搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究

汉琳 苗淑莉 李鹏程

引用本文:
Citation:

优化组合激光场驱动原子产生高次谐波及单个超短阿秒脉冲理论研究

汉琳, 苗淑莉, 李鹏程

Theoretical study of high-order harmonics and single ultrashort attosecond pulse generated by optimized combination of laser field

Han Lin, Miao Shu-Li, Li Peng-Cheng
PDF
HTML
导出引用
  • 高次谐波是获得阿秒紫外光源最主要的方法之一, 是强场超快领域研究的热点问题, 具有非常广泛的应用前景. 本文围绕如何产生超连续高次谐波平台及单个超短阿秒脉冲面临的问题, 概述了这方面研究的进展, 并从理论上展示了一种有效可行的方案, 即将强激光场中的含时薛定谔方程与非约束优化算法相结合, 以扩展谐波平台最宽为目标函数, 分别优化双色和三色组合激光场并驱动氦原子产生超连续高次谐波谱. 优化后的双色组合激光场驱动氦原子产生的超连续谐波谱平台达到了100阶, 叠加获得了最短25 as的单个阿秒脉冲; 优化后的三色组合激光场驱动氦原子产生的超连续谐波谱平台宽度达到了170阶, 叠加获得最短17 as的单个阿秒脉冲, 同时谐波转换效率也有所提高. 为了给实验提供切实可行的参考, 本文以优化的双色组合激光场情况为例, 基于同时求解含时薛定谔方程和麦克斯韦方程, 进一步考虑了介质宏观演化效应对单原子层次产生阿秒脉冲的影响, 发现利用远场轴外量子通道的空间选择性可以获得更短的单个阿秒脉冲.
    High-order harmonic generation, which is a hot topic of strong ultrafast fields, is one of the most important ways for obtaining the ultraviolet attosecond sources, and has a very wide application prospect. This work focuses on the challenges of the generation of either short or high attosecond pulses. We present the research progress of the high-order harmonics and attosecond pulse generation, and propose an effective and feasible method, and show some results. Specifically, combining the time-dependent Schrödinger equation and new unconstrained optimization algorithm, the objective function with the aim of the widest supercontinuum plateau of He atom is designed and the optimized two-color and three-color laser fields are obtained. The supercontinuum spectra extend up to 100 harmonic orders for the case of the optimized two-color laser field. As a result, a single ultrashort attosecond pulse of 25 as is produced. For the three-color case, the supercontinuum spectra reach up to 170 harmonic orders, and the width of single shortest attosecond pulse obtained by superposing pulses from low order (110 order) to high order (280 order) is obtained to be 17 as . Taking the optimized two-color laser field for example, the macroscopic medium propagation is discussed by solving the Maxwell equation. The results show that the selectivity of quantum trajectories from far-field space distribution can obtain the single ultra-short attosecond pulse.
      通信作者: 李鹏程, pchli@stu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 91850209, 12074239, 12047501)、广东省自然科学基金(批准号: 2020A1515010927)、广东省科技专项项目(批准号: 2020ST084)、广东省高校特色创新类项目(批准号: 2019KTSCX038, 2020KCXTD012)和汕头大学(批准号: NTF18030)资助的课题
      Corresponding author: Li Peng-Cheng, pchli@stu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 91850209, 12074239, 12047501), the Natural Science Foundation of Guangdong Province, China (Grant No. 2020A1515010927), the Science and Technology Project of Guangdong Province, China (Grant No. 2020ST084), the Special Innovation Program of Universities of Guangdong Province (Grant Nos. 2019KTSCX038, 2020KCXTD012), and the Shantou University, China (Grant No. NTF18030)
    [1]

    Telnov D A, Chu S I 2009 Phys. Rev. A 79 041401Google Scholar

    [2]

    Garcia Ruiz R F, Vernon A R, Binnersley C L, Sahoo B K, Bissell M, Billowes J, Cocolios T E, Gins W, de Groote R P, Flanagan K T, Koszorus A, Lynch K M, Neyens G, Ricketts C M, Wendt K D A, Wilkins S G, Yang X F 2018 Phys. Rev. X 8 041005

    [3]

    Wang R, Zhang Q, Li D, Xu S, Cao P, Zhou Y, Cao W, Lu P 2019 Opt. Express 27 6471Google Scholar

    [4]

    Ge P, Fang Y, Guo Z, Ma X, Yu X, Han M, Wu C, Gong Q, Liu Y 2021 Phys. Rev. Lett. 126 223001Google Scholar

    [5]

    De Silva A H N C, Atri-Schuller D, Dubey S, Acharya B P, Romans K L, Foster K, Russ O, Compton K, Rischbieter C, Douguet N, Bartschat K, Fischer D 2021 Phys. Rev. Lett. 126 023201Google Scholar

    [6]

    Liu M M, Shao Y, Han M, Ge P, Deng Y, Wu C, Gong Q, Liu Y 2018 Phys. Rev. Lett. 120 043201Google Scholar

    [7]

    Li W K, Lei Y, Li X, Yang T, Du M, Jiang Y, Li J L, Luo S Z, Liu A H, He L H, Ma P, Zhang D D, Ding D J 2021 Chin. Phys. Lett. 38 053202Google Scholar

    [8]

    Kelvich S A, Becker W, Goreslavski S P 2017 Phys. Rev. A 96 023427Google Scholar

    [9]

    Brennecke S, Lein M 2018 Phys. Rev. A 98 063414Google Scholar

    [10]

    Brennecke S, Lein M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 094005Google Scholar

    [11]

    Shi M, Lai X, Yu S, Wang Y, Quan W, Liu X 2022 Phys. Rev. A 105 013118Google Scholar

    [12]

    Yang Q, Leng J, Wang Y H, Sun Y N, Du H B, Zhang D D, Song L L, He L H, Liu F C 2022 Chin. Phys. Lett. 39 023301Google Scholar

    [13]

    Verhoef A J, Mitrofanov A V, Serebryannikov E E, Kartashov D V, Zheltikov A M, Baltuška A 2010 Phys. Rev. Lett. 104 163904Google Scholar

    [14]

    Chen Y, Zhou Y, Tan J, Li M, Cao W, Lu P 2021 Phys. Rev. A 104 043107Google Scholar

    [15]

    Ni H, Brennecke S, Gao X, He P L, Donsa S, Březinová I, He F, Wu J, Lein M, Tong X M, Burgdörfer J 2020 Phys. Rev. Lett. 125 073202Google Scholar

    [16]

    Tan J, Zhou Y, He M, Ke Q, Liang J, Li Y, Li M, Lu P 2019 Phys. Rev. A 99 033402Google Scholar

    [17]

    Luo S, Li M, Xie W, Liu K, Feng Y, Du B, Zhou Y, Lu P 2019 Phys. Rev. A 99 053422Google Scholar

    [18]

    Zhao Y, Zhou Y, Liang J, Zeng Z, Ke Q, Liu Y, Li M, Lu P 2019 Opt. Express 27 21689Google Scholar

    [19]

    Douguet N, Bartschat K 2018 Phys. Rev. A 97 013402Google Scholar

    [20]

    Yoshikawa N, Tamaya T 2017 Science 356 736Google Scholar

    [21]

    Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138Google Scholar

    [22]

    Uchida K, Mattoni G, Yonezawa S, Nakamura F, Maeno Y, Tanaka K 2020 Phys. Rev. Lett. 128 127401Google Scholar

    [23]

    Yu C, Jiang S, Lu R 2019 Adv. Phys. X 4 1562982

    [24]

    Zhang J, Hua L Q, Chen Zh, Zhu M F, Gong Ch, Liu X J 2020 Chin. Phys. Lett. 37 124203Google Scholar

    [25]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [26]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [27]

    Ferray M, L’Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 3

    [28]

    L’Huillier A, Balcou Ph 1993 Phys. Rev. Lett. 70 766Google Scholar

    [29]

    Macklin J J, Kmetec J D, Gordon Ⅲ C L 1993 Phys. Rev. Lett. 70 774Google Scholar

    [30]

    L’Huillier A, Schafer K J, Kulander K C 1991 J. Phys. B: At. Mol. Opt. Phys. 24 3315Google Scholar

    [31]

    Corkum P B 1993 Phys. Rev. Lett. 71 13

    [32]

    Kulander K C, Schafer K J, Krause J L 1991 Phys. Rev. Lett. 66 2601Google Scholar

    [33]

    Lewenstein M, Balcou Ph, Ivanov M Yu, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [34]

    L’Huillier A, Lewenstein M, Saliěres P, Balcou Ph, Ivanov M Yu, Larsson J, Wahlström C G 1993 Phys. Rev. A 4 8

    [35]

    Kulander K C 1988 Phys. Rev. A 38 778Google Scholar

    [36]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. A 45 4998Google Scholar

    [37]

    Runge E, Gross E K U 1984 Phys. Rev. Lett. 52 997Google Scholar

    [38]

    魏志义, 钟诗阳, 贺新奎, 赵昆, 滕浩, 王帅, 梁玥瑛, 王佶, 喻苏玉, 陈云琳, 朱江峰 2021 中国激光 48 0501001Google Scholar

    Wei Z Y, Zhong S Y, He X K, Zhao K, Teng H, Wang S, Liang Y Y, Wang J, Yu S Y, Chen Y L, Zhu J F 2021 Chin. J. Lasers 48 0501001Google Scholar

    [39]

    Spielmann C, Burnett N H, Sartania S, Koppitsch R, Schnurer M, Kan C, Lenzner M, Wobrauschek P, Krausz F 1997 Science 278 661Google Scholar

    [40]

    Chang Z, Rundquist A, Wang H, Murnane M M, Kapteyn H C 1997 Phys. Rev. Lett. 79 2967Google Scholar

    [41]

    Tong X M, Chu S I 2001 Phys. Rev. A 64 013417Google Scholar

    [42]

    Shan B, Chang Z H 2001 Phys. Rev. A 65 011804(RGoogle Scholar

    [43]

    Baltuska A, Fuji T, Kobayashi T 2002 Phys. Rev. Lett. 88 133901Google Scholar

    [44]

    Gibson E A, Paul A, Wagner N, Tobey R, Backus S, Christov I P, Murnane M M, Kapteyn H C 2004 Phys. Rev. Lett. 92 033001Google Scholar

    [45]

    Schiessl K, Ishikawa K L, Persson E, Burgdorfer J 2007 Phys. Rev. Lett. 99 253903Google Scholar

    [46]

    Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y, Midorikawa K 2008 Phys. Rev. Lett. 101 253901Google Scholar

    [47]

    Colosimo P, Doumy G, Blaga C I, Wheeler J, Hauri C, Catoire F, Tate J, Chirla R, March A M, Paulus G G, Muller H G, Agostini P, DiMauro L F 2008 Nat. Phys. 4 386Google Scholar

    [48]

    Fu Y, Xiong H, Xu H, Yao J, Yu Y, Zeng B, Chu W, Liu X, Chen J, Cheng Y, Xu Z 2009 Phys. Rev. A 79 013802Google Scholar

    [49]

    Popmintchev T, Chen M Ch, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009 Proc. Natl. Acad. Sci. U.S.A. 106 10516Google Scholar

    [50]

    Shiner A D, Herrero C T, Kajumba N, Bandulet H C, Comtois D, Légaré F, Giguėre M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902Google Scholar

    [51]

    Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 186

    [52]

    Pan Y, Guo F M, Jin C, Yang Y J, Ding D J 2019 Phys. Rev. A 99 033411Google Scholar

    [53]

    Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar

    [54]

    Tate J, Auguste T, Muller H G, Saliéres P, Agostini P, DiMauro L F 2007 Phys. Rev. Lett. 98 013901Google Scholar

    [55]

    Mauritsson J, Johnsson P, Gustafsson E, L’ Huillier A, Schafer K J, Gaarde M B 2006 Phys. Rev. Lett. 97 013001Google Scholar

    [56]

    Oishi Y, Kaku M, Suda A, Kannari F, Midorikawa K 2006 Opt. Express 14 7230Google Scholar

    [57]

    Zeng Z, Cheng Y, Song X, Li R, Xu Z 2007 Phys. Rev. Lett. 98 203901Google Scholar

    [58]

    Li P C, Zhou X X, Wang G L, Zhao Z X 2009 Phys. Rev. A 80 053825Google Scholar

    [59]

    Takahashi E J, Lan P F, Mücke O D, Nabekawa Y, Midorikawa K 2010 Phys. Rev. Lett. 104 233901Google Scholar

    [60]

    Lan P F, Takahashi E J, Midorikawa K 2010 Phys. Rev. A 82 053413Google Scholar

    [61]

    Wu J, Zhang G T, Xia C L, Liu X S 2010 Phys. Rev. A 82 013411Google Scholar

    [62]

    Brugnera L, Frank F, Hoffmann D J, Torres R, Siegel T, Underwood J G, Springate E, Froud C, Turcu E I C, Tisch J W G, Marangos J P 2010 Opt. Lett. 35 23

    [63]

    Li P C, Liu I L, Chu S I 2011 Opt. Express 19 23857Google Scholar

    [64]

    Wang Z, Li Y, Wang S Y, Hong W Y, Zhang Q B, Lu P X 2013 Phys. Rev. A 87 033822Google Scholar

    [65]

    Li P C, Laughlin C, Chu S I 2014 Phys. Rev. A 89 023431Google Scholar

    [66]

    Chou Y, Li P C, Ho T S, Chu S I 2015 Phys. Rev. A 91 063408Google Scholar

    [67]

    Shao R Z, Zhai C Y, Zhang Y F, He L X, Zhu X S, Lan P F, Lu P X 2021 J. Phys. B: At. Mol. Opt. Phys. 54 064001Google Scholar

    [68]

    Chou Y, Li P C, Ho T S, Chu S I 2015 Phys. Rev. A 92 023423Google Scholar

    [69]

    Jin C, Wang G L, Wei H, Le A T, Lin C D 2014 Nat. Commun. 5 4003Google Scholar

    [70]

    Liu I L, Li P C, Chu S I 2011 Phys. Rev. A 84 033414Google Scholar

    [71]

    Li P C, Chu S I 2012 Phys. Rev. A 86 013411Google Scholar

    [72]

    叶小亮, 周效信, 赵松峰, 李鹏程 2009 物理学报 58 1579Google Scholar

    Ye X L, Zhou X X, Zhao S F, Li P C 2009 Acta Phys. Sin. 58 1579Google Scholar

    [73]

    Shelton R K, Ma L S, Kapteyn H C, Murnane M M, Hall J L, Ye J 2001 Science 293 5533

    [74]

    Hassan M Th, Grguras I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301Google Scholar

    [75]

    Wirth A, Hassan M TH, Grguras I, Gagnon J, Moulef A, Luu T T, Pabst S, Santra R, Alahmed Z A, Aeezzr A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 6053

    [76]

    Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [77]

    Feng L Q, Chu T S 2011 Phys. Rev. A 375 3641

    [78]

    Jin C, Hong K H, Lin C D 2017 Phys. Rev. A 96 013422Google Scholar

    [79]

    Gaarde M B, Tate J L, Schafer K J 2008 J. Phys. B 41 132001Google Scholar

    [80]

    Geissler M, Tempea G, Scrinzi A, Schnürer M, Krausz F, Brabec T 1999 Phys. Rev. Lett. 83 2930Google Scholar

    [81]

    Tosa V, Kim H T, Kim I J, Nam C H 2005 Phys. Rev. A 71 063807Google Scholar

    [82]

    Jin C, Le A T, Trallero-Herrero C A, Lin C D 2011 Phys. Rev. A 84 043411Google Scholar

    [83]

    Tong X M, Chu S I 1997 Chem. Phys. 217 119Google Scholar

    [84]

    Chu X, Chu S I 2001 Phys. Rev. A 64 013406Google Scholar

    [85]

    Priori E, Cerullo G, Nisoli M, Stagira S, De Silvestri S, Villoresi P, Poletto L, Ceccherini P, Altucci C, Bruzzese R, de Lisio C 2000 Phys. Rev. A 61 063801Google Scholar

    [86]

    Tong X M, Chu S I 2000 Phys. Rev. A 61 031401Google Scholar

    [87]

    Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Aliǎuskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, García C H, Plaja L, Becker A, Becker A J, Murnane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [88]

    Carrera J J, Tong X M, Chu S I 2006 Phys. Rev. A 74 023404Google Scholar

    [89]

    Saliéres P, Antoine P, de Bohan A, Lewenstein M 1998 Phys. Rev. Lett. 81 5544Google Scholar

  • 图 1  (a) 优化前和优化后的双色组合激光场; (b)优化前和优化后的双色组合激光场驱动He原子产生的高次谐波谱

    Fig. 1.  (a) Initial laser field and the optimized two-color laser field; (b) corresponding HHG power spectra

    图 2  (a) 优化前高次谐波时频分析图; (b)优化后高次谐波时频分析图

    Fig. 2.  Wavelet time-frequency of the HHG spectra for the cases of (a) initial and (b) optimized two-color laser fields

    图 3  (a) 优化后给定阶次高次谐波强度随时间变化关系; (b)对比优化前后单个阿秒脉冲的产生

    Fig. 3.  (a) Dipole time profiles of harmonics from the 70th to the 170th harmonic order; (b) attosecond pulse generation for the cases of the initial and optimized two-color laser fields

    图 4  (a) 优化前和优化后的三色组合激光场; (b)优化前和优化后的三色组合激光场驱动He原子产生的高次谐波谱

    Fig. 4.  (a) Initial laser field and the optimized three-color laser field; (b) corresponding HHG power spectra

    图 5  (a) 优化前高次谐波时频分析图; (b)优化后高次谐波时频分析图

    Fig. 5.  Wavelet time-frequency of the HHG spectra for the cases of (a) initial and (b) optimized three-color laser fields

    图 6  (a) 优化后给定阶次高次谐波强度随时间变化关系; (b)优化前后单个阿秒脉冲的产生

    Fig. 6.  (a) Dipole time profiles of harmonics from the 110th to the 200th harmonic order; (b) attosecond pulse generation for the cases of the initial and optimized three-color laser fields

    图 7  优化的宏观双色组合激光场空间传播效应 (a)演化前激光场; (b)演化后激光场; (c)轴上演化前和演化后激光场对比; (d)驱动单原子激光场与宏观演化后轴上激光场对比

    Fig. 7.  Macroscopic propagation effects of the optimized two-color laser fields: (a) Entrance; (b) exit; (c) comparison of entrance and exit on axis; (d) comparison of the fields for single-atom case and mac-field on axis

    图 8  (a) 远场高次谐波空间分布; (b)单原子与远场高次谐波对比; (c)远场阿秒脉冲空间分布

    Fig. 8.  (a) Spatial distribution of far-field HHG; (b) comparison of single atom and far-field HHG; (c) spatial distribution of far-field attosecond pulse.

    图 9  (a) 轴上高次谐波时频分析; (b)轴外0.37 mm处高次谐波时频分析; (c)轴上与轴外0.37 mm处获得的单个最短阿秒脉冲

    Fig. 9.  (a) Wavelet time-frequency of the HHG spectra on axis; (b) wavelet time-frequency of the HHG spectra at 0.37 mm off axis; (c) on-axis and off-axis attosecond pulse generation

    图 10  轴上不同气体靶位置产生的单个阿秒脉冲对比

    Fig. 10.  Comparison of single attosecond pulse for the different target position

    表 1  He原子模型势参数(原子单位制)[65]

    Table 1.  Model potential parameters for He (in a.u.)[65]

    $ l $ $ \alpha $ $r_{\rm{c}}$ S $ A_1 $ $ A_2 $ $ B_1 $ $ B_2 $
    $ 0 $ $ 0.28125 $ $ 2.0 $ $ -7.9093912 $ $ -10.899664 $ 0 $ 1.7 $ $ 3.8 $
    $ 1 $ $ 0.28125 $ $ 2.0 $ $ 1.50094970 $ $ 0.11297684 $ 0 $ 1.3 $ $ 3.8 $
    $ 2 $ $ 0.28125 $ $ 2.0 $ $ 0.88294766 $ $ -0.032043029 $ 0 $ 1.3 $ $ 3.8 $
    $ 3 $ $ 0.28125 $ $ 2.0 $ $ 0.41193110 $ $ -0.129391180 $ 0 $ 1.3 $ $ 3.8 $
    $ \geqslant 3 $ $ 0.28125 $ $ 2.0 $ $0$ $0$ 0 $ 1.3 $ $ 0 $
    下载: 导出CSV
  • [1]

    Telnov D A, Chu S I 2009 Phys. Rev. A 79 041401Google Scholar

    [2]

    Garcia Ruiz R F, Vernon A R, Binnersley C L, Sahoo B K, Bissell M, Billowes J, Cocolios T E, Gins W, de Groote R P, Flanagan K T, Koszorus A, Lynch K M, Neyens G, Ricketts C M, Wendt K D A, Wilkins S G, Yang X F 2018 Phys. Rev. X 8 041005

    [3]

    Wang R, Zhang Q, Li D, Xu S, Cao P, Zhou Y, Cao W, Lu P 2019 Opt. Express 27 6471Google Scholar

    [4]

    Ge P, Fang Y, Guo Z, Ma X, Yu X, Han M, Wu C, Gong Q, Liu Y 2021 Phys. Rev. Lett. 126 223001Google Scholar

    [5]

    De Silva A H N C, Atri-Schuller D, Dubey S, Acharya B P, Romans K L, Foster K, Russ O, Compton K, Rischbieter C, Douguet N, Bartschat K, Fischer D 2021 Phys. Rev. Lett. 126 023201Google Scholar

    [6]

    Liu M M, Shao Y, Han M, Ge P, Deng Y, Wu C, Gong Q, Liu Y 2018 Phys. Rev. Lett. 120 043201Google Scholar

    [7]

    Li W K, Lei Y, Li X, Yang T, Du M, Jiang Y, Li J L, Luo S Z, Liu A H, He L H, Ma P, Zhang D D, Ding D J 2021 Chin. Phys. Lett. 38 053202Google Scholar

    [8]

    Kelvich S A, Becker W, Goreslavski S P 2017 Phys. Rev. A 96 023427Google Scholar

    [9]

    Brennecke S, Lein M 2018 Phys. Rev. A 98 063414Google Scholar

    [10]

    Brennecke S, Lein M 2018 J. Phys. B: At. Mol. Opt. Phys. 51 094005Google Scholar

    [11]

    Shi M, Lai X, Yu S, Wang Y, Quan W, Liu X 2022 Phys. Rev. A 105 013118Google Scholar

    [12]

    Yang Q, Leng J, Wang Y H, Sun Y N, Du H B, Zhang D D, Song L L, He L H, Liu F C 2022 Chin. Phys. Lett. 39 023301Google Scholar

    [13]

    Verhoef A J, Mitrofanov A V, Serebryannikov E E, Kartashov D V, Zheltikov A M, Baltuška A 2010 Phys. Rev. Lett. 104 163904Google Scholar

    [14]

    Chen Y, Zhou Y, Tan J, Li M, Cao W, Lu P 2021 Phys. Rev. A 104 043107Google Scholar

    [15]

    Ni H, Brennecke S, Gao X, He P L, Donsa S, Březinová I, He F, Wu J, Lein M, Tong X M, Burgdörfer J 2020 Phys. Rev. Lett. 125 073202Google Scholar

    [16]

    Tan J, Zhou Y, He M, Ke Q, Liang J, Li Y, Li M, Lu P 2019 Phys. Rev. A 99 033402Google Scholar

    [17]

    Luo S, Li M, Xie W, Liu K, Feng Y, Du B, Zhou Y, Lu P 2019 Phys. Rev. A 99 053422Google Scholar

    [18]

    Zhao Y, Zhou Y, Liang J, Zeng Z, Ke Q, Liu Y, Li M, Lu P 2019 Opt. Express 27 21689Google Scholar

    [19]

    Douguet N, Bartschat K 2018 Phys. Rev. A 97 013402Google Scholar

    [20]

    Yoshikawa N, Tamaya T 2017 Science 356 736Google Scholar

    [21]

    Ghimire S, DiChiara A D, Sistrunk E, Agostini P, DiMauro L F, Reis D A 2011 Nat. Phys. 7 138Google Scholar

    [22]

    Uchida K, Mattoni G, Yonezawa S, Nakamura F, Maeno Y, Tanaka K 2020 Phys. Rev. Lett. 128 127401Google Scholar

    [23]

    Yu C, Jiang S, Lu R 2019 Adv. Phys. X 4 1562982

    [24]

    Zhang J, Hua L Q, Chen Zh, Zhu M F, Gong Ch, Liu X J 2020 Chin. Phys. Lett. 37 124203Google Scholar

    [25]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [26]

    McPherson A, Gibson G, Jara H, Johann U, Luk T S, McIntyre I A, Boyer K, Rhodes C K 1987 J. Opt. Soc. Am. B 4 595Google Scholar

    [27]

    Ferray M, L’Huillier A, Li X F, Lompre L A, Mainfray G, Manus C 1988 J. Phys. B: At. Mol. Opt. Phys. 21 3

    [28]

    L’Huillier A, Balcou Ph 1993 Phys. Rev. Lett. 70 766Google Scholar

    [29]

    Macklin J J, Kmetec J D, Gordon Ⅲ C L 1993 Phys. Rev. Lett. 70 774Google Scholar

    [30]

    L’Huillier A, Schafer K J, Kulander K C 1991 J. Phys. B: At. Mol. Opt. Phys. 24 3315Google Scholar

    [31]

    Corkum P B 1993 Phys. Rev. Lett. 71 13

    [32]

    Kulander K C, Schafer K J, Krause J L 1991 Phys. Rev. Lett. 66 2601Google Scholar

    [33]

    Lewenstein M, Balcou Ph, Ivanov M Yu, L’Huillier A, Corkum P B 1994 Phys. Rev. A 49 2117Google Scholar

    [34]

    L’Huillier A, Lewenstein M, Saliěres P, Balcou Ph, Ivanov M Yu, Larsson J, Wahlström C G 1993 Phys. Rev. A 4 8

    [35]

    Kulander K C 1988 Phys. Rev. A 38 778Google Scholar

    [36]

    Krause J L, Schafer K J, Kulander K C 1992 Phys. Rev. A 45 4998Google Scholar

    [37]

    Runge E, Gross E K U 1984 Phys. Rev. Lett. 52 997Google Scholar

    [38]

    魏志义, 钟诗阳, 贺新奎, 赵昆, 滕浩, 王帅, 梁玥瑛, 王佶, 喻苏玉, 陈云琳, 朱江峰 2021 中国激光 48 0501001Google Scholar

    Wei Z Y, Zhong S Y, He X K, Zhao K, Teng H, Wang S, Liang Y Y, Wang J, Yu S Y, Chen Y L, Zhu J F 2021 Chin. J. Lasers 48 0501001Google Scholar

    [39]

    Spielmann C, Burnett N H, Sartania S, Koppitsch R, Schnurer M, Kan C, Lenzner M, Wobrauschek P, Krausz F 1997 Science 278 661Google Scholar

    [40]

    Chang Z, Rundquist A, Wang H, Murnane M M, Kapteyn H C 1997 Phys. Rev. Lett. 79 2967Google Scholar

    [41]

    Tong X M, Chu S I 2001 Phys. Rev. A 64 013417Google Scholar

    [42]

    Shan B, Chang Z H 2001 Phys. Rev. A 65 011804(RGoogle Scholar

    [43]

    Baltuska A, Fuji T, Kobayashi T 2002 Phys. Rev. Lett. 88 133901Google Scholar

    [44]

    Gibson E A, Paul A, Wagner N, Tobey R, Backus S, Christov I P, Murnane M M, Kapteyn H C 2004 Phys. Rev. Lett. 92 033001Google Scholar

    [45]

    Schiessl K, Ishikawa K L, Persson E, Burgdorfer J 2007 Phys. Rev. Lett. 99 253903Google Scholar

    [46]

    Takahashi E J, Kanai T, Ishikawa K L, Nabekawa Y, Midorikawa K 2008 Phys. Rev. Lett. 101 253901Google Scholar

    [47]

    Colosimo P, Doumy G, Blaga C I, Wheeler J, Hauri C, Catoire F, Tate J, Chirla R, March A M, Paulus G G, Muller H G, Agostini P, DiMauro L F 2008 Nat. Phys. 4 386Google Scholar

    [48]

    Fu Y, Xiong H, Xu H, Yao J, Yu Y, Zeng B, Chu W, Liu X, Chen J, Cheng Y, Xu Z 2009 Phys. Rev. A 79 013802Google Scholar

    [49]

    Popmintchev T, Chen M Ch, Bahabad A, Gerrity M, Sidorenko P, Cohen O, Christov I P, Murnane M M, Kapteyn H C 2009 Proc. Natl. Acad. Sci. U.S.A. 106 10516Google Scholar

    [50]

    Shiner A D, Herrero C T, Kajumba N, Bandulet H C, Comtois D, Légaré F, Giguėre M, Kieffer J C, Corkum P B, Villeneuve D M 2009 Phys. Rev. Lett. 103 073902Google Scholar

    [51]

    Li J, Ren X M, Yin Y C, Zhao K, Chew A, Cheng Y, Cunningham E, Wang Y, Hu S Y, Wu Y, Chini M, Chang Z H 2017 Nat. Commun. 8 186

    [52]

    Pan Y, Guo F M, Jin C, Yang Y J, Ding D J 2019 Phys. Rev. A 99 033411Google Scholar

    [53]

    Wang X W, Wang L, Xiao F, Zhang D W, Lü Z H, Yuan J M, Zhao Z X 2020 Chin. Phys. Lett. 37 023201Google Scholar

    [54]

    Tate J, Auguste T, Muller H G, Saliéres P, Agostini P, DiMauro L F 2007 Phys. Rev. Lett. 98 013901Google Scholar

    [55]

    Mauritsson J, Johnsson P, Gustafsson E, L’ Huillier A, Schafer K J, Gaarde M B 2006 Phys. Rev. Lett. 97 013001Google Scholar

    [56]

    Oishi Y, Kaku M, Suda A, Kannari F, Midorikawa K 2006 Opt. Express 14 7230Google Scholar

    [57]

    Zeng Z, Cheng Y, Song X, Li R, Xu Z 2007 Phys. Rev. Lett. 98 203901Google Scholar

    [58]

    Li P C, Zhou X X, Wang G L, Zhao Z X 2009 Phys. Rev. A 80 053825Google Scholar

    [59]

    Takahashi E J, Lan P F, Mücke O D, Nabekawa Y, Midorikawa K 2010 Phys. Rev. Lett. 104 233901Google Scholar

    [60]

    Lan P F, Takahashi E J, Midorikawa K 2010 Phys. Rev. A 82 053413Google Scholar

    [61]

    Wu J, Zhang G T, Xia C L, Liu X S 2010 Phys. Rev. A 82 013411Google Scholar

    [62]

    Brugnera L, Frank F, Hoffmann D J, Torres R, Siegel T, Underwood J G, Springate E, Froud C, Turcu E I C, Tisch J W G, Marangos J P 2010 Opt. Lett. 35 23

    [63]

    Li P C, Liu I L, Chu S I 2011 Opt. Express 19 23857Google Scholar

    [64]

    Wang Z, Li Y, Wang S Y, Hong W Y, Zhang Q B, Lu P X 2013 Phys. Rev. A 87 033822Google Scholar

    [65]

    Li P C, Laughlin C, Chu S I 2014 Phys. Rev. A 89 023431Google Scholar

    [66]

    Chou Y, Li P C, Ho T S, Chu S I 2015 Phys. Rev. A 91 063408Google Scholar

    [67]

    Shao R Z, Zhai C Y, Zhang Y F, He L X, Zhu X S, Lan P F, Lu P X 2021 J. Phys. B: At. Mol. Opt. Phys. 54 064001Google Scholar

    [68]

    Chou Y, Li P C, Ho T S, Chu S I 2015 Phys. Rev. A 92 023423Google Scholar

    [69]

    Jin C, Wang G L, Wei H, Le A T, Lin C D 2014 Nat. Commun. 5 4003Google Scholar

    [70]

    Liu I L, Li P C, Chu S I 2011 Phys. Rev. A 84 033414Google Scholar

    [71]

    Li P C, Chu S I 2012 Phys. Rev. A 86 013411Google Scholar

    [72]

    叶小亮, 周效信, 赵松峰, 李鹏程 2009 物理学报 58 1579Google Scholar

    Ye X L, Zhou X X, Zhao S F, Li P C 2009 Acta Phys. Sin. 58 1579Google Scholar

    [73]

    Shelton R K, Ma L S, Kapteyn H C, Murnane M M, Hall J L, Ye J 2001 Science 293 5533

    [74]

    Hassan M Th, Grguras I, Moulet A, Luu T T, Gagnon J, Pervak V, Goulielmakis E 2012 Rev. Sci. Instrum. 83 111301Google Scholar

    [75]

    Wirth A, Hassan M TH, Grguras I, Gagnon J, Moulef A, Luu T T, Pabst S, Santra R, Alahmed Z A, Aeezzr A M, Yakovlev V S, Pervak V, Krausz F, Goulielmakis E 2011 Science 334 6053

    [76]

    Hassan M Th, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A M, Pervak V, Krausz F, Goulielmakis E 2016 Nature 530 66Google Scholar

    [77]

    Feng L Q, Chu T S 2011 Phys. Rev. A 375 3641

    [78]

    Jin C, Hong K H, Lin C D 2017 Phys. Rev. A 96 013422Google Scholar

    [79]

    Gaarde M B, Tate J L, Schafer K J 2008 J. Phys. B 41 132001Google Scholar

    [80]

    Geissler M, Tempea G, Scrinzi A, Schnürer M, Krausz F, Brabec T 1999 Phys. Rev. Lett. 83 2930Google Scholar

    [81]

    Tosa V, Kim H T, Kim I J, Nam C H 2005 Phys. Rev. A 71 063807Google Scholar

    [82]

    Jin C, Le A T, Trallero-Herrero C A, Lin C D 2011 Phys. Rev. A 84 043411Google Scholar

    [83]

    Tong X M, Chu S I 1997 Chem. Phys. 217 119Google Scholar

    [84]

    Chu X, Chu S I 2001 Phys. Rev. A 64 013406Google Scholar

    [85]

    Priori E, Cerullo G, Nisoli M, Stagira S, De Silvestri S, Villoresi P, Poletto L, Ceccherini P, Altucci C, Bruzzese R, de Lisio C 2000 Phys. Rev. A 61 063801Google Scholar

    [86]

    Tong X M, Chu S I 2000 Phys. Rev. A 61 031401Google Scholar

    [87]

    Popmintchev T, Chen M C, Popmintchev D, Arpin P, Brown S, Aliǎuskas S, Andriukaitis G, Balčiunas T, Mücke O D, Pugzlys A, Baltuška A, Shim B, Schrauth S E, Gaeta A, García C H, Plaja L, Becker A, Becker A J, Murnane M M, Kapteyn H C 2012 Science 336 1287Google Scholar

    [88]

    Carrera J J, Tong X M, Chu S I 2006 Phys. Rev. A 74 023404Google Scholar

    [89]

    Saliéres P, Antoine P, de Bohan A, Lewenstein M 1998 Phys. Rev. Lett. 81 5544Google Scholar

  • [1] 张大成, 葛韩星, 巴雨璐, 汶伟强, 张怡, 陈冬阳, 汪寒冰, 马新文. 高电荷态离子阿秒激光光谱研究展望. 物理学报, 2023, 72(19): 193201. doi: 10.7498/aps.72.20230986
    [2] 陈高. 利用三色组合脉冲激光获得孤立阿秒脉冲发射. 物理学报, 2022, 71(5): 054204. doi: 10.7498/aps.71.20211502
    [3] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [4] 郭春祥, 焦志宏, 周效信, 李鹏程. 激光强度依赖的阈下谐波产生机制. 物理学报, 2020, 69(7): 074203. doi: 10.7498/aps.69.20191883
    [5] 吕孝源, 朱若碧, 宋浩, 苏宁, 陈高. 基于正交偏振场的双光学控制方案获得孤立阿秒脉冲产生. 物理学报, 2019, 68(21): 214201. doi: 10.7498/aps.68.20190847
    [6] 唐蓉, 王国利, 李小勇, 周效信. 红外激光场中共振结构原子对极紫外光脉冲的压缩效应. 物理学报, 2016, 65(10): 103202. doi: 10.7498/aps.65.103202
    [7] 曾婷婷, 李鹏程, 周效信. 两束同色激光场和中红外场驱动氦原子在等离激元中产生的单个阿秒脉冲. 物理学报, 2014, 63(20): 203201. doi: 10.7498/aps.63.203201
    [8] 黄峰, 李鹏程, 周效信. 利用两色组合激光场驱动氦原子产生单个阿秒脉冲. 物理学报, 2012, 61(23): 233203. doi: 10.7498/aps.61.233203
    [9] 陆莹瑛, 曾志男, 郑颖辉, 邹璞, 刘灿东, 龚成, 李儒新, 徐至展. 双色光场驱动产生单个阿秒脉冲过程中的宏观效应. 物理学报, 2011, 60(10): 103202. doi: 10.7498/aps.60.103202
    [10] 陈基根, 杨玉军, 陈漾. 附加谐波脉冲生成强的39阿秒孤立脉冲. 物理学报, 2011, 60(3): 033202. doi: 10.7498/aps.60.033202
    [11] 潘慧玲, 李鹏程, 周效信. 利用两束同色激光场和半周期脉冲驱动原子产生单个阿秒脉冲. 物理学报, 2011, 60(4): 043203. doi: 10.7498/aps.60.043203
    [12] 李伟, 王国利, 周效信. 啁啾激光与半周期脉冲形成的组合场驱动原子产生单个阿秒脉冲. 物理学报, 2011, 60(12): 123201. doi: 10.7498/aps.60.123201
    [13] 成春芝, 周效信, 李鹏程. 原子在红外激光场中产生高次谐波及阿秒脉冲随波长的变化规律. 物理学报, 2011, 60(3): 033203. doi: 10.7498/aps.60.033203
    [14] 李会山, 李鹏程, 周效信. 强激光场中模型氢原子的势函数对产生高次谐波强度的影响. 物理学报, 2009, 58(11): 7633-7639. doi: 10.7498/aps.58.7633
    [15] 叶小亮, 周效信, 赵松峰, 李鹏程. 原子在两色组合激光场中产生的单个阿秒脉冲. 物理学报, 2009, 58(3): 1579-1585. doi: 10.7498/aps.58.1579
    [16] 曹 伟, 兰鹏飞, 陆培祥. 利用43飞秒的强激光脉冲实现单个阿秒脉冲输出的新机理. 物理学报, 2007, 56(3): 1608-1612. doi: 10.7498/aps.56.1608
    [17] 赵松峰, 周效信, 金 成. 强激光场中模型氢原子和真实氢原子的高次谐波与电离特性研究. 物理学报, 2006, 55(8): 4078-4085. doi: 10.7498/aps.55.4078
    [18] 张秋菊, 盛政明, 张 杰. 超短脉冲强激光与固体靶作用产生的高次谐波红移. 物理学报, 2004, 53(7): 2180-2183. doi: 10.7498/aps.53.2180
    [19] 李鹏程, 周效信, 董晨钟, 赵松峰. 强激光场中长程势与短程势原子产生高次谐波与电离特性研究. 物理学报, 2004, 53(3): 750-755. doi: 10.7498/aps.53.750
    [20] 曾志男, 李儒新, 谢新华, 徐至展. 采用双脉冲驱动产生高次谐波阿秒脉冲. 物理学报, 2004, 53(7): 2316-2319. doi: 10.7498/aps.53.2316
计量
  • 文章访问数:  4768
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-30
  • 修回日期:  2022-08-24
  • 上网日期:  2022-11-18
  • 刊出日期:  2022-12-05

/

返回文章
返回