搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

天体环境下66Fe的电子俘获几率计算

秦文韬 支启军 杨友昌

引用本文:
Citation:

天体环境下66Fe的电子俘获几率计算

秦文韬, 支启军, 杨友昌

Calculations of electron capture rates of 66Fe in astrophysical enviroment

Qing Wen-Tao, Zhi Qi-Jun, Yang You-Chang
PDF
HTML
导出引用
  • 弱相互作用几率的计算对于原子核物理和核天体物理具有非常重要的作用. 本文选取在天体环境中非常重要的核素66Fe,考虑一级禁戒跃迁, 利用壳模型计算了66Fe在不同天体环境下的电子俘获几率, 着重考察了容许Gamow-Teller跃迁和禁戒跃迁的贡献. 结果发现, 在一些天体环境下, 禁戒跃迁对于电子俘获几率有重要贡献, 其中非唯一型禁戒跃迁起主要作用. 我们的结果对于研究原子核弱相互作用和天体环境下的核素合成和演化具有重要作用.
    The calculation of weak interaction rates plays a very important role in studying nuclear physics and nuclear astrophysics. In this work, we calculate the electron capture rate of 66Fe in the framework of shell model. We mainly focus on the contribution of allowed transition and forbidden transition to the total rate. It is found that in some astrophysical environments the forbidden transition is very important in contribution to the electron capture rate, in which the non-unique forbidden transition plays a major role. This is very important for nuclear structures and astrophysics.
      通信作者: 支启军, qjzhi@gznu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:12273008, 11865019, U1731238)、贵州省科学技术基金(批准号: (2016) 4008, [2017]5726-37, [2018]5769-02)和贵州省教育厅(批准号: 黔科合KY字[2020]003号)资助的课题.
      Corresponding author: Zhi Qi-Jun, qjzhi@gznu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12273008, 11865019, U1731238), the Guizhou Provincial Science and Technology Foundation, China (Grant Nos. (2016) 4008, [2017]5726-37, [2018]5769-02), and the Foundation of Education Bureau of Guizhou Province, China (Grant No. KY (2020) 003).
    [1]

    Bethe H A, Brown G E, Applegate J, Lattimer J M 1979 Nucl. Phys. A 324 487Google Scholar

    [2]

    Bethe H A 1990 Rev. Mod. Phys 62 801Google Scholar

    [3]

    Fuller G M, Fowler W A, Newman M J 1980 Astrophys. J. Suppl. Ser 42 447Google Scholar

    [4]

    Fuller G M, Fowler W A, Newman M J 1982 Astrophys. J. Suppl. Ser 48 279Google Scholar

    [5]

    Langanke K, Martinez-Pinedo G 2003 Rev. Mod. Phys. 75 819Google Scholar

    [6]

    Janka H T, Langanke K, Marek A, Martinez-Pinedo G, Muller B 2007 Phys. Rep. 442 38Google Scholar

    [7]

    Fuller G M, Fowler W A, Newman M J 1982 Astrophys. J. 252 715Google Scholar

    [8]

    Caurier E, Langanke K, Martínez-Pinedo G, Nowacki F 1999 Nucl. Phys. A 653 439Google Scholar

    [9]

    Langanke K, Martínez-Pinedo G 2000 Nucl. Phys. A 673 481Google Scholar

    [10]

    张洁, 王少峰 2010 物理学报 59 1391Google Scholar

    Zhang J, Wang S F 2010 Acta. Phys. Sin. 59 1391Google Scholar

    [11]

    Zegers R G T, Brown E F, Akimune H, Austin S M, Vanden Berg A M, Brown B A, Chamulak D A, Fujita Y, Fujiwara M, Galès S, Harakeh M N, Hashimoto H, Hayami R, Hitt G W, Itoh M, Kawabata T, Kawase K, Kinoshita M, Nakanishi K, Nakayama S, Okumura S, Shimbara Y, Uchida M, Ueno H, Yamagata T, Yosoi M 2008 Phys. Rev. C 77 024307Google Scholar

    [12]

    支启军, 郑强 2011 物理学报 60 102301Google Scholar

    Zhi Q, Zheng Q 2011 Acta. Phys. Sin. 60 102301Google Scholar

    [13]

    张绍庆, 谢娟, 张小平, 支启军 2016 Acta. Phys. Sin. 65 092101Google Scholar

    Zhang S Q, Xie J, Zhang X P, Zhi Q J 2016 物理学报 65 092101Google Scholar

    [14]

    You J L, Wu Q D, Zhang X P, Zhi Q 2019 Commun. Theor. Phys 71 293Google Scholar

    [15]

    You J L, Zhang X P, Zhi Q J, Ren Z Z, Wu Q D 2019 Chin. Phys. C 43 114104Google Scholar

    [16]

    Mukai M, Hirayama Y, Watanabe Y X, Watanabe H, Koura H, Jeong S C, Miyatake H, Brunet M, Ishizawa S, Kondev F G, Lane G J, Litvinov Y A, Niwase T, Oyaizu M, Podolyak Z, Rosenbusch M, Schury P, Wada M, Walker P M 2022 Phys. Rev. C 105 034331Google Scholar

    [17]

    Zhi Q, Langanke K, Martinez-Pinedo G, Nowacki F, Sieja K 2011 Nucl. Phys. A 859 172Google Scholar

    [18]

    Stryjczyk M, Tsunoda Y, Darby I G, Witte H D, Diriken J, Fedorov D V, Fedosseev V N, Fraile L M, Huyse M, Köster U, Marsh B A, Otsuka T, Pauwels D, Popescu L, Radulov D, Seliverstov M D, Sjödin A M, P. Van den Bergh, Van Duppen P, Venhart M, Walters W B, Wimmer K 2018 Phys. Rev. C 98 064326Google Scholar

    [19]

    Qi C and Xu F. R 2008 Nucl. Phys. A 800 47Google Scholar

    [20]

    Qi C and Xu F. R 2008 Nucl. Phys. A 814 48Google Scholar

    [21]

    支启军 2011 物理学报 60 052101Google Scholar

    Zhi Q J 2011 Acta. Phys. Sin. 60 052101Google Scholar

    [22]

    Caurier E, Martinez-pinedo G, Nowacki F, Poves A, Zuker A P 2005 Rev. Mod. Phys 77 427Google Scholar

    [23]

    张玉美、许甫荣 2008 物理学报 57 4826Google Scholar

    Zhang Y M, Xu F R 2008 Acta. Phys. Sin. 57 4826Google Scholar

    [24]

    Zhi Q, Caurier E, Cuenca-Garcia J J, Langanke K, Martinez-Pinedo G, Sieja K 2013 Phys. Rev. C 87 025803Google Scholar

    [25]

    Toshio S, Takashi Y, Toshitaka K, Takaharu O 2012 Phys. Rev. C 85 015802Google Scholar

    [26]

    Sorlin O, Leenhardt S, Donzaud C, Duprat J, Azaiez F, Nowacki F, Grawe H, Dombrádi Z, Amorini F, Astier A, Baiborodin D, Belleguic M, Borcea C, Bourgeois C, Cullen D M, Dlouhy Z, Dragulescu E, Górska M, Grévy S, Guillemaud-Mueller D, Hagemann G, Herskind B, Kiener J, Lemmon R, Lewitowicz M, Lukyanov S M, Mayet P, De Oliveira Santos F, Pantalica D, Penionzhkevich Y E, Pougheon F, Poves A, Redon N, Saint-Laurent M G, Scarpaci J A, Sletten G, Stanoiu M, Tarasov O, Theisen C 2002 Phys. Rev. Lett 88 092501Google Scholar

    [27]

    Langanke K, Terasaki J, Nowacki F, Dean D J, Nazarewicz W 2003 Phys. Rev. C 67 044314Google Scholar

    [28]

    Honma M, Otsuka T, Brown B A, Mizusaki T 2002 Phys. Rev. C 65 061301Google Scholar

    [29]

    Kleis H, Seidlitz M, Blazhev A, Kaya L, Reiter P, Arnswald K, Dewald A, Droste M, Fransen C, Moller O, Shimizu N, Tsunoda Y, Utsuno Y, von Brentano P, Zell K O 2021 Phys. Rev. C 104 034310Google Scholar

    [30]

    Hannawald M, Kautzsch T, Wohr A, Walters W B, Kratz K L, Fedoseyev V N, Mishin V I, Bohmer W, Pfeiffer B, Sebastian V, Jading Y, Koster U, Lettry J, Ravn H L 1999 Phys. Rev. Lett. 82 1391Google Scholar

  • 图 1  计算得到的66Fe激发态与实验值[30]的比较

    Fig. 1.  Comparison of the calculated excited state of 66Fe and the experimental value[30].

    图 2  66Fe基态的GT与U1 F强度分布 (a) GT强度分布; (b) U1F强度分布

    Fig. 2.  Strength distributions of GT and U1 F of 66Fe ground state: (a) GT strength contributions; (b) U1F strength contributions.

    图 3  超新星环境下lg(ρYe) = 10.1的66Fe电子俘获几率

    Fig. 3.  66Fe electron captures rates at lg(ρYe) = 10.1 in supernova environment.

    图 4  超新星环境下lg(ρYe) = 11.1的66Fe电子俘获几率

    Fig. 4.  66Fe electron captures rates at lg(ρYe) = 11.1 in supernova environment.

    图 5  non-U1F跃迁与U1F跃迁在不同温度下贡献的比例

    Fig. 5.  Ratio of non-u1f transition and u1f transition at different temperatures.

    图 6  超新星环境下lg(ρYe) = 10.1的66Fe电子俘获几率, 考虑了non-U1F的贡献

    Fig. 6.  In supernova environment at lg(ρYe) = 10.1 66Fe electron captures rates which considering the contribution of non-u1f transition

  • [1]

    Bethe H A, Brown G E, Applegate J, Lattimer J M 1979 Nucl. Phys. A 324 487Google Scholar

    [2]

    Bethe H A 1990 Rev. Mod. Phys 62 801Google Scholar

    [3]

    Fuller G M, Fowler W A, Newman M J 1980 Astrophys. J. Suppl. Ser 42 447Google Scholar

    [4]

    Fuller G M, Fowler W A, Newman M J 1982 Astrophys. J. Suppl. Ser 48 279Google Scholar

    [5]

    Langanke K, Martinez-Pinedo G 2003 Rev. Mod. Phys. 75 819Google Scholar

    [6]

    Janka H T, Langanke K, Marek A, Martinez-Pinedo G, Muller B 2007 Phys. Rep. 442 38Google Scholar

    [7]

    Fuller G M, Fowler W A, Newman M J 1982 Astrophys. J. 252 715Google Scholar

    [8]

    Caurier E, Langanke K, Martínez-Pinedo G, Nowacki F 1999 Nucl. Phys. A 653 439Google Scholar

    [9]

    Langanke K, Martínez-Pinedo G 2000 Nucl. Phys. A 673 481Google Scholar

    [10]

    张洁, 王少峰 2010 物理学报 59 1391Google Scholar

    Zhang J, Wang S F 2010 Acta. Phys. Sin. 59 1391Google Scholar

    [11]

    Zegers R G T, Brown E F, Akimune H, Austin S M, Vanden Berg A M, Brown B A, Chamulak D A, Fujita Y, Fujiwara M, Galès S, Harakeh M N, Hashimoto H, Hayami R, Hitt G W, Itoh M, Kawabata T, Kawase K, Kinoshita M, Nakanishi K, Nakayama S, Okumura S, Shimbara Y, Uchida M, Ueno H, Yamagata T, Yosoi M 2008 Phys. Rev. C 77 024307Google Scholar

    [12]

    支启军, 郑强 2011 物理学报 60 102301Google Scholar

    Zhi Q, Zheng Q 2011 Acta. Phys. Sin. 60 102301Google Scholar

    [13]

    张绍庆, 谢娟, 张小平, 支启军 2016 Acta. Phys. Sin. 65 092101Google Scholar

    Zhang S Q, Xie J, Zhang X P, Zhi Q J 2016 物理学报 65 092101Google Scholar

    [14]

    You J L, Wu Q D, Zhang X P, Zhi Q 2019 Commun. Theor. Phys 71 293Google Scholar

    [15]

    You J L, Zhang X P, Zhi Q J, Ren Z Z, Wu Q D 2019 Chin. Phys. C 43 114104Google Scholar

    [16]

    Mukai M, Hirayama Y, Watanabe Y X, Watanabe H, Koura H, Jeong S C, Miyatake H, Brunet M, Ishizawa S, Kondev F G, Lane G J, Litvinov Y A, Niwase T, Oyaizu M, Podolyak Z, Rosenbusch M, Schury P, Wada M, Walker P M 2022 Phys. Rev. C 105 034331Google Scholar

    [17]

    Zhi Q, Langanke K, Martinez-Pinedo G, Nowacki F, Sieja K 2011 Nucl. Phys. A 859 172Google Scholar

    [18]

    Stryjczyk M, Tsunoda Y, Darby I G, Witte H D, Diriken J, Fedorov D V, Fedosseev V N, Fraile L M, Huyse M, Köster U, Marsh B A, Otsuka T, Pauwels D, Popescu L, Radulov D, Seliverstov M D, Sjödin A M, P. Van den Bergh, Van Duppen P, Venhart M, Walters W B, Wimmer K 2018 Phys. Rev. C 98 064326Google Scholar

    [19]

    Qi C and Xu F. R 2008 Nucl. Phys. A 800 47Google Scholar

    [20]

    Qi C and Xu F. R 2008 Nucl. Phys. A 814 48Google Scholar

    [21]

    支启军 2011 物理学报 60 052101Google Scholar

    Zhi Q J 2011 Acta. Phys. Sin. 60 052101Google Scholar

    [22]

    Caurier E, Martinez-pinedo G, Nowacki F, Poves A, Zuker A P 2005 Rev. Mod. Phys 77 427Google Scholar

    [23]

    张玉美、许甫荣 2008 物理学报 57 4826Google Scholar

    Zhang Y M, Xu F R 2008 Acta. Phys. Sin. 57 4826Google Scholar

    [24]

    Zhi Q, Caurier E, Cuenca-Garcia J J, Langanke K, Martinez-Pinedo G, Sieja K 2013 Phys. Rev. C 87 025803Google Scholar

    [25]

    Toshio S, Takashi Y, Toshitaka K, Takaharu O 2012 Phys. Rev. C 85 015802Google Scholar

    [26]

    Sorlin O, Leenhardt S, Donzaud C, Duprat J, Azaiez F, Nowacki F, Grawe H, Dombrádi Z, Amorini F, Astier A, Baiborodin D, Belleguic M, Borcea C, Bourgeois C, Cullen D M, Dlouhy Z, Dragulescu E, Górska M, Grévy S, Guillemaud-Mueller D, Hagemann G, Herskind B, Kiener J, Lemmon R, Lewitowicz M, Lukyanov S M, Mayet P, De Oliveira Santos F, Pantalica D, Penionzhkevich Y E, Pougheon F, Poves A, Redon N, Saint-Laurent M G, Scarpaci J A, Sletten G, Stanoiu M, Tarasov O, Theisen C 2002 Phys. Rev. Lett 88 092501Google Scholar

    [27]

    Langanke K, Terasaki J, Nowacki F, Dean D J, Nazarewicz W 2003 Phys. Rev. C 67 044314Google Scholar

    [28]

    Honma M, Otsuka T, Brown B A, Mizusaki T 2002 Phys. Rev. C 65 061301Google Scholar

    [29]

    Kleis H, Seidlitz M, Blazhev A, Kaya L, Reiter P, Arnswald K, Dewald A, Droste M, Fransen C, Moller O, Shimizu N, Tsunoda Y, Utsuno Y, von Brentano P, Zell K O 2021 Phys. Rev. C 104 034310Google Scholar

    [30]

    Hannawald M, Kautzsch T, Wohr A, Walters W B, Kratz K L, Fedoseyev V N, Mishin V I, Bohmer W, Pfeiffer B, Sebastian V, Jading Y, Koster U, Lettry J, Ravn H L 1999 Phys. Rev. Lett. 82 1391Google Scholar

  • [1] 张秉章, 宋张勇, 张明武, 刘璇, 钱程, 方兴, 邵曹杰, 王伟, 刘俊亮, 朱志超, 孙良亭, 于得洋. 类氢O、N离子入射Al表面俘获电子布居几率的理论与实验研究. 物理学报, 2022, 71(13): 133201. doi: 10.7498/aps.70.20212434
    [2] 侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰. AsH+离子的电子结构和跃迁性质. 物理学报, 2022, 71(21): 213101. doi: 10.7498/aps.71.20221104
    [3] 侯秋宇, 关皓益, 黄雨露, 陈世林, 杨明, 万明杰. AsH+离子的电子结构和跃迁性质. 物理学报, 2022, 0(0): . doi: 10.7498/aps.7120221104
    [4] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路, 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2022, 71(3): 033201. doi: 10.7498/aps.71.20211663
    [5] 万建杰, 赵鑫婷, 李冀光, 董晨钟. Stark效应诱导的类氢离子2s1/2-1s1/2跃迁几率的理论研究. 物理学报, 2021, 70(17): 173201. doi: 10.7498/aps.70.20210181
    [6] 刘鑫, 周晓鹏, 汶伟强, 陆祺峰, 严成龙, 许帼芹, 肖君, 黄忠魁, 汪寒冰, 陈冬阳, 邵林, 袁洋, 汪书兴, 马万路(Wan-Lu MA), 马新文. 电子束离子阱光谱标定和Ar13+离子M1跃迁波长精密测量. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211663
    [7] 张绍庆, 谢娟, 张小平, 支启军. -衰变中容许跃迁和禁戒跃迁的衰变规律. 物理学报, 2016, 65(9): 092101. doi: 10.7498/aps.65.092101
    [8] 江永红, 孙卫国, 张燚, 付佳, 樊群超, 李会东, 冯灏. 用预言振转跃迁谱线的新公式研究AuO分子电子跃迁P支的高激发态发射谱线. 物理学报, 2013, 62(21): 213301. doi: 10.7498/aps.62.213301
    [9] 刘晶晶. 超新星爆发环境核素56,57,59,60Co的电子俘获. 物理学报, 2013, 62(7): 072301. doi: 10.7498/aps.62.072301
    [10] 张小安, 杨治虎, 王党朝, 梅策香, 牛超英, 王伟, 戴斌, 肖国青. 类钴氙离子入射Ni表面激发的红外光谱线和X射线谱. 物理学报, 2009, 58(10): 6920-6925. doi: 10.7498/aps.58.6920
    [11] 高 城, 沈云峰, 曾交龙. 电子相关对Xe10+离子4d8—4d75p跃迁系跃迁概率的影响. 物理学报, 2008, 57(7): 4059-4065. doi: 10.7498/aps.57.4059
    [12] 欧阳永中, 易有根, 朱正和, 郑志坚. 类铍离子磁四极M2 2s2 1S0—2s2p3P2 (Z=10—103)禁戒跃迁. 物理学报, 2007, 56(7): 3880-3886. doi: 10.7498/aps.56.3880
    [13] 万建杰, 颉录有, 董晨钟, 蒋 军, 颜 君. 类镍等电子系列离子M1,M2,E2禁戒跃迁特性的理论研究. 物理学报, 2007, 56(1): 152-159. doi: 10.7498/aps.56.152
    [14] 侯碧辉, 李 勇, 刘国庆, 张桂花, 刘凤艳, 陶世荃. 单晶LiNbO3:Mn2+的ESR谱研究. 物理学报, 2005, 54(1): 373-378. doi: 10.7498/aps.54.373
    [15] 张小安, 赵永涛, 李福利, 杨治虎, 肖国青, 詹文龙. 129Xe30+轰击Ni表面激发靶原子偶极跃迁和禁戒 (M1和E2)跃迁的特征光谱线. 物理学报, 2004, 53(10): 3341-3346. doi: 10.7498/aps.53.3341
    [16] 袁 萍, 刘欣生, 张义军, 颉录有, 董晨钟. 弛豫与关联效应对NII离子2s22p3s3P1—2s22p21D2与2s22p3s1P1—2s22p23P0,1,2自旋禁戒跃迁概率的影响. 物理学报, 2003, 52(3): 561-565. doi: 10.7498/aps.52.561
    [17] 易有根, 汪 蓉, 李向东, 王红艳, 朱正和. 高离化类铍离子2s21S0—2s2p3P1(Z=10—103)自旋禁戒光谱跃迁. 物理学报, 2000, 49(10): 1953-1958. doi: 10.7498/aps.49.1953
    [18] 任延琦, 王启新, 张庆刚, 张怿慈. 原子-振子散射振转激发跃迁几率的理论计算. 物理学报, 1993, 42(10): 1580-1586. doi: 10.7498/aps.42.1580
    [19] 赵中新, 李家明. 非相对论性和相对论性原子组态相互作用理论——激发能量和辐射跃迁几率. 物理学报, 1985, 34(11): 1469-1478. doi: 10.7498/aps.34.1469
    [20] 黄昆. 晶体中电子跃迁的理论. 物理学报, 1958, 14(3): 191-203. doi: 10.7498/aps.14.191
计量
  • 文章访问数:  3707
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-06-13
  • 上网日期:  2022-09-22
  • 刊出日期:  2022-10-05

/

返回文章
返回