-
针对宽波段同时偏振高分辨率成像需求, 提出一种基于反射式自由曲面光学系统和数字微镜器件的分孔径同时偏振超分辨率成像系统, 其具有可用于任意光学波段、多个偏振态同时成像、单探测器、高分辨率、易轻量化等优势. 给出了这种成像系统光学结构的像差校正原理及设计优化方法, 将Wassermann-Wolf理论进一步发展, 推导了可消除多种像差的反射式Wassermann-Wolf微分方程; 同时结合赛德尔像差理论, 在求解Wassermann-Wolf方程时加入消畸变的边界条件, 通过迭代方式, 得到同时消除球差、彗差、像散、畸变的光学初始结构. 对该初始结构进行离轴处理并进一步优化, 编写自定义优化评价函数, 严格控制各子孔径和各视场在中间像面和最终像面上主光线落点位置, 从而有效地抑制最终系统中的畸变, 避免超分辨重建过程中的镜元和像元失配误差, 提高重建质量. 最终完成了四子孔径自由曲面离轴反射式超分辨成像光学系统的设计, 其相对孔径大(F# = 2.5), 结构紧凑, 各个偏振通道成像质量接近衍射极限. 以上像差校正原理及像质优化方法可有效指导超宽波段同时偏振超分辨率成像光学系统的设计.According to the requirements for broadband simultaneous polarization high-resolution imaging, a divided-aperture simultaneous polarization super-resolution imaging system based on reflective free-form surface optical system and digital micro-mirror device is proposed. It has the advantages of wide working wavelength band, simultaneous imaging of multiple polarization states, single detector, high resolution and lightweight. The aberration correction principle and design optimization method of the optical structure for this imaging system are given. The Wassermann-Wolf theory is further developed, and the reflective Wassermann-Wolf differential equations that eliminate a variety of aberrations are derived. At the same time, combined with Seidel aberration theory and using iterative method, the distortion elimination boundary condition is added when solving the Wassermann-Wolf equation. Through the iterative method, the optical initial structure is obtained, which can correct spherical aberration, coma, astigmatism and distortion at the same time. The initial structure is subjected to off-axis treatment and further optimized, and the user-defined optimization evaluation function is written to strictly control the position of the light falling point of each sub aperture and each field of view on the middle image plane and the final image plane, so as to effectively suppress the distortion in the final system and avoid the mismatch error between the mirror element and the pixel in the process of super-resolution reconstruction. The reconstruction quality can be improved. Finally, the design of the four-sub-aperture free-form surface off-axis reflective super-resolution imaging optical system is completed, which possesses a large relative aperture (F# = 2.5) and compact structure. The imaging quality of each polarization channel is close to the diffraction limit. The above aberration correction principle and the image quality optimization method can effectively guide the design of the wide band simultaneous polarization super-resolution imaging optical system.
-
Keywords:
- aberration correction /
- off-axis optical system /
- polarization imaging /
- super-resolution imaging
[1] 聂劲松, 汪震 2006 红外技术 28 63Google Scholar
Nie J S, Wang Z 2006 Infrared Technol. 28 63Google Scholar
[2] 周强国, 黄志明, 周炜 2021 红外技术 43 817
Zhou Q G, Huang Z M, Zhou W 2021 Infrared Technol. 43 817
[3] 尹佳琪 2021 博士学位论文 (上海: 中国科学院上海技术物理研究所)
Yin J Q 2021 Ph. D. Dissertation (ShangHai: Shanghai Institute of Technical Physics of the Chinese Academy of Sciences) (in Chinese)
[4] 贾春辉 2019 硕士学位论文 (西安: 西安工业大学)
Jia C H 2019 M. S. Thesis (Xi’an: Xi’an Technological University) (in Chinese)
[5] Pezzaniti J L, Chenault D B 2005 Conference on Polarization Science and Remote Sensing II San Diego, CA, USA, August 2, 2005 p58880V-1-12
[6] Moultrie S, Roche M, Lompado A Chenault D 2007 Proc. SPIE 6682 66820BGoogle Scholar
[7] Leon E D, Brandt R, Phenis A, Virgen M 2007 Proc. SPIE 6682 668215Google Scholar
[8] 贺虎成, 季轶群, 周建康, 赵知诚, 沈为民 2013 光学学报 33 0622005
He H C, Ji Z Q, Zhou J K, Zhao Z C, Shen W M 2013 Acta Opt. Sin. 33 0622005
[9] 王琪, 梁静秋, 梁中翥, 吕金光, 王维彪, 秦余欣, 王洪亮 2018 中国光学 11 92Google Scholar
Wang Q, Liang J Q, Liang Z Z, Lu J G, Wang W B, Qin Y X, Wang H L 2018 Chin. Opt. 11 92Google Scholar
[10] 刘尊辈, 蔡毅, 刘福平, 马俊卉, 张猛蛟, 王岭雪 2021 中国光学 14 1476Google Scholar
Liu Z B, Cai Y, Liu F P, Ma J B, Zhang M J, Wang L X 2021 Chin. Opt. 14 1476Google Scholar
[11] 储君秋 2021 博士学位论文 (成都: 中国科学院光电技术研究所)
Chu J Q 2021 Ph. D. Dissertation (ChengDu: Institute of Optics and Electronics of Chinese Academy of Sciences) (in Chinese)
[12] 王超, 张雅琳, 姜会林, 李英超, 江伦, 付强, 韩龙 2017 激光与红外 47 791Google Scholar
Wang C, Zhang Y L, Jiang H L, Li Y C, Jiang L, Fu Q, Han L 2017 Laser and Infrared 47 791Google Scholar
[13] 李淑军, 姜会林, 朱京平, 段锦, 付强, 付跃刚, 董科研 2013 中国光学 6 803Google Scholar
Li S J, Jiang H L, Zhu J P, Duan J, Fu Q, Fu Y G, Dong K Y 2013 Chin. Opt. 6 803Google Scholar
[14] 孙永强, 胡源, 王月旗, 王祺, 付跃刚 2019 光学学报 39 0311001
Sun Y Q, Hu Y, Wang Y Q, Wang Q, Fu Y G 2019 Acta Opt. Sin. 39 0311001
[15] 袁影, 王晓蕊, 吴雄雄, 穆江浩, 张艳 2017 红外与激光工程 46 0824001
Yuan Y, Wang X R, Wu X X, Mu J H, Zhang Y 2017 Infrared Laser Eng. 46 0824001
[16] Wassermann G D, Wolf E 1949 Proc. Phys. Soc. London, Sect. B 62 2Google Scholar
[17] 徐奉刚, 黄玮, 徐明飞 2016 光学学报 36 238
Xu F G, Huang W, Xu M F 2016 Acta Opt. Sin. 36 238
[18] 陈兴涛, 苏宙平, 张杨柳, 胡立发 2022 光学学报 42 0108001
Chen X T, Su Z P, Zhang Y L, Hu L F 2022 Acta Opt. Sin. 42 0108001
[19] Kirpatrick S, Gelatt C D, Vecchi M P 1983 Science 220 671Google Scholar
[20] 陈杨, 王跃明 2013 光学学报 33 0222003
Chen Y, Wang Y M 2013 Acta Opt. Sin. 33 0222003
[21] 赵宇宸, 何欣, 张凯, 刘强, 崔永鹏, 孟庆宇 2018 红外与激光工程 47 0718004
Zhao Y H, He X, Zhang K, Liu Q, Cui Y P, Meng Q Y 2018 Infrared Laser Eng. 47 0718004
[22] Zhang B, Jin G, Zhu J 2021 Light Sci. Appl. 10 65Google Scholar
[23] Bauer A, Schiesser E M Rolland J P 2018 Light Sci. Appl. 9 1756Google Scholar
-
表 1 分孔径离轴同时偏振超分辨率成像光学系统指标
Table 1. Specification of aperture-divided off-axis simultaneous polarization super-resolution imaging optical system
Parameter Specification Effective focal length 100 mm Entrance pupil diameter 40 mm Field of view 2.70° × 2.00° F number 2.5 Wavelength 3—14 μm MTF > 0.4@20 lp/mm Pixel number and size of detector 384 × 288; 25 μm Pixel number and size of DMD 1536 × 1152; 10.8 μm 表 2 次镜和三镜的面形数据点
Table 2. Profile data points of M1 and M2.
N z1 y1 z2 y2 1 –0.008126 2.5 0.046 3.549 2 –0.018 3.75 0.104 5.324 3 –0.026 4.499 0.15 6.389 4 –0.073 7.497 0.415 10.647 5 –0.129 9.994 0.739 14.195 ··· ··· ··· ··· ··· 表 3 镜头参数
Table 3. Lens parameters
Surface Surface type Radius/mm Thickness/mm Objective Free-form surface –301.483 –150 M1 Free-form surface –439.79 150 M2 Free-form surface 180 –144.122 表 4 光学系统的公差分配
Table 4. Tolerance distribution of optical system.
公差类型 公差名称 望远物镜 次镜M2 三镜M3 公差类型 公差名称 望远物镜 次镜M2 三镜M3
装调公差x方向位移/mm
x 方向倾斜/(′)—
—0.08
1/30.1
1/2加工公差 曲率半径/mm 0.2 0.3 0.3 y方向位移/mm
y 方向倾斜/(′)—
—0.08
1/30.08
1/3二次曲面系数 0.1% 0.07% 0.2% z方向位移/mm
z 方向倾斜/(′)—
—0.2
1/40.2
2/3RMS表面误差
(λ= 632.8 nm)λ/50 λ/50 λ/50 -
[1] 聂劲松, 汪震 2006 红外技术 28 63Google Scholar
Nie J S, Wang Z 2006 Infrared Technol. 28 63Google Scholar
[2] 周强国, 黄志明, 周炜 2021 红外技术 43 817
Zhou Q G, Huang Z M, Zhou W 2021 Infrared Technol. 43 817
[3] 尹佳琪 2021 博士学位论文 (上海: 中国科学院上海技术物理研究所)
Yin J Q 2021 Ph. D. Dissertation (ShangHai: Shanghai Institute of Technical Physics of the Chinese Academy of Sciences) (in Chinese)
[4] 贾春辉 2019 硕士学位论文 (西安: 西安工业大学)
Jia C H 2019 M. S. Thesis (Xi’an: Xi’an Technological University) (in Chinese)
[5] Pezzaniti J L, Chenault D B 2005 Conference on Polarization Science and Remote Sensing II San Diego, CA, USA, August 2, 2005 p58880V-1-12
[6] Moultrie S, Roche M, Lompado A Chenault D 2007 Proc. SPIE 6682 66820BGoogle Scholar
[7] Leon E D, Brandt R, Phenis A, Virgen M 2007 Proc. SPIE 6682 668215Google Scholar
[8] 贺虎成, 季轶群, 周建康, 赵知诚, 沈为民 2013 光学学报 33 0622005
He H C, Ji Z Q, Zhou J K, Zhao Z C, Shen W M 2013 Acta Opt. Sin. 33 0622005
[9] 王琪, 梁静秋, 梁中翥, 吕金光, 王维彪, 秦余欣, 王洪亮 2018 中国光学 11 92Google Scholar
Wang Q, Liang J Q, Liang Z Z, Lu J G, Wang W B, Qin Y X, Wang H L 2018 Chin. Opt. 11 92Google Scholar
[10] 刘尊辈, 蔡毅, 刘福平, 马俊卉, 张猛蛟, 王岭雪 2021 中国光学 14 1476Google Scholar
Liu Z B, Cai Y, Liu F P, Ma J B, Zhang M J, Wang L X 2021 Chin. Opt. 14 1476Google Scholar
[11] 储君秋 2021 博士学位论文 (成都: 中国科学院光电技术研究所)
Chu J Q 2021 Ph. D. Dissertation (ChengDu: Institute of Optics and Electronics of Chinese Academy of Sciences) (in Chinese)
[12] 王超, 张雅琳, 姜会林, 李英超, 江伦, 付强, 韩龙 2017 激光与红外 47 791Google Scholar
Wang C, Zhang Y L, Jiang H L, Li Y C, Jiang L, Fu Q, Han L 2017 Laser and Infrared 47 791Google Scholar
[13] 李淑军, 姜会林, 朱京平, 段锦, 付强, 付跃刚, 董科研 2013 中国光学 6 803Google Scholar
Li S J, Jiang H L, Zhu J P, Duan J, Fu Q, Fu Y G, Dong K Y 2013 Chin. Opt. 6 803Google Scholar
[14] 孙永强, 胡源, 王月旗, 王祺, 付跃刚 2019 光学学报 39 0311001
Sun Y Q, Hu Y, Wang Y Q, Wang Q, Fu Y G 2019 Acta Opt. Sin. 39 0311001
[15] 袁影, 王晓蕊, 吴雄雄, 穆江浩, 张艳 2017 红外与激光工程 46 0824001
Yuan Y, Wang X R, Wu X X, Mu J H, Zhang Y 2017 Infrared Laser Eng. 46 0824001
[16] Wassermann G D, Wolf E 1949 Proc. Phys. Soc. London, Sect. B 62 2Google Scholar
[17] 徐奉刚, 黄玮, 徐明飞 2016 光学学报 36 238
Xu F G, Huang W, Xu M F 2016 Acta Opt. Sin. 36 238
[18] 陈兴涛, 苏宙平, 张杨柳, 胡立发 2022 光学学报 42 0108001
Chen X T, Su Z P, Zhang Y L, Hu L F 2022 Acta Opt. Sin. 42 0108001
[19] Kirpatrick S, Gelatt C D, Vecchi M P 1983 Science 220 671Google Scholar
[20] 陈杨, 王跃明 2013 光学学报 33 0222003
Chen Y, Wang Y M 2013 Acta Opt. Sin. 33 0222003
[21] 赵宇宸, 何欣, 张凯, 刘强, 崔永鹏, 孟庆宇 2018 红外与激光工程 47 0718004
Zhao Y H, He X, Zhang K, Liu Q, Cui Y P, Meng Q Y 2018 Infrared Laser Eng. 47 0718004
[22] Zhang B, Jin G, Zhu J 2021 Light Sci. Appl. 10 65Google Scholar
[23] Bauer A, Schiesser E M Rolland J P 2018 Light Sci. Appl. 9 1756Google Scholar
计量
- 文章访问数: 5877
- PDF下载量: 100
- 被引次数: 0