll N, Guitián E, Meyer G, Peña D, Gross L 2018 Nat. Commun. 9 1198Google Scholar

    [95]

    Di Giovannantonio M, Urgel J I, Beser U, Yakutovich A V, Wilhelm J, Pignedoli C A, Ruffieux P, Narita A, Müllen K, Fasel R 2018 J. Am. Chem. Soc. 140 3532Google Scholar

    [96]

    Di Giovannantonio M, Chen Q, Urgel J I, Ruffieux P, Pignedoli C A, Müllen K, Narita A, Fasel R 2020 J. Am. Chem. Soc. 142 12925Google Scholar

    [97]

    Narita A, Feng X, Hernandez Y, et al. 2014 Nat. Chem. 6 126Google Scholar

    [98]

    Gross L, Schuler B, Pavliček N, Fatayer S, Majzik Z, Moll N, Peña D, Meyer G 2018 Angew. Chem. Int. Ed. 57 3888Google Scholar

    [99]

    Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623Google Scholar

    [100]

    Shen Q, Gao H Y, Fuchs H 2017 Nano Today 13 77Google Scholar

    [101]

    Schuler B, Fatayer S, Mohn F, Moll N, Pavliček N, Meyer G, Peña D, Gross L 2016 Nat. Chem. 8 220Google Scholar

    [102]

    Kanuru V K, Kyriakou G, Beaumont S K, Papageorgiou A C, Watson D J, Lambert R M 2010 J. Am. Chem. Soc. 132 8081Google Scholar

    [103]

    Weigelt S, Busse C, Bombis C, et al. 2007 Angew. Chem. Int. Ed. 46 9227Google Scholar

    [104]

    Palmino F, Loppacher C, Chérioux F 2019 Chem. Phys. Chem. 20 2271Google Scholar

    [105]

    Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L, Anderson H L 2019 Science 365 1299Google Scholar

    [106]

    Urgel J I, Mishra S, Hayashi H, et al. 2019 Nat. Commun. 10 861Google Scholar

    [107]

    Zhou X, Bebensee F, Shen Q, Bebensee R, Cheng F, He Y, Su H, Chen W, Xu G Q, Besenbacher F, Linderoth T R, Wu K 2017 Mater. Chem. Front. 1 119Google Scholar

    [108]

    Yuan B, Li C, Zhao Y, et al. 2020 J. Am. Chem. Soc. 142 10034Google Scholar

    [109]

    Sun Q, Cai L, Wang S, Widmer R, Ju H, Zhu J, Li L, He Y, Ruffieux P, Fasel R, Xu W 2016 J. Am. Chem. Soc. 138 1106Google Scholar

    [110]

    Riss A, Paz A P, Wickenburg S, et al. 2016 Nat. Chem. 8 678Google Scholar

    [111]

    Hla S W, Bartels L, Meyer G, Rieder K H 2000 Phys. Rev. Lett. 85 2777Google Scholar

    [112]

    Albrecht F, Rey D, Fatayer S, Schulz F, Pérez D, Peña D, Gross L 2020 Angew. Chem. Int. Ed. 59 22989Google Scholar

    [113]

    Zhong Q, Ihle A, Ahles S, Wegner H A, Schirmeisen A, Ebeling D 2021 Nat. Chem. 13 1133Google Scholar

    [114]

    Talirz L, Söde H, Cai J, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X, Müllen K, Passerone D, Fasel R, Pignedoli C A 2013 J. Am. Chem. Soc. 135 2060

    [115]

    Ko W, Ma C, Nguyen G D, Kolmer M, Li A P 2019 Adv. Funct. Mater. 29 1903770Google Scholar

    [116]

    Eisenhut F, Kühne T, García F, Fernández S, Guitián E, Pérez D, Trinquier G, Cuniberti G, Joachim C, Peña D, Moresco F 2020 ACS Nano 14 1011Google Scholar

    [117]

    Anderson P W 1961 Phys. Rev. 124 41Google Scholar

    [118]

    Frota H O 1992 Phys. Rev. B 45 1096Google Scholar

    [119]

    Nagaoka K, Jamneala T, Grobis M, Crommie M F 2002 Phys. Rev. Lett. 88 077205Google Scholar

    [120]

    Roch N, Florens S, Costi T A, Wernsdorfer W, Balestro F 2009 Phys. Rev. Lett. 103 197202Google Scholar

    [121]

    Parks J J, Champagne A R, Costi T A, et al. 2010 Science 328 1370Google Scholar

    [122]

    Sasaki S, De Franceschi S, Elzerman J M, van der Wiel W G, Eto M, Tarucha S, Kouwenhoven L P 2000 Nature 405 764Google Scholar

    [123]

    Heinrich A J, Gupta J A, Lutz C P, Eigler D M 2004 Science 306 466Google Scholar

    [124]

    Fernández-Rossier J 2009 Phys. Rev. Lett. 102 256802Google Scholar

    [125]

    Ortiz R, Boto R A, García-Martínez N, Sancho-García J C, Melle-Franco M, Fernández-Rossier J 2019 Nano Lett. 19 5991Google Scholar

    [126]

    Bethe H 1931 Z. Für Phys. 71 205

    [127]

    Anderson P W 1951 Phys. Rev. 83 1260

    [128]

    Kubo R 1952 Phys. Rev. 87 568Google Scholar

    [129]

    Oguchi T 1960 Phys. Rev. 117 117Google Scholar

    [130]

    Haldane F D M 1983 Phys. Rev. Lett. 50 1153Google Scholar

    [131]

    Flippen R B, Friedberg S A 1963 J. Chem. Phys. 38 2652Google Scholar

    [132]

    Sahling S, Remenyi G, Paulsen C, Monceau P, Saligrama V, Marin C, Revcolevschi A, Regnault L P, Raymond S, Lorenzo J E 2015 Nat. Phys. 11 255Google Scholar

    [133]

    Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini M G, Novak M A 2001 Angew. Chem. Int. Ed. 40 1760Google Scholar

    [134]

    Zhang W X, Ishikawa R, Breedlove B, Yamashita M 2013 RSC Adv. 3 3772Google Scholar

    [135]

    Sun Q, Yao X, Gröning O, Eimre K, Pignedoli C A, Müllen K, Narita A, Fasel R, Ruffieux P 2020 Nano Lett. 20 6429Google Scholar

    [136]

    Rizzo D J, Veber G, Jiang J, McCurdy R, Cao T, Bronner C, Chen T, Louie S G, Fischer F R, Crommie M F 2020 Science 369 1597Google Scholar

    [137]

    Carbonell-Sanromà E, Garcia-Lekue A, Corso M, et al. 2018 J. Phys. Chem. C 122 16092Google Scholar

    [138]

    Cao T, Zhao F, Louie S G 2017 Phys. Rev. Lett. 119 076401Google Scholar

    [139]

    Friedrich N, Brandimarte P, Li J, Saito S, Yamaguchi S, Pozo I, Peña D, Frederiksen T, Garcia-Lekue A, Sánchez-Portal D, Pascual J I 2020 Phys. Rev. Lett. 125 146801Google Scholar

    [140]

    Wiesendanger R 2009 Rev. Mod. Phys. 81 1495Google Scholar

    [141]

    Kolmer M, Zuzak R, Steiner A K, Zajac L, Engelund M, Godlewski S, Szymonski M, Amsharov K 2019 Science 363 57Google Scholar

    [142]

    Kolmer M, Steiner A K, Izydorczyk I, Ko W, Engelund M, Szymonski M, Li A P, Amsharov K 2020 Science 369 571Google Scholar

    [143]

    Auwärter W 2019 Surf. Sci. Rep. 74 1Google Scholar

    [144]

    Schneider L, Brinker S, Steinbrecher M, Hermenau J, Posske T, dos Santos Dias M, Lounis S, Wiesendanger R, Wiebe J 2020 Nat. Commun. 11 4707Google Scholar

    [145]

    Schneider L, Beck P, Posske T, Crawford D, Mascot E, Rachel S, Wiesendanger R, Wiebe J 2021 Nat. Phys. 17 943Google Scholar

    [146]

    Schneider L, Beck P, Neuhaus-Steinmetz J, Rózsa L, Posske T, Wiebe J, Wiesendanger R 2022 Nat. Nanotechnol. 17 384Google Scholar

  • 图 1  石墨烯磁性研究的3个重点  1) 精准化学合成: 制备不同结构的原子级精确的纳米石墨烯. 2) 低维量子磁性: 基于磁性纳米石墨烯构建低维量子自旋系统. 3) 超导近邻效应: 纳米石墨烯磁性与超导相结合

    Fig. 1.  Three important directions for studying graphene quantum magnetism. 1) Precise chemical synthesis: preparation of atomically precise nanographenes with different structures. 2) Low-dimensional quantum magnetism: construction of low-dimensional quantum spin system based on π-magnetic nanographene. 3) Proximity effect of superconductivity: combination of π-magnetic nanographene with superconductivity.

    图 2  三角烯[30]和Clar’s goblet[34]磁性的理论计算 (a), (b) 结构示意图; (c)—(f) 不考虑(c), (e)和考虑(d), (f)电子-电子间多体相互作用的平均场近似能级谱; (g), (i) 单占电子在单占轨道的分布; (h), (j) 单占电子自旋密度分布 ((c), (d), (g), (h)出自文献[30], 已获得授权)

    Fig. 2.  Calculation of magnetism in triangulene[30] and Clar’s goblet[34]: (a), (b) Molecular structure; (c)–(f) energy spectrum calculated by MFH model considering (c), (e) without and (d), (f) with electron-electron many-body interaction; (g), (i) the distribution of single-occupied electrons in single-occupied molecular orbitals; (h), (j) the distribution of spin density of single-occupied electrons ((c), (d), (g), (h) reproduced with permission from Ref. [30]).

    图 3  π电子磁性起源于共振苯环 (a) 共振苯环结构; (b), (c) 分别为并苯和超庚烯的磁性转变; (d) n = 5超庚烯的分子结构、MFH模型的能级分布和单占电子的自旋密度分布, 磁基态为闭壳[33]; (e) n = 7超庚烯的分子结构、MFH模型的能级分布和单占电子的自旋密度分布, 磁基态为开壳[50] ((d), (e)出自文献[33, 50], 已获得授权)

    Fig. 3.  Clar sextets-induced π-magnetism: (a) Structure of Clar sextets; (b), (c) magnetic transition in acenes and super-zethrenes, respectively; (d) molecular structure, the distribution of energy level and single-occupied electrons spin density of n = 5 super-zethrenes, where magnetic ground state is close shell[33]; (e) molecular structure, the distribution of energy level and single-occupied electrons spin density of n = 7 super-zethrenes, where magnetic ground state is open shell[50] ((d), (e) reproduced with permission from Ref. [33, 50]).

    图 4  π电子磁性起源于拓扑缺陷 (a) 双碳五环纳米石墨烯不同构型的磁基态[93]; (b) 基于碳五环可设计的高自旋结构[54]

    Fig. 4.  Topological defect-induced π-magnetism: (a) Magnetic ground states of nanographenes with double carbon-five-rings in the different configurations[93]; (b) design of high spins structures based on carbon-five-rings[54].

    图 5  表面化学合成磁性纳米石墨烯 (a) 原理示意图; (b)—(s) 实验合成的不同磁基态纳米石墨烯[30-32,34-40,42,44,45,47-51] ((b)[36,42], (c)[32], (d)[39], (e)[37], (f)[30], (g)[31], (h)[44], (i)[45], (j)[47], (k)[35], (l)[50], (m) [38], (n)[38], (o)[34], (p)[49], (q)[40], (r)[48], (s)[51])

    Fig. 5.  On-surface synthesis of magnetic nano graphenes: (a) Schematic illustration of on-surface synthesis; (b)–(s) experimental synthesis results of nanographenes with different magnetic ground states[30-32,34-40,42,44,45,47-51].

    图 6  STM针尖诱导表面反应 (a) Ullmann反应[111]; (b) Glaser耦合的中间态[112]; (c) 针尖诱导去氢反应示意图[29]; (d)—(g) 纳米石墨烯中针尖诱导去氢反应, 并逐步获得高自旋 [29,34,37,39] ((a), (b), (d), (e)出自文献[111, 112, 29, 39], 已获得授权)

    Fig. 6.  STM tip-driven on surface reactions: (a) Ullmann reaction[111]; (b) Glaser coupling and intermediates[112]; (c) schematic illustration of tip-driven on surface dehydrogenation[29]; (d)–(g) tip-driven dehydrogenation in nanographenes and high spins states in the same nanographene are available step by step [29,34,37,39] ((a), (b), (d), (e) reproduced with permission from Ref. [111, 112, 29, 39])

    图 7  S = 1/2纳米石墨烯的近藤效应 (a) S = 1/2的近藤共振谱示意图; (b) 近藤共振峰的空间分布[36]; (c) 近藤温度[36]; (d) 近藤共振峰的塞曼劈裂[36]; (e)—(i) 多种S = 1/2纳米石墨烯的近藤效应[32,35,40,41,49] ((b)—(i)出自文献[36, 32, 35, 40, 41, 49], 已获得授权)

    Fig. 7.  Kondo effect of S = 1/2 nanographenes: (a) Schematic illustration of Kondo resonance spectroscopy of S = 1/2; (b) spatial distribution of Kondo resonance peak[36]; (c) Kondo temperature[36]; (d) Zeeman splitting of Kondo resonance peak[36]; (e)–(i) Kondo effect of various S = 1/2 nanographenes[32,35,40,41,49] ((b)–(i) reproduced with permission from Ref. [36, 32, 35, 40, 41, 49]).

    图 8  高自旋纳米石墨烯的近藤效应 (a) S = 1自旋的近藤共振谱示意图; (b), (c) 同一个纳米石墨烯S = 1/2和S = 1的近藤效应[37,39] ((b), (c) 出自文献[37, 39], 已获得授权)

    Fig. 8.  Kondo effect of high spins nanographenes: (a) Schematic illustration of Kondo resonance spectroscopy of S = 1; (b), (c) Kondo effect of S = 1/2 and S = 1 in the same nanographene[37,39] ((b), (c) reproduced with permission from Ref. [37, 39]).

    图 9  自旋单重态纳米石墨烯的自旋交换 (a) S = 0自旋单重态的自旋翻转谱示意图; (b)—(h) 不同纳米石墨烯的自旋交换J [34-36,38,42,47,50] ((b), (c), (f)—(h)出自文献[38, 50, 35, 47], 已获得授权)

    Fig. 9.  Spin exchange interaction of nanographenes with singlet ground state: (a) Schematic illustration of spin-flip spectroscopy of S = 0 singlet state; (b)–(h) spin exchange interaction J of different nanographenes with singlet ground state [34-36,38,42,47,50] ((b), (c), (f)–(h) reproduced with permission from Ref. [38, 50, 35, 47]).

    图 10  磁交换方向的调控 (a), (b) 联接方式改变纳米石墨烯磁基态[38,39]; (c)—(e) AB子格碳原子直联改变磁基态[42] ((a)—(e) 出自文献[38, 39, 42], 已获得授权)

    Fig. 10.  Controlling magnetic exchange direction: (a), (b) Change of magnetic ground states by different connecting configurations[38,39]; (c)–(e) change of magnetic ground states by direct connecting two C atoms in AB sublattice respectively[42] ((a)–(e) reproduced with permission from Ref. [38, 39, 42]).

    图 11  纳米石墨烯构建一维量子自旋链 (a) S = 1/2铁磁链[136]; (b) S = 1/2反铁磁链[138]; (c) 基于三角烯构建S = 1反铁磁链[51]; (d) 基于类卟啉纳米石墨烯构建S = 1反铁磁链[48]; (e) Haldane 量子自旋链[48,51] ((c), (d) 出自文献[51, 48], 已获得授权)

    Fig. 11.  Building 1D quantum spin chains with magnetic nanographenes: (a) S = 1/2 ferromagnetic spin chain[136]; (b) S = 1/2 antiferromagnetic spin chain[138]; (c) S = 1 antiferromagnetic quantum spin chain build with triangulene[51]; (d) S = 1 antiferromagnetic quantum spin chain build with porphyrins-based magnetic nanographenes[48]; (e) Haldane quantum spin chain[48,51] ((c), (d) reproduced with permission from Ref. [51, 48]).

  • [1]

    Yosida K, Mattis D C, Yosida K 1996 Theory of Magnetism (Vol. 122) (Springer Science & Business Media)

    [2]

    Spinelli A, Rebergen M P, Otte A F 2015 J. Phys. Condens. Matter 27 243203Google Scholar

    [3]

    Foulkes W M C, Mitas L, Needs R J, Rajagopal G 2001 Rev. Mod. Phys. 73 33Google Scholar

    [4]

    Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnár S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488Google Scholar

    [5]

    Han W, Kawakami R K, Gmitra M, Fabian J 2014 Nat. Nanotechnol. 9 794Google Scholar

    [6]

    Khajetoorians A A, Wiebe J, Chilian B, Wiesendanger R 2011 Science 332 1062Google Scholar

    [7]

    Sanvito S 2011 Chem. Soc. Rev. 40 3336Google Scholar

    [8]

    Bogani L, Wernsdorfer W 2008 Nat. Mater. 7 179Google Scholar

    [9]

    Nadj-Perge S, Drozdov I K, Li J, Chen H, Jeon S, Seo J, MacDonald A H, Bernevig B A, Yazdani A 2014 Science 346 602Google Scholar

    [10]

    Sarma S D, Freedman M, Nayak C 2015 Npj Quantum Inf. 1 1

    [11]

    Kurmoo M 2009 Chem. Soc. Rev. 38 1353Google Scholar

    [12]

    Dong L, Liu P N, Lin N 2015 Acc. Chem. Res. 48 2765Google Scholar

    [13]

    Cao Y, Fatemi V, Demir A, et al. 2018 Nature 556 80Google Scholar

    [14]

    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo-Herrero P 2018 Nature 556 43Google Scholar

    [15]

    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A 2019 Science 365 605Google Scholar

    [16]

    Chen G, Sharpe A L, Fox E J, et al. 2022 Nano Lett. 22 238Google Scholar

    [17]

    Ovchinnikov A A 1978 Theor. Chim. Acta 47 297Google Scholar

    [18]

    Lieb E H 1989 Phys. Rev. Lett. 62 1201Google Scholar

    [19]

    Tombros N, Jozsa C, Popinciuc M, Jonkman H T, van Wees B J 2007 Nature 448 571Google Scholar

    [20]

    Lombardi F, Lodi A, Ma J, Liu J, Slota M, Narita A, Myers W K, Müllen K, Feng X, Bogani L 2019 Science 366 1107Google Scholar

    [21]

    Min H, Hill J E, Sinitsyn N A, Sahu B R, Kleinman L, MacDonald A H 2006 Phys. Rev. B 74 165310Google Scholar

    [22]

    Yazyev O V, Katsnelson M I 2008 Phys. Rev. Lett. 100 047209Google Scholar

    [23]

    Yazyev O V 2008 Nano Lett. 8 1011Google Scholar

    [24]

    Goto K, Kubo T, Yamamoto K, Nakasuji K, Sato K, Shiomi D, Takui T, Kubota M, Kobayashi T, Yakusi K, Ouyang J 1999 J. Am. Chem. Soc. 121 1619Google Scholar

    [25]

    Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K 2001 J. Am. Chem. Soc. 123 12702Google Scholar

    [26]

    Allinson G, Bushby R J, Paillaud J L, Oduwole D, Sales K 1993 J. Am. Chem. Soc. 115 2062Google Scholar

    [27]

    Grill L, Dyer M, Lafferentz L, Persson M, Peters M V, Hecht S 2007 Nat. Nanotechnol. 2 687Google Scholar

    [28]

    Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Muoth M, Seitsonen A P, Saleh M, Feng X, Müllen K, Fasel R 2010 Nature 466 470Google Scholar

    [29]

    Pavliček N, Mistry A, Majzik Z, Moll N, Meyer G, Fox D J, Gross L 2017 Nat. Nanotechnol. 12 308Google Scholar

    [30]

    Mishra S, Beyer D, Eimre K, Liu J, Berger R, Gröning O, Pignedoli C A, Müllen K, Fasel R, Feng X, Ruffieux P 2019 J. Am. Chem. Soc. 141 10621Google Scholar

    [31]

    Su J, Telychko M, Hu P, et al. 2019 Sci. Adv. 5 eaav7717Google Scholar

    [32]

    Li J, Sanz S, Corso M, Choi D J, Peña D, Frederiksen T, Pascual J I 2019 Nat. Commun. 10 200Google Scholar

    [33]

    Mishra S, Melidonie J, Eimre K, Obermann S, Gröning O, Pignedoli C A, Ruffieux P, Feng X, Fasel R 2020 Chem. Commun. 56 7467Google Scholar

    [34]

    Mishra S, Beyer D, Eimre K, Kezilebieke S, Berger R, Gröning O, Pignedoli C A, Müllen K, Liljeroth P, Ruffieux P, Feng X, Fasel R 2020 Nat. Nanotechnol. 15 22Google Scholar

    [35]

    Mishra S, Beyer D, Berger R, Liu J, Gröning O, Urgel J I, Müllen K, Ruffieux P, Feng X, Fasel R 2020 J. Am. Chem. Soc. 142 1147Google Scholar

    [36]

    Zheng Y, Li C, Zhao Y, Beyer D, Wang G, Xu C, Yue X, Chen Y, Guan D D, Li Y Y, Zheng H, Liu C, Luo W, Feng X, Wang S, Jia J 2020 Phys. Rev. Lett. 124 147206Google Scholar

    [37]

    Li J, Sanz S, Castro-Esteban J, Vilas-Varela M, Friedrich N, Frederiksen T, Peña D, Pascual J I 2020 Phys. Rev. Lett. 124 177201Google Scholar

    [38]

    Mishra S, Beyer D, Eimre K, Ortiz R, Fernández-Rossier J, Berger R, Gröning O, Pignedoli C A, Fasel R, Feng X, Ruffieux P 2020 Angew. Chem. Int. Ed. 59 12041Google Scholar

    [39]

    Su X, Li C, Du Q, Tao K, Wang S, Yu P 2020 Nano Lett. 20 6859Google Scholar

    [40]

    Sun Q, Mateo L M, Robles R, Ruffieux P, Lorente N, Bottari G, Torres T, Fasel R 2020 J. Am. Chem. Soc. 142 18109Google Scholar

    [41]

    Zhao Y, Jiang K, Li C, Liu Y, Xu C, Zheng W, Guan D, Li Y, Zheng H, Liu C, Luo W, Jia J, Zhuang X, Wang S 2020 J. Am. Chem. Soc. 142 18532Google Scholar

    [42]

    Zheng Y, Li C, Xu C, Beyer D, Yue X, Zhao Y, Wang G, Guan D, Li Y, Zheng H, Liu C, Liu J, Wang X, Luo W, Feng X, Wang S, Jia J 2020 Nat. Commun. 11 6076Google Scholar

    [43]

    Hieulle J, Castro S, Friedrich N, Vegliante A, Lara F R, Sanz S, Rey D, Corso M, Frederiksen T, Pascual J I, Peña D 2021 Angew. Chem. Int. Ed. 60 25224Google Scholar

    [44]

    Mishra S, Xu K, Eimre K, Komber H, Ma J, Pignedoli C A, Fasel R, Feng X, Ruffieux P 2021 Nanoscale 13 1624Google Scholar

    [45]

    Su J, Fan W, Mutombo P, Peng X, Song S, Ondráček M, Golub P, Brabec J, Veis L, Telychko M, Jelínek P, Wu J, Lu J 2021 Nano Lett. 21 861Google Scholar

    [46]

    Telychko M, Li G, Mutombo P, Soler-Polo D, Peng X, Su J, Song S, Koh M J, Edmonds M, Jelínek P, Wu J, Lu J 2021 Sci. Adv. 7 eabf0269Google Scholar

    [47]

    Mishra S, Yao X, Chen Q, et al. 2021 Nat. Chem. 13 581Google Scholar

    [48]

    Wang S Y, Zhao Y, Jiang K Y, Li C, Liu Y F, Zhu G C, Guan D D, Li Y Y, Zheng H, Liu C H, Jia J F, Zhuang X D 2021 PREPRINT (Version 1) available at Research Square [https://doi.org/10.21203/rs.3.rs-579482/v1]

    [49]

    Sun Q, Mateo L M, Robles R, Lorente N, Ruffieux P, Bottari G, Torres T, Fasel R 2021 Angew. Chem. Int. Ed. 60 16208Google Scholar

    [50]

    Turco E, Mishra S, Melidonie J, Eimre K, Obermann S, Pignedoli C A, Fasel R, Feng X, Ruffieux P 2021 J. Phys. Chem. Lett. 12 8314Google Scholar

    [51]

    Mishra S, Catarina G, Wu F, Ortiz R, Jacob D, Eimre K, Ma J, Pignedoli C A, Feng X, Ruffieux P, Fernández-Rossier J, Fasel R 2021 Nature 598 287Google Scholar

    [52]

    Mishra S, Fatayer S, Fernández S, Kaiser K, Peña D, Gross L 2022 ACS Nano 16 3264Google Scholar

    [53]

    Wang T, Berdonces-Layunta A, Friedrich N, Vilas-Varela M, Calupitan J P, Pascual J I, Peña D, Casanova D, Corso M, de Oteyza D G 2022 J. Am. Chem. Soc. 144 4522Google Scholar

    [54]

    Li C, Liu Y, Liu Y, Xue FH, Guan D, Li Y, Zheng H, Liu C, Jia J, Liu P N, Li D Y, Wang S 2022 CCS Chemistry 22 01895Google Scholar

    [55]

    Cheng S, Xue Z, Li C, Liu Y, Xiang L, Ke Y, Yan K, Wang S, Yu P 2022 Nat. Commun. 13 1705Google Scholar

    [56]

    Biswas K, Yang L, Ma J, Sánchez-Grande A, Chen Q, Lauwaet K, Gallego J M, Miranda R, Écija D, Jelínek P, Feng X, Urgel J I 2022 Nanomaterials 12 224Google Scholar

    [57]

    Costi T A 2000 Phys. Rev. Lett. 85 1504Google Scholar

    [58]

    Yazyev O V 2010 Rep. Prog. Phys. 73 056501Google Scholar

    [59]

    Tuček J, Błoński P, Ugolotti J, Swain A K, Enoki T, Zbořil R 2018 Chem. Soc. Rev. 47 3899Google Scholar

    [60]

    Dutta S, Pati S K 2010 J. Mater. Chem. 20 8207Google Scholar

    [61]

    Houtsma R S K, de la Rie J, Stöhr M 2021 Chem. Soc. Rev. 50 6541Google Scholar

    [62]

    Clair S, de Oteyza D G 2019 Chem. Rev. 119 4717Google Scholar

    [63]

    Sun Q, Zhang R, Qiu J, Liu R, Xu W 2018 Adv. Mater. 30 1705630Google Scholar

    [64]

    Liu J, Feng X 2020 Angew. Chem. Int. Ed. 59 23386Google Scholar

    [65]

    Song S, Su J, Telychko M, Li J, Li G, Li Y, Su C, Wu J, Lu J 2021 Chem. Soc. Rev. 50 3238Google Scholar

    [66]

    Su J, Telychko M, Song S, Lu J 2020 Angew. Chem. 132 7730Google Scholar

    [67]

    Sun K, Fang Y, Chi L 2021 ACS Mater. Lett. 3 56Google Scholar

    [68]

    Ternes M, Heinrich A J, Schneider W D 2009 J. Phys. Condens. Matter 21 053001Google Scholar

    [69]

    Ternes M 2015 New J. Phys. 17 063016Google Scholar

    [70]

    Choi D J, Lorente N, Wiebe J, von Bergmann K, Otte A F, Heinrich A J 2019 Rev. Mod. Phys. 91 041001Google Scholar

    [71]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [72]

    Hubbard J, Flowers B H 1963 Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 276 238

    [73]

    Sherrill C D, Manolopoulos D E, Martínez T J, Michaelides A 2020 J. Chem. Phys. 153 070401Google Scholar

    [74]

    Ortiz R, Fernández-Rossier J 2020 Prog. Surf. Sci. 95 100595Google Scholar

    [75]

    Ugeda M M, Brihuega I, Guinea F, Gómez-Rodríguez J M 2010 Phys. Rev. Lett. 104 096804Google Scholar

    [76]

    González-Herrero H, Gómez-Rodríguez J M, Mallet P, Moaied M, Palacios J J, Salgado C, Ugeda M M, Veuillen J Y, Yndurain F, Brihuega I 2016 Science 352 437Google Scholar

    [77]

    Cui P, Zhang Q, Zhu H, Li X, Wang W, Li Q, Zeng C, Zhang Z 2016 Phys. Rev. Lett. 116 026802Google Scholar

    [78]

    Li D Y, Qiu X, Li S W, Ren Y T, Zhu Y C, Shu C H, Hou X Y, Liu M, Shi X Q, Qiu X, Liu P N 2021 J. Am. Chem. Soc. 143 12955Google Scholar

    [79]

    Mishra S, Lohr T G, Pignedoli C A, Liu J, Berger R, Urgel J I, Müllen K, Feng X, Ruffieux P, Fasel R 2018 ACS Nano 12 11917Google Scholar

    [80]

    Lohr T G, Urgel J I, Eimre K, Liu J, Di Giovannantonio M, Mishra S, Berger R, Ruffieux P, Pignedoli C A, Fasel R, Feng X 2020 J. Am. Chem. Soc. 142 13565Google Scholar

    [81]

    Wang X, Sun G, Routh P, Kim D H, Huang W, Chen P 2014 Chem. Soc. Rev. 43 7067Google Scholar

    [82]

    Piskun I, Blackwell R, Jornet-Somoza J, Zhao F, Rubio A, Louie S G, Fischer F R 2020 J. Am. Chem. Soc. 142 3696Google Scholar

    [83]

    Nguyen G D, Tsai H Z, Omrani A A, et al. 2017 Nat. Nanotechnol. 12 1077Google Scholar

    [84]

    Wang T, Sanz S, Castro-Esteban J, Lawrence J, Berdonces-Layunta A, Mohammed M S G, Vilas-Varela M, Corso M, Peña D, Frederiksen T, de Oteyza D G 2022 Nano Lett. 22 164Google Scholar

    [85]

    Kawai S, Nakatsuka S, Hatakeyama T, Pawlak R, Meier T, Tracey J, Meyer E, Foster A S 2018 Sci. Adv. 4 eaar7181Google Scholar

    [86]

    Blackwell R E, Zhao F, Brooks E, Zhu J, Piskun I, Wang S, Delgado A, Lee Y L, Louie S G, Fischer F R 2021 Nature 600 647Google Scholar

    [87]

    Fajtlowicz S, John P E, Sachs H 2005 Croat. Chem. Acta 78 195

    [88]

    Solà M 2013 Front. Chem. 1 22

    [89]

    Sun Z, Lee S, Park K H, Zhu X, Zhang W, Zheng B, Hu P, Zeng Z, Das S, Li Y, Chi C, Li R W, Huang K W, Ding J, Kim D, Wu J 2013 J. Am. Chem. Soc. 135 18229Google Scholar

    [90]

    Trinquier G, Malrieu J P 2018 J. Phys. Chem. A 122 1088Google Scholar

    [91]

    Yang Y, Davidson E R, Yang W 2016 Proc. Natl. Acad. Sci. 113 1993Google Scholar

    [92]

    Zeng W, Sun Z, Herng T S, Gonçalves T P, Gopalakrishna T Y, Huang K W, Ding J, Wu J 2016 Angew. Chem. Int. Ed. 55 8615Google Scholar

    [93]

    Di Giovannantonio M, Eimre K, Yakutovich A V, Chen Q, Mishra S, Urgel J I, Pignedoli C A, Ruffieux P, Müllen K, Narita A, Fasel R 2019 J. Am. Chem. Soc. 141 12346Google Scholar

    [94]

    Majzik Z, Pavliček N, Vilas-Varela M, Pérez D, Moll N, Guitián E, Meyer G, Peña D, Gross L 2018 Nat. Commun. 9 1198Google Scholar

    [95]

    Di Giovannantonio M, Urgel J I, Beser U, Yakutovich A V, Wilhelm J, Pignedoli C A, Ruffieux P, Narita A, Müllen K, Fasel R 2018 J. Am. Chem. Soc. 140 3532Google Scholar

    [96]

    Di Giovannantonio M, Chen Q, Urgel J I, Ruffieux P, Pignedoli C A, Müllen K, Narita A, Fasel R 2020 J. Am. Chem. Soc. 142 12925Google Scholar

    [97]

    Narita A, Feng X, Hernandez Y, et al. 2014 Nat. Chem. 6 126Google Scholar

    [98]

    Gross L, Schuler B, Pavliček N, Fatayer S, Majzik Z, Moll N, Peña D, Meyer G 2018 Angew. Chem. Int. Ed. 57 3888Google Scholar

    [99]

    Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, Hou J G 2016 Nature 531 623Google Scholar

    [100]

    Shen Q, Gao H Y, Fuchs H 2017 Nano Today 13 77Google Scholar

    [101]

    Schuler B, Fatayer S, Mohn F, Moll N, Pavliček N, Meyer G, Peña D, Gross L 2016 Nat. Chem. 8 220Google Scholar

    [102]

    Kanuru V K, Kyriakou G, Beaumont S K, Papageorgiou A C, Watson D J, Lambert R M 2010 J. Am. Chem. Soc. 132 8081Google Scholar

    [103]

    Weigelt S, Busse C, Bombis C, et al. 2007 Angew. Chem. Int. Ed. 46 9227Google Scholar

    [104]

    Palmino F, Loppacher C, Chérioux F 2019 Chem. Phys. Chem. 20 2271Google Scholar

    [105]

    Kaiser K, Scriven L M, Schulz F, Gawel P, Gross L, Anderson H L 2019 Science 365 1299Google Scholar

    [106]

    Urgel J I, Mishra S, Hayashi H, et al. 2019 Nat. Commun. 10 861Google Scholar

    [107]

    Zhou X, Bebensee F, Shen Q, Bebensee R, Cheng F, He Y, Su H, Chen W, Xu G Q, Besenbacher F, Linderoth T R, Wu K 2017 Mater. Chem. Front. 1 119Google Scholar

    [108]

    Yuan B, Li C, Zhao Y, et al. 2020 J. Am. Chem. Soc. 142 10034Google Scholar

    [109]

    Sun Q, Cai L, Wang S, Widmer R, Ju H, Zhu J, Li L, He Y, Ruffieux P, Fasel R, Xu W 2016 J. Am. Chem. Soc. 138 1106Google Scholar

    [110]

    Riss A, Paz A P, Wickenburg S, et al. 2016 Nat. Chem. 8 678Google Scholar

    [111]

    Hla S W, Bartels L, Meyer G, Rieder K H 2000 Phys. Rev. Lett. 85 2777Google Scholar

    [112]

    Albrecht F, Rey D, Fatayer S, Schulz F, Pérez D, Peña D, Gross L 2020 Angew. Chem. Int. Ed. 59 22989Google Scholar

    [113]

    Zhong Q, Ihle A, Ahles S, Wegner H A, Schirmeisen A, Ebeling D 2021 Nat. Chem. 13 1133Google Scholar

    [114]

    Talirz L, Söde H, Cai J, Ruffieux P, Blankenburg S, Jafaar R, Berger R, Feng X, Müllen K, Passerone D, Fasel R, Pignedoli C A 2013 J. Am. Chem. Soc. 135 2060

    [115]

    Ko W, Ma C, Nguyen G D, Kolmer M, Li A P 2019 Adv. Funct. Mater. 29 1903770Google Scholar

    [116]

    Eisenhut F, Kühne T, García F, Fernández S, Guitián E, Pérez D, Trinquier G, Cuniberti G, Joachim C, Peña D, Moresco F 2020 ACS Nano 14 1011Google Scholar

    [117]

    Anderson P W 1961 Phys. Rev. 124 41Google Scholar

    [118]

    Frota H O 1992 Phys. Rev. B 45 1096Google Scholar

    [119]

    Nagaoka K, Jamneala T, Grobis M, Crommie M F 2002 Phys. Rev. Lett. 88 077205Google Scholar

    [120]

    Roch N, Florens S, Costi T A, Wernsdorfer W, Balestro F 2009 Phys. Rev. Lett. 103 197202Google Scholar

    [121]

    Parks J J, Champagne A R, Costi T A, et al. 2010 Science 328 1370Google Scholar

    [122]

    Sasaki S, De Franceschi S, Elzerman J M, van der Wiel W G, Eto M, Tarucha S, Kouwenhoven L P 2000 Nature 405 764Google Scholar

    [123]

    Heinrich A J, Gupta J A, Lutz C P, Eigler D M 2004 Science 306 466Google Scholar

    [124]

    Fernández-Rossier J 2009 Phys. Rev. Lett. 102 256802Google Scholar

    [125]

    Ortiz R, Boto R A, García-Martínez N, Sancho-García J C, Melle-Franco M, Fernández-Rossier J 2019 Nano Lett. 19 5991Google Scholar

    [126]

    Bethe H 1931 Z. Für Phys. 71 205

    [127]

    Anderson P W 1951 Phys. Rev. 83 1260

    [128]

    Kubo R 1952 Phys. Rev. 87 568Google Scholar

    [129]

    Oguchi T 1960 Phys. Rev. 117 117Google Scholar

    [130]

    Haldane F D M 1983 Phys. Rev. Lett. 50 1153Google Scholar

    [131]

    Flippen R B, Friedberg S A 1963 J. Chem. Phys. 38 2652Google Scholar

    [132]

    Sahling S, Remenyi G, Paulsen C, Monceau P, Saligrama V, Marin C, Revcolevschi A, Regnault L P, Raymond S, Lorenzo J E 2015 Nat. Phys. 11 255Google Scholar

    [133]

    Caneschi A, Gatteschi D, Lalioti N, Sangregorio C, Sessoli R, Venturi G, Vindigni A, Rettori A, Pini M G, Novak M A 2001 Angew. Chem. Int. Ed. 40 1760Google Scholar

    [134]

    Zhang W X, Ishikawa R, Breedlove B, Yamashita M 2013 RSC Adv. 3 3772Google Scholar

    [135]

    Sun Q, Yao X, Gröning O, Eimre K, Pignedoli C A, Müllen K, Narita A, Fasel R, Ruffieux P 2020 Nano Lett. 20 6429Google Scholar

    [136]

    Rizzo D J, Veber G, Jiang J, McCurdy R, Cao T, Bronner C, Chen T, Louie S G, Fischer F R, Crommie M F 2020 Science 369 1597Google Scholar

    [137]

    Carbonell-Sanromà E, Garcia-Lekue A, Corso M, et al. 2018 J. Phys. Chem. C 122 16092Google Scholar

    [138]

    Cao T, Zhao F, Louie S G 2017 Phys. Rev. Lett. 119 076401Google Scholar

    [139]

    Friedrich N, Brandimarte P, Li J, Saito S, Yamaguchi S, Pozo I, Peña D, Frederiksen T, Garcia-Lekue A, Sánchez-Portal D, Pascual J I 2020 Phys. Rev. Lett. 125 146801Google Scholar

    [140]

    Wiesendanger R 2009 Rev. Mod. Phys. 81 1495Google Scholar

    [141]

    Kolmer M, Zuzak R, Steiner A K, Zajac L, Engelund M, Godlewski S, Szymonski M, Amsharov K 2019 Science 363 57Google Scholar

    [142]

    Kolmer M, Steiner A K, Izydorczyk I, Ko W, Engelund M, Szymonski M, Li A P, Amsharov K 2020 Science 369 571Google Scholar

    [143]

    Auwärter W 2019 Surf. Sci. Rep. 74 1Google Scholar

    [144]

    Schneider L, Brinker S, Steinbrecher M, Hermenau J, Posske T, dos Santos Dias M, Lounis S, Wiesendanger R, Wiebe J 2020 Nat. Commun. 11 4707Google Scholar

    [145]

    Schneider L, Beck P, Posske T, Crawford D, Mascot E, Rachel S, Wiesendanger R, Wiebe J 2021 Nat. Phys. 17 943Google Scholar

    [146]

    Schneider L, Beck P, Neuhaus-Steinmetz J, Rózsa L, Posske T, Wiebe J, Wiesendanger R 2022 Nat. Nanotechnol. 17 384Google Scholar

  • [1] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9′-二亚呫吨分子吸附行为和石墨烯摩尔超结构. 物理学报, 2022, 71(21): 216801. doi: 10.7498/aps.71.20221057
    [2] 黄德饶, 宋俊杰, 何丕模, 黄凯凯, 张寒洁. Ru(0001)上的9,9'-二亚呫吨分子吸附行为和石墨烯摩尔超结构研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221057
    [3] 胡聚罡, 贾振宇, 李绍春. 碳化硅衬底上外延双层石墨烯的电输运性质. 物理学报, 2022, 71(12): 127204. doi: 10.7498/aps.71.20220062
    [4] 李渊, 邓翰宾, 王翠香, 李帅帅, 刘立民, 朱长江, 贾可, 孙英开, 杜鑫, 于鑫, 关童, 武睿, 张书源, 石友国, 毛寒青. 反铁磁轴子绝缘体候选材料EuIn2As2的表面原子排布和电子结构. 物理学报, 2021, 70(18): 186801. doi: 10.7498/aps.70.20210783
    [5] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [6] 顾强强, 万思源, 杨欢, 闻海虎. 铁基超导体的扫描隧道显微镜研究进展. 物理学报, 2018, 67(20): 207401. doi: 10.7498/aps.67.20181818
    [7] 郭辉, 路红亮, 黄立, 王雪艳, 林晓, 王业亮, 杜世萱, 高鸿钧. 金属衬底上高质量大面积石墨烯的插层及其机制. 物理学报, 2017, 66(21): 216803. doi: 10.7498/aps.66.216803
    [8] 徐丹, 殷俊, 孙昊桦, 王观勇, 钱冬, 管丹丹, 李耀义, 郭万林, 刘灿华, 贾金锋. 铜箔上生长的六角氮化硼薄膜的扫描隧道显微镜研究. 物理学报, 2016, 65(11): 116801. doi: 10.7498/aps.65.116801
    [9] 庞宗强, 张悦, 戎舟, 江兵, 刘瑞兰, 唐超. 利用扫描隧道显微镜研究水分子在Cu(110)表面的吸附与分解. 物理学报, 2016, 65(22): 226801. doi: 10.7498/aps.65.226801
    [10] 刘梦溪, 张艳锋, 刘忠范. 石墨烯-六方氮化硼面内异质结构的扫描隧道显微学研究. 物理学报, 2015, 64(7): 078101. doi: 10.7498/aps.64.078101
    [11] 黄向前, 林陈昉, 尹秀丽, 赵汝光, 王恩哥, 胡宗海. 一维石墨烯超晶格上的氢吸附. 物理学报, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [12] 冯卫, 赵爱迪. 钴原子及其团簇在Rh(111)和Pd(111)表面的扫描隧道显微学研究. 物理学报, 2012, 61(17): 173601. doi: 10.7498/aps.61.173601
    [13] 黄仁忠, 刘柳, 杨文静. 扫描隧道显微镜针尖调制的薄膜表面的原子扩散. 物理学报, 2011, 60(11): 116803. doi: 10.7498/aps.60.116803
    [14] 杨景景, 杜文汉. Sr/Si(100)表面TiSi2纳米岛的扫描隧道显微镜研究. 物理学报, 2011, 60(3): 037301. doi: 10.7498/aps.60.037301
    [15] 王 祺, 赵华波, 张朝晖. 高定向热解石墨表面局域导电增强现象的扫描探针显微学研究. 物理学报, 2008, 57(5): 3059-3063. doi: 10.7498/aps.57.3059
    [16] 贾金锋, 董国材, 王立莉, 马旭村, 薛其坤, Y. Hasegawa T. Sakurai. 局域功函数图像及其在Cu(111)-Au/Pd表面的应用. 物理学报, 2005, 54(4): 1513-1527. doi: 10.7498/aps.54.1513
    [17] 葛四平, 朱 星, 杨威生. 用扫描隧道显微镜操纵Cu亚表面自间隙原子. 物理学报, 2005, 54(2): 824-831. doi: 10.7498/aps.54.824
    [18] 陈永军, 赵汝光, 杨威生. 长链烷烃和醇在石墨表面吸附的扫描隧道显微镜研究. 物理学报, 2005, 54(1): 284-290. doi: 10.7498/aps.54.284
    [19] 汪雷, 唐景昌, 王学森. Si3N4/Si表面Si生长过程的扫描隧道显微镜研究. 物理学报, 2001, 50(3): 517-522. doi: 10.7498/aps.50.517
    [20] 王 浩, 赵学应, 杨威生. 天冬氨酸在Cu(001)表面吸附的扫描隧道显微镜研究. 物理学报, 2000, 49(7): 1316-1320. doi: 10.7498/aps.49.1316
计量
  • 文章访问数:  4935
  • PDF下载量:  262
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-06
  • 修回日期:  2022-05-29
  • 上网日期:  2022-09-14
  • 刊出日期:  2022-09-20

/

返回文章
返回