-
为提高RE-Ba-Cu-O涂层导体在强磁场下的超导载流能力, 本文采用离子辐照的方式拟在RE-Ba-Cu-O涂层导体产生缺陷以引入磁通钉扎中心. 实验利用320 kV高电荷态离子综合研究平台对RE-Ba-Cu-O第二代高温超导带材进行H+离子辐照, 进一步采用多普勒展宽慢正电子束分析及拉曼光谱技术研究了剂量在5.0×1014—1.0×1016 ions/cm2范围内H+离子辐照后RE-Ba-Cu-O带材的微观结构的变化规律. 研究结果表明, 随H+离子辐照剂量增大, Y0.5Gd0.5Ba2Cu3O7–δ超导层中产生了包括空位或空位团簇型等类型缺陷, 缺陷增多, 缺陷类型复杂性增加; 涂层中氧原子发生重排, Cu-O面间距增加, 涂层正交相结构被破坏. 此类离子辐照产生的缺陷为磁通钉扎中心的引入奠定基础.
In order to further improve the superconducting current carrying capacity of RE-Ba-Cu-O coated conductor under the action of strong magnetic field, ion irradiation is used to generate the pinning centers of introduced magnetic flux in the RE-Ba-Cu-O coated conductor. In this work, the H+-ion irradiation of second-generation high-temperature superconductor RE-Ba-Cu-O strip is carried out by using the 320 kV high charge state ion synthesis research platform. Doppler broadened slow positron beam analysis combined with Raman spectroscopy is used to measure the change of microstructure in Y0.5Gd0.5Ba2Cu3O7–δ (YBCO) sample irradiated by H+ ions in a range of 5.0 × 1014–1.0 × 1016 ions/cm2. The positron annihilation parameters in YBCO before and after irradiation are analyzed. It is found that after 100 keV H+ ion irradiation, a large number of defects including vacancies, vacancy groups or dislocation groups are produced in the superconducting layer. The larger the irradiation dose, the more the produced vacancy type defects are and the more complex the defect types, and the annihilation mechanism of positrons in the defects changes. Raman spectroscopy results show that with the increase of H+ ion irradiation dose, the oxygen atoms in the coating rearrange, the plane spacing increases, the orthogonal phase structure of the coating is destroyed, and the degree of order decreases. The defects produced by such an ion irradiation lay a foundation for the introduction of flux pinning centers. Further research can be carried out in combination with X-ray diffractometer, transmission electron microscope, superconductivity and other testing methods to provide theoretical and practical reference for the optimization of material properties. -
Keywords:
- second-generation high temperature superconductivity /
- ion irradiation /
- positron annihilation /
- holes
[1] Bremmer H, De Haas W J 1936 Physica 3 687Google Scholar
[2] Boorse H A 1935 Nature 135 827Google Scholar
[3] 屈翠芬 1982 稀有金属材料与工程 02 104
Qu C F 1982 Rare Met. Mater. Eng. 02 104
[4] Bondarenko S I, Koverya V P, Krevsun A V, Link S I 2017 Low Temp. Phys. 43 1125Google Scholar
[5] 蔡传兵, 池长鑫, 李敏娟, 刘志勇, 鲁玉明, 郭艳群, 白传易, 陆齐, 豆文芝 2019 科学通报 64 827
Cai C B, Chi C X, Li M J, Liu Z Y, Lu Y M, Guo Y Q, Bai C Y, Lu Q, Dou W Z 2019 Sci. Bull. 64 827
[6] Wang K, Hou Q, Arnab Pal 2021 J. Super. Novel Magn. 34 1379Google Scholar
[7] 蔡传兵, 刘志勇, 鲁玉明 2011 中国材料进展 30 1
Cai C B, Liu Z Y, Lu Y M 2011 Mater. China. 30 1
[8] 刘建华, 程军胜, 王秋良 2017 电工电能新技术 36 1Google Scholar
Liu J H, Cheng J S, Wang Q L 2017 Adv. Technol. Electral. Eng. Energ. 36 1Google Scholar
[9] Dadras S, Falahati S, Dehghani 2018 Physica C 548 65Google Scholar
[10] Palau A, Valles F, Rouco V 2018 Supercond. Sci. Technol. 31 034004Google Scholar
[11] Johnson C L, Bording J K, Zhu Y 2008 Phys. Rev. B 1 775
[12] Foltyn S R, Civale L, Macmanusdriscoll J L 2007 Nat. Mater. 6 631Google Scholar
[13] 王雅, 索红莉, 毛磊 2019 无机材料学报 10 1055
Wang Y, Suo H L, Mao L 2019 J. Inorg. Mater. 10 1055
[14] Senatore C, Alessandrini M, Lucarelli A 2014 Supercond. Sci. Technol. 27 103001Google Scholar
[15] 李太广 2021 硕士学位论文 (北京: 中国科学院大学)
Li T G 2021 M. S. Thesis (Beijing: Chinese Academy of Science University) (in Chinese)
[16] Sueyoshi T, Sogo T, Nishimura T, et al. 2016 Supercond. Sci. Technol. 29 065023Google Scholar
[17] 贺玮迪, 张培源, 刘翔 2021 物理学报 70 167803Google Scholar
He W D, Zhang P Y, Liu X 2021 Acta Phys. Sin. 70 167803Google Scholar
[18] Ramachandran R, David C, Magudapathy P, Rajaraman R, Govindaraj R, Amarendra G 2019 Fusion Eng. Des. 142 55Google Scholar
[19] Zibrov M, Egger W, Heikinheimo J 2020 J. Nucl. Mater. 531 152017Google Scholar
[20] 王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (武汉: 湖北科学技术出版社) 第57页
Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Apply of Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) p57 (in Chinese)
[21] Thomas J, Bastasz R 1981 J. Appl. Phys. 52 6426Google Scholar
[22] Wilson W D, Bisson C L, Baskes M I 1981 Phys. Rev. B 24 5616Google Scholar
[23] Staikov P, Djourelov N 2013 Physica B 413 59Google Scholar
[24] Puska M J, Lanki P, Nieminen R M 1989 J. Phys. Condens. Matter. 1 6081Google Scholar
-
-
[1] Bremmer H, De Haas W J 1936 Physica 3 687Google Scholar
[2] Boorse H A 1935 Nature 135 827Google Scholar
[3] 屈翠芬 1982 稀有金属材料与工程 02 104
Qu C F 1982 Rare Met. Mater. Eng. 02 104
[4] Bondarenko S I, Koverya V P, Krevsun A V, Link S I 2017 Low Temp. Phys. 43 1125Google Scholar
[5] 蔡传兵, 池长鑫, 李敏娟, 刘志勇, 鲁玉明, 郭艳群, 白传易, 陆齐, 豆文芝 2019 科学通报 64 827
Cai C B, Chi C X, Li M J, Liu Z Y, Lu Y M, Guo Y Q, Bai C Y, Lu Q, Dou W Z 2019 Sci. Bull. 64 827
[6] Wang K, Hou Q, Arnab Pal 2021 J. Super. Novel Magn. 34 1379Google Scholar
[7] 蔡传兵, 刘志勇, 鲁玉明 2011 中国材料进展 30 1
Cai C B, Liu Z Y, Lu Y M 2011 Mater. China. 30 1
[8] 刘建华, 程军胜, 王秋良 2017 电工电能新技术 36 1Google Scholar
Liu J H, Cheng J S, Wang Q L 2017 Adv. Technol. Electral. Eng. Energ. 36 1Google Scholar
[9] Dadras S, Falahati S, Dehghani 2018 Physica C 548 65Google Scholar
[10] Palau A, Valles F, Rouco V 2018 Supercond. Sci. Technol. 31 034004Google Scholar
[11] Johnson C L, Bording J K, Zhu Y 2008 Phys. Rev. B 1 775
[12] Foltyn S R, Civale L, Macmanusdriscoll J L 2007 Nat. Mater. 6 631Google Scholar
[13] 王雅, 索红莉, 毛磊 2019 无机材料学报 10 1055
Wang Y, Suo H L, Mao L 2019 J. Inorg. Mater. 10 1055
[14] Senatore C, Alessandrini M, Lucarelli A 2014 Supercond. Sci. Technol. 27 103001Google Scholar
[15] 李太广 2021 硕士学位论文 (北京: 中国科学院大学)
Li T G 2021 M. S. Thesis (Beijing: Chinese Academy of Science University) (in Chinese)
[16] Sueyoshi T, Sogo T, Nishimura T, et al. 2016 Supercond. Sci. Technol. 29 065023Google Scholar
[17] 贺玮迪, 张培源, 刘翔 2021 物理学报 70 167803Google Scholar
He W D, Zhang P Y, Liu X 2021 Acta Phys. Sin. 70 167803Google Scholar
[18] Ramachandran R, David C, Magudapathy P, Rajaraman R, Govindaraj R, Amarendra G 2019 Fusion Eng. Des. 142 55Google Scholar
[19] Zibrov M, Egger W, Heikinheimo J 2020 J. Nucl. Mater. 531 152017Google Scholar
[20] 王少阶, 陈志权, 王波, 吴奕初, 方鹏飞, 张永学 2008 应用正电子谱学 (武汉: 湖北科学技术出版社) 第57页
Wang S J, Chen Z Q, Wang B, Wu Y C, Fang P F, Zhang Y X 2008 Apply of Positron Spectroscopy (Wuhan: Hubei Science and Technology Press) p57 (in Chinese)
[21] Thomas J, Bastasz R 1981 J. Appl. Phys. 52 6426Google Scholar
[22] Wilson W D, Bisson C L, Baskes M I 1981 Phys. Rev. B 24 5616Google Scholar
[23] Staikov P, Djourelov N 2013 Physica B 413 59Google Scholar
[24] Puska M J, Lanki P, Nieminen R M 1989 J. Phys. Condens. Matter. 1 6081Google Scholar
计量
- 文章访问数: 3271
- PDF下载量: 51
- 被引次数: 0