-
提出了一种基于V形单元结构阵列的太赫兹波段宽带透射式偏振转换器, 该偏振转换器由光栅-V形超表面-光栅组成, 顶层、底层是一对相互正交的光栅, 中间层为V形超表面, 层与层间被聚酰亚胺隔开. 该结构在0.35—1.11 THz频段内可以实现交叉偏振透射率达到80%以上, 偏振转换率达到99%以上. 对该结构在交叉偏振透射率高和低频率处的表面电流和电场进行仿真, 发现相邻V形结构间会产生偶极振荡, 在透射率高的频率处, 相邻V形结构间电场具有相近的值, 而在透射率低的频率处, 相邻V形结构间电场具有相反的值. 同时, 还分别研究了V形阵列的单层结构和V形阵列后放置光栅的双层结构对于垂直入射x偏振太赫兹波的响应, 并分析了引起高偏振转换率和宽带的物理机理.Metasurfaces have attracted extensive attention due to their powerful functions, especially the manipulation of the polarization state of electromagnetic wave in many different areas, which have aroused a lot of research interest. In this work, a broadband transmission polarization converter based on V-shaped element array in terahertz band is designed and analyzed, which consists of grating-V-shaped metasurface-grating. The top layer and bottom layer form a pair of crossed gratings, and the middle layer is a V-shaped metasurface, and the layers are separated by polyimide. The structure parameters of the polarization converter are optimized by CST microwave studio, changes of which can result in narrow band or low transmission. Cross-polarization transmission rate and polarization conversion rate can reach more than 80% and 99%, respectively, in a frequency range from 0.35 THz to 1.11 THz. By studying the electric field distribution in the substrate under the V-shaped metasurface , it is found that the real part of the cross-polarization electric field between adjacent V-shaped metasurfaces presents similar values in a frequency range from 0.35 THz to 1.11 THz, resulting in high cross-polarization transmission. However, the real part of the cross-polarization electric field between adjacent V-shaped metasurfaces presents opposite values, resulting in low cross-polarization transmission at 1.40 THz. At the same time, the responses of the single layer structure of the V-shaped array and the bi-layer structure of the grating placed behind the V-shaped array to vertically incident x-polarized terahertz waves are investigated respectively, and the results show that the single-layer V-shaped array can convert part of linearly polarized incident light into cross-polarization light, however, in the bi-layer structure, Fabry-Perot cavity is formed between the V-shaped array and the grating, and the cross polarization transmission increases. This indicates that the V-shaped array provides the capability of polarization conversion, and the existence of the grating makes the F-P cavity inside the structure create the conditions for the back and forth reflection of terahertz waves. The combined action of the V-shaped metasurface and orthogonal grating results in a high polarization conversion rate.
-
Keywords:
- V-shaped /
- transmission /
- polarization conversion
[1] Dietlein C, Luukanen A, Popovi Z, Grossman E 2007 IEEE Trans. Antennas Propag. 55 1804Google Scholar
[2] Zhu W, Jiang M, Guan H, Yu J, Lu H, Zhang J, Chen Z 2017 Photonics Res. 5 684Google Scholar
[3] Monticone F, Valagiannopoulos C A, Alù A 2016 Phys. Rev. X 6 041018Google Scholar
[4] Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar
[5] Rajaram M, Rajamani A 2021 J. Supercond. Novel Magn. 34 1185Google Scholar
[6] Zhang Z, Qin F, Xu Y, Fu S, Wang Y, Qin Y 2021 Photonics Res. 9 1592Google Scholar
[7] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar
[8] Stoja E, Konstandin S, Philipp D, Wilke R N, Betancourt D, Bertuch T, Jenne J, Umathum R, Gunther M 2021 Sci. Rep. 11 16179Google Scholar
[9] Lee S H, Shin S, Roh Y, Oh S J, Lee S H, Song H S, Ryu Y S, Kim Y K, Seo M 2020 Biosens. Bioelectron. 170 112663Google Scholar
[10] Engay E, Huo D, Malureanu R, Bunea A I, Lavrinenko A 2021 Nano Lett. 21 3820Google Scholar
[11] Slobozhanyuk A P, Shchelokova A V, Kozachenko A V, et al. 2021 Phys. Rev. Appl. 16 L021002Google Scholar
[12] Peng X Y, Wang B, Lai S, Zhang D H, Teng J H 2012 Opt. Express 20 27756Google Scholar
[13] Zhang N, Zhou P, Zhang L, Weng X, Xie J, Deng L 2015 Appl. Phys. B 118 409Google Scholar
[14] Ra’di Y, Simovski C R, Tretyakov S A 2015 Phys. Rev. Appl. 3 037001Google Scholar
[15] Yin J Y, Wan X, Zhang Q, Cui T J 2015 Sci. Rep. 5 12476Google Scholar
[16] Chen H, Wang J, Ma H, Qu S, Xu Z, Zhang A, Yan M, Li Y 2014 J. Appl. Phys. 115 154504Google Scholar
[17] Han B, Li S, Cao X, Han J, Jidi L, Li Y 2020 AIP Adv. 10 125025Google Scholar
[18] Chaudhary P, Kumar A, Kumar P, Kanaujia B K, Birwal A 2020 Int. J. Electron. 108 411Google Scholar
[19] Wu L, Yang Z, Cheng Y, Gong R, Zhao M, Zheng Y, Duan J A, Yuan X 2014 Appl. Phys. A 116 643Google Scholar
[20] Liu W, Chen S, Li Z, Cheng H, Yu P, Li J, Tian J 2015 Opt. Lett. 40 3185Google Scholar
[21] Zhang Y, Yang L, Li X K, Wang Y L, Huang C P 2020 J. Opt. 22 305101Google Scholar
[22] Kamal B, Chen J, Yingzeng Y, Ren J, Ullah S, Khan W U R 2021 Opt. Mater. Express 11 1343Google Scholar
[23] Liu Z, Zhao B, Jiao C, Zhao L, Han X 2021 Appl. Phys. A 127 825Google Scholar
[24] Yin B, Ma Y 2021 Opt. Commun. 493 126996Google Scholar
[25] Huang X, Xiao B, Yang D, Yang H 2015 Opt. Commun. 338 416Google Scholar
[26] Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2015 Adv. Mater. 27 1201Google Scholar
[27] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A, Chen H T 2013 Science 340 1304Google Scholar
[28] Xiao Z Y, Liu D J, Ma X L, Wang Z H 2015 Opt. Express 23 7053Google Scholar
[29] Chiang Y J, Yen T J 2013 Appl. Phys. Lett. 102 011129Google Scholar
-
图 4 入射太赫兹波的偏振方向沿着
$ u $ ,$ v $ 轴 (a) 交叉偏振透射率, 插图是$ u $ ,$ v $ 轴的定义; (b) 同向偏振透射率; (c) 同向偏振透射相位差; (d) 交叉偏振透射相位差Fig. 4. The polarization direction of the incident THz wave is along the
$ u $ ,$ v $ axis: (a) Transmission of cross-polarization, the insert is the definition of$ u $ ,$ v $ axis; (b) transmission of co-polarization; (c) phase difference of co-polarization; (d) phase difference of cross-polarization for electric field along$ u $ ,$ v $ axis. -
[1] Dietlein C, Luukanen A, Popovi Z, Grossman E 2007 IEEE Trans. Antennas Propag. 55 1804Google Scholar
[2] Zhu W, Jiang M, Guan H, Yu J, Lu H, Zhang J, Chen Z 2017 Photonics Res. 5 684Google Scholar
[3] Monticone F, Valagiannopoulos C A, Alù A 2016 Phys. Rev. X 6 041018Google Scholar
[4] Yin X, Ye Z, Rho J, Wang Y, Zhang X 2013 Science 339 1405Google Scholar
[5] Rajaram M, Rajamani A 2021 J. Supercond. Novel Magn. 34 1185Google Scholar
[6] Zhang Z, Qin F, Xu Y, Fu S, Wang Y, Qin Y 2021 Photonics Res. 9 1592Google Scholar
[7] Fang N, Lee H, Sun C, Zhang X 2005 Science 308 534Google Scholar
[8] Stoja E, Konstandin S, Philipp D, Wilke R N, Betancourt D, Bertuch T, Jenne J, Umathum R, Gunther M 2021 Sci. Rep. 11 16179Google Scholar
[9] Lee S H, Shin S, Roh Y, Oh S J, Lee S H, Song H S, Ryu Y S, Kim Y K, Seo M 2020 Biosens. Bioelectron. 170 112663Google Scholar
[10] Engay E, Huo D, Malureanu R, Bunea A I, Lavrinenko A 2021 Nano Lett. 21 3820Google Scholar
[11] Slobozhanyuk A P, Shchelokova A V, Kozachenko A V, et al. 2021 Phys. Rev. Appl. 16 L021002Google Scholar
[12] Peng X Y, Wang B, Lai S, Zhang D H, Teng J H 2012 Opt. Express 20 27756Google Scholar
[13] Zhang N, Zhou P, Zhang L, Weng X, Xie J, Deng L 2015 Appl. Phys. B 118 409Google Scholar
[14] Ra’di Y, Simovski C R, Tretyakov S A 2015 Phys. Rev. Appl. 3 037001Google Scholar
[15] Yin J Y, Wan X, Zhang Q, Cui T J 2015 Sci. Rep. 5 12476Google Scholar
[16] Chen H, Wang J, Ma H, Qu S, Xu Z, Zhang A, Yan M, Li Y 2014 J. Appl. Phys. 115 154504Google Scholar
[17] Han B, Li S, Cao X, Han J, Jidi L, Li Y 2020 AIP Adv. 10 125025Google Scholar
[18] Chaudhary P, Kumar A, Kumar P, Kanaujia B K, Birwal A 2020 Int. J. Electron. 108 411Google Scholar
[19] Wu L, Yang Z, Cheng Y, Gong R, Zhao M, Zheng Y, Duan J A, Yuan X 2014 Appl. Phys. A 116 643Google Scholar
[20] Liu W, Chen S, Li Z, Cheng H, Yu P, Li J, Tian J 2015 Opt. Lett. 40 3185Google Scholar
[21] Zhang Y, Yang L, Li X K, Wang Y L, Huang C P 2020 J. Opt. 22 305101Google Scholar
[22] Kamal B, Chen J, Yingzeng Y, Ren J, Ullah S, Khan W U R 2021 Opt. Mater. Express 11 1343Google Scholar
[23] Liu Z, Zhao B, Jiao C, Zhao L, Han X 2021 Appl. Phys. A 127 825Google Scholar
[24] Yin B, Ma Y 2021 Opt. Commun. 493 126996Google Scholar
[25] Huang X, Xiao B, Yang D, Yang H 2015 Opt. Commun. 338 416Google Scholar
[26] Fan R H, Zhou Y, Ren X P, Peng R W, Jiang S C, Xu D H, Xiong X, Huang X R, Wang M 2015 Adv. Mater. 27 1201Google Scholar
[27] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A, Chen H T 2013 Science 340 1304Google Scholar
[28] Xiao Z Y, Liu D J, Ma X L, Wang Z H 2015 Opt. Express 23 7053Google Scholar
[29] Chiang Y J, Yen T J 2013 Appl. Phys. Lett. 102 011129Google Scholar
计量
- 文章访问数: 3989
- PDF下载量: 114
- 被引次数: 0