-
飞行器再入过程中会产生一层包裹在其表面的等离子体鞘套, 导致通信质量恶化,甚至中断, 形成“黑障”现象. 多年来“黑障”问题一直困扰着航空航天行业, 其中一个非常重要的原因是, 对等离子体鞘套测量上的局限导致对通信传输环境认知不足. 所以, 实现鞘套参数的在线原位测量是高超声速飞行器“黑障”问题研究中的关键. 本文设计了一种用于再入等离子体鞘套诊断的宽带微波反射方法, 通过理论推导得到宽带微波反射数据与等离子体参数之间的关系, 进行有效诊断频点选择. 再利用所选有效频点的反射数据反推得到等离子体参数, 实现电子密度和碰撞频率的同时诊断测量. 建立仿真模型并搭建实验平台, 对该方法进行了仿真分析和地面实验验证, 验证了该方法的有效性. 该方法能够对再入飞行器或高超声速飞行器的等离子体鞘套实时诊断提供技术支撑.
During the re-entry process of the aircraft, a layer of plasma sheath wrapping its surface will be generated, which will lead the communication quality to deteriorate and even interrupt, resulting in the phenomenon of “radio blackout”. The “radio blackout” problem has plagued the aerospace industry for many years. One of the very important reasons is the lack of awareness of the communication transmission environment caused by the limitations of plasma sheath measurements. Therefore, the realization of in-situ measurement of sheath parameters is the key to the research of the “radio blackout” problem of hypersonic vehicles. In this work, a broadband microwave reflection method is presented and developed for diagnosing the reentry plasma sheath .The relationship between broadband microwave reflection data and plasma parameters is derived theoretically, and effective diagnostic frequency points are selected. Then, the plasma parameters are obtained by inversely using the reflection data of the selected effective frequency points to realize the simultaneous diagnosis and measurement of electron density and collision frequency. This method makes up for the deficiency that the traditional reflectometer cannot diagnose high collision frequency plasma, and it can diagnose the parameter of the plasma sheath of the hypersonic vehicle in a complex environment. A simulation model and an experimental platform are established, and the simulation analysis and ground experiment are carried out to verify the method. The electron density of the plasma is diagnosed by transmission diagnostics to provide a control for reflection experiments. The experimental results show that the difference between the two diagnostic results is small, which verifies the effectiveness of the method. The method can realize the real-time diagnosis of plasma sheaths of re-entry vehicles or hypersonic vehicles under various flight conditions, and accumulate a large number of first-hand measurement data, which is of great scientific value in recognizing the characteristics of plasma sheaths comprehensively, objectively and accurately. It can also be used for the parameter input link of the adaptive measurement and control system environment. In addition, this method can also be used for real-time measurement of environment parameters of ground plasma jet and real-time monitoring of changes of plasma jet parameters without changing the jet shape. -
Keywords:
- plasma sheath /
- resonance point /
- parameter diagnosis /
- microwave reflection method
[1] Hartunian R, Stewart G, Curtiss T, Fergason S, Seibold R 2007 AIAA Atmospheric Flight Mechanics Conference and Exhibit Hilton Head, South Carolina, USA, August 20–23, 2007, AIAA 2007–6633
[2] Rybak J, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7(5) 879
[3] Xie K, Yang M, Bai B W, Li X P, Zhou H, Guo L X 2016 J. Appl. Phys. 119 023301Google Scholar
[4] 杨敏 2014 博士学位论文 (西安: 西安电子科技大学)
Yang M 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
[5] Akey N D, Schroeder L C 1973 J. Spacecr. Rockets 10 170Google Scholar
[6] Boris D R, Fernsler R F, Walton S G 2015 Plasma Sources Sci. Technol. 24 025032Google Scholar
[7] Saifutdinov A I, Sysoev S S 2022 Instrum. Exp. Tech. 65 75Google Scholar
[8] 赵国利 2010博士学位论文 (大连: 大连理工大学)
Zhao G L 2010 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)
[9] 陈宗胜, 林志丹, 时家明, 马丽芳 2015 真空科学与技术学报 35 646
Chen Z S, Lin Z D, Shi J M, Ma F L 2015 Chinese Journal of Vacuum Science and Technology 35 646
[10] Berchtikou A, Lavoie J, Poenariu V 2011 IEEE Trans. Dielectr. Electr. Insul. 18 24Google Scholar
[11] Shi J, Guo Y C, Xiao S L, Qian F, Yang Z H 2017 Nucl. Instrum. Methods Phys. Res. A866 72
[12] 李斌 2010 博士论文 (合肥: 中国科学技术大学)
Li B 2010 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[13] 莫少奇 2016 博士论文 (成都: 电子科技大学)
Mo S Q 2016 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[14] 袁忠才, 时家明 2005 核聚变与等离子体物理 25 78
Yuan Z C, Shi J M 2005 Nuclear Fusion and Plasma Physics 25 78
[15] 王甲寅, 时家明, 袁忠才 2007 强激光与粒子束 2007 621
Wang J Y, Shi J M, Yuan Z C 2007 High Power Laser and Particle Beams 2007 621
[16] 刘荣明, 吴慎将, 苏俊宏, 徐均琪, 王可瑄 2019 西安工业大学学报 39 521
Liu Y M, Wu S J, Su J H, Xu J Q, Wang K X 2019 Journal of Xi’an Technological University 39 521
[17] Ermak G P, Varavin A V, Vasilev A S, Fateev A V, Varavin N V, Zacek V, Zajac J, Zorenko A V 2016 Telecommun. Radio Eng. 76 903
[18] Janson S 1994 25th Plasmadynamics & Lasers Conference Colorado Springs, USA, June 20–23, 1994 ppAIAA-94-2424
[19] Ohler S G, Gilchrist B E, Gallimore A D 1995 IEEE Trans. Plasma Sci. 23 428Google Scholar
[20] Anabitarte E, Bustamante E G, Calderón M A G, Senties J M 1987 J. Infrared MillimeterWaves 8 733
[21] 李建刚 2016 物理 45 88
Li J G 2016 Physics 45 88
[22] 金兹堡 著 (钱善瑎 译) 1978 电磁波在等离子体中的传播 (北京: 科学出版社) 第5—9页, 第22—30页, 第85—87页
Ginzburg (translated by Qian S X) 1978 Propagation of electromagnetic wave in plasma (Beijing: Science Press) pp5–9, pp22–30, pp85–87 (in Chinese)
[23] Zhao C W, Li X P, Yang M, Sun C 2020 Microwave Opt. Technol. Lete. 63 205
-
表 1 诊断结果
Table 1. Diagnostic results.
仿真设置值 诊断结果$ {n_{\text{e}}} $/cm–3 诊断误差/% 诊断结果$ {v_{{\text{en}}}} $/GHz 诊断误差/% $ {n_{\text{e}}} $/cm–3 $ {v_{{\text{en}}}} $/GHz 1×1010 1 $ < $5×1010 1×1011 1.283×1011 28.3 0.931 –6.9 3×1011 3.181×1011 6.03 1.050 5.0 5×1011 5.274×1011 5.48 0.896 –10.4 7×1011 7.435×1011 6.21 0.930 –7.0 1×1012 1.026×1012 2.60 0.954 –4.6 表 2 诊断结果
Table 2. Diagnostic results.
仿真设置值 诊断结果 $ {n_{\text{e}}} $/1011 cm–3 诊断误差/% 诊断结果 $ {v_{{\text{en}}}} $/GHz 诊断误差/% $ {n_{\text{e}}} $/cm–3 ${v_{ {\text{en} } } }$/GHz 3×1011 0.1 $ 3 $.355 11.8 0.0835 16.4 1.0 3.181 6.03 1.0500 5.0 5.0 2.887 3.77 3.6060 27.8 表 3 不同输入功率下(不同等离子体状态)反射计诊断结果
Table 3. Diagnostic results of reflectometer in different input power (different plasma states).
状态 功率/kW 电压/kV 电流/A 反射计诊断结果/(1011 cm–3) 碰撞频率/GHz 透射法诊断结果/(1011 cm–3) 状态2 120 6.0 20 0.7082 2.198 1.404 状态3 154 7.0 22 1.5620 1.309 1.982 状态4 180 7.5 24 2.1000 0.881 3.442 状态5 208 8.0 26 5.5150 0.238 7.958 状态6 252 9.0 28 >10.0000 — 9.358 -
[1] Hartunian R, Stewart G, Curtiss T, Fergason S, Seibold R 2007 AIAA Atmospheric Flight Mechanics Conference and Exhibit Hilton Head, South Carolina, USA, August 20–23, 2007, AIAA 2007–6633
[2] Rybak J, Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7(5) 879
[3] Xie K, Yang M, Bai B W, Li X P, Zhou H, Guo L X 2016 J. Appl. Phys. 119 023301Google Scholar
[4] 杨敏 2014 博士学位论文 (西安: 西安电子科技大学)
Yang M 2014 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)
[5] Akey N D, Schroeder L C 1973 J. Spacecr. Rockets 10 170Google Scholar
[6] Boris D R, Fernsler R F, Walton S G 2015 Plasma Sources Sci. Technol. 24 025032Google Scholar
[7] Saifutdinov A I, Sysoev S S 2022 Instrum. Exp. Tech. 65 75Google Scholar
[8] 赵国利 2010博士学位论文 (大连: 大连理工大学)
Zhao G L 2010 Ph. D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)
[9] 陈宗胜, 林志丹, 时家明, 马丽芳 2015 真空科学与技术学报 35 646
Chen Z S, Lin Z D, Shi J M, Ma F L 2015 Chinese Journal of Vacuum Science and Technology 35 646
[10] Berchtikou A, Lavoie J, Poenariu V 2011 IEEE Trans. Dielectr. Electr. Insul. 18 24Google Scholar
[11] Shi J, Guo Y C, Xiao S L, Qian F, Yang Z H 2017 Nucl. Instrum. Methods Phys. Res. A866 72
[12] 李斌 2010 博士论文 (合肥: 中国科学技术大学)
Li B 2010 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[13] 莫少奇 2016 博士论文 (成都: 电子科技大学)
Mo S Q 2016 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese)
[14] 袁忠才, 时家明 2005 核聚变与等离子体物理 25 78
Yuan Z C, Shi J M 2005 Nuclear Fusion and Plasma Physics 25 78
[15] 王甲寅, 时家明, 袁忠才 2007 强激光与粒子束 2007 621
Wang J Y, Shi J M, Yuan Z C 2007 High Power Laser and Particle Beams 2007 621
[16] 刘荣明, 吴慎将, 苏俊宏, 徐均琪, 王可瑄 2019 西安工业大学学报 39 521
Liu Y M, Wu S J, Su J H, Xu J Q, Wang K X 2019 Journal of Xi’an Technological University 39 521
[17] Ermak G P, Varavin A V, Vasilev A S, Fateev A V, Varavin N V, Zacek V, Zajac J, Zorenko A V 2016 Telecommun. Radio Eng. 76 903
[18] Janson S 1994 25th Plasmadynamics & Lasers Conference Colorado Springs, USA, June 20–23, 1994 ppAIAA-94-2424
[19] Ohler S G, Gilchrist B E, Gallimore A D 1995 IEEE Trans. Plasma Sci. 23 428Google Scholar
[20] Anabitarte E, Bustamante E G, Calderón M A G, Senties J M 1987 J. Infrared MillimeterWaves 8 733
[21] 李建刚 2016 物理 45 88
Li J G 2016 Physics 45 88
[22] 金兹堡 著 (钱善瑎 译) 1978 电磁波在等离子体中的传播 (北京: 科学出版社) 第5—9页, 第22—30页, 第85—87页
Ginzburg (translated by Qian S X) 1978 Propagation of electromagnetic wave in plasma (Beijing: Science Press) pp5–9, pp22–30, pp85–87 (in Chinese)
[23] Zhao C W, Li X P, Yang M, Sun C 2020 Microwave Opt. Technol. Lete. 63 205
计量
- 文章访问数: 4025
- PDF下载量: 73
- 被引次数: 0