搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非均匀混合下氘氚聚变反应速率的理论研究

沈刚 衷斌 吴勇 王建国

引用本文:
Citation:

非均匀混合下氘氚聚变反应速率的理论研究

沈刚, 衷斌, 吴勇, 王建国

Investigation on the fusion reaction rate of deuterium and tritium under heterogeneous mixing

Shen Gang, Zhong Bin, Wu Yong, Wang Jian-Guo
PDF
HTML
导出引用
  • 激光驱动惯性约束聚变中壳层材料和聚变燃料的混合是影响聚变点火燃烧性能的关键物理问题, 聚变过程中混合物形态的演化及相应热核反应速率的物理建模直接影响数值模拟的置信度, 具有重要的科学意义和应用价值. 本文以扩散混合机制下混合形态随时间的演化规律及其对热核反应速率的影响为研究对象, 基于热力学平衡与理想气体物态方程假设, 通过解析分析与一维球几何扩散方程数值解的对比研究, 揭示了扩散混合主导下热核反应速率随混合形态演化的物理规律. 研究发现, 混合量主要通过影响燃料的体积份额直接影响热核反应速率, 由混合非均匀尺度和扩散系数共同决定的扩散时间直接影响热核反应速率的时间演化行为. 进一步利用蒙特卡罗方法直接模拟扩散过程得到的互扩散系数, 定量分析了燃料中混入低Z、高Z材料时热核反应速率随时间演化的差异, 通过与美国非均匀混合效应实验典型数值模拟结果进行对比分析, 验证了理论评估的可靠性. 本工作对我国惯性约束聚变混合效应实验的设计和改进具有重要参考意义.
    Mixing between shell material and gas fuel, caused by hydrodynamic instability, isolated defects, or kinetic effects, is the key to understand the degradation of implosion performance in the research of inertial confinement fusion. Understanding the mixing mechanism and reducing its impact is of extreme importance to achieve the ignition and high gain. The impact of mixing morphology on thermonuclear reaction rate in sub grid level has gradually attracted people’s attention in recent years due to its direct influence on burn rate and fusion process, the study on physical model of thermonuclear reaction rate in different mix morphology has important scientific significance and application value. In the paper, the dependence of thermonuclear reaction rate on mass distribution of different fuel concentrations at sub grid scale is derived. Based on thermodynamic equilibrium and ideal gas equation of state, the physical law of the evolution of the thermonuclear reaction rate with mix morphology under the dominance of diffusion mixing is revealed through analytical formula and numerical solution of diffusion equation in one-dimensional spherical geometry. It is convinced that the mixing amount directly affects the thermonuclear reaction rate by mainly affecting the volume fraction of the fuel, and the mixing diffusion time determined by heterogeneous mixing scale and diffusion coefficient directly affects the evolution behavior of the thermonuclear reaction rate. Furthermore, based on mutual diffusion coefficient obtained from direct simulation of diffusion process by Monte Carlo method, the difference of impact to thermonuclear reaction rate for low-Z Carbon and high-Z gold mixing is quantitatively investigated. Heterogeneous mix size with 0.1 μm, 0.01 μm respectively for the low-Z and high-Z mixing can be treated as atomic mix in burn rate aspect, and heterogeneous mix size with 10 μm, 1 μm respectively for the low-Z and high-Z mixing can be treated as ideal chunk mix in burn rate aspect, and heterogeneous mix size in the middle state needs to be evaluated by using the heterogeneous mixing model of thermonuclear reaction rate in the paper. Finally, the physical model is compared with 3D simulation results of the heterogeneous mixing effect experiment called “MARBLE Campaign” carried out on OMEGA laser facility, which is designed as a separated reactant experiments and capsules are filled with deuterated foam and HT gas pores of different size, covering typical mix morphology from atomic mix to chunk mix, which validate the reliability of the theoretical evaluation about the evolution of mixing morphology and its impact to thermonuclear reaction rate. This work is significant for the design and improvement of inertial confinement fusion mixing effect experiment in China.
      通信作者: 衷斌, zhong_bin@iapcm.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2017YFA0402300)和国家自然科学基金(批准号: 11934004)资助的课题
      Corresponding author: Zhong Bin, zhong_bin@iapcm.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0402300) and the National Natural Science Foundation of China (Grant No. 11934004)
    [1]

    Cabot W H, Cook A W 2006 Nat. Phys. 2 562Google Scholar

    [2]

    Zhou Y 2017 Phys. Rep. 720-722 1Google Scholar

    [3]

    Zhou Y 2017 Phys. Rep. 723-725 1Google Scholar

    [4]

    Orth C D 2016 Phys. Plasmas 23 022706Google Scholar

    [5]

    Weber C R, Clark D S, Pak A, Alfonso N, Bachmann B, Hopkins L F B, Bunn T, Crippen J, Divol L, Dittrich T, Kritcher A L, Landen O L, Le Pape B S, MacPhee A G, Marley E, Masse L P, Milovich J L, Nikroo A, Patel P K, Pickworth L A, Rice N, Smalyuk V A, Stadermann M 2020 Phys. Plasmas 27 032703Google Scholar

    [6]

    Hammel B A, Tommasini R, Clark D S, Field J, Stadermann M, Weber C 2016 J. Phys. Conf. Ser. 717 012021Google Scholar

    [7]

    Murphy T J, Douglas M R, Fincke J R, Olson R E, Cobble J A, Haines B M, Hamilton C E, Lee M N, Oertel J A, Parra-Vasquez N A G, Randolph R B, Schmidt D W, Shah R C, Smidt J M, Tregillis I L 2016 J. Phys. Conf. Ser. 717 012072Google Scholar

    [8]

    Murphy T J, Albright B J, Douglas M R, Cardenas T, Cooley J H, Day T H, Denissen N A, Gore R A, Gunderson M A, Haack J R, Haines B M, Hamilton C E, Hartouni E P, Kim Y, Kozlowski P M, Lee M N, Oertel J A, Olson R E, Yin L 2021 High Energy Density Phys. 38 100929Google Scholar

    [9]

    Haines B M, Shah R C, Smidt J M, Albright B J, Cardenas T, Douglas M R, Forrest C, Glebov V Y, Gunderson M A, Hamilton C E, Henderson K C, Kim Y, Lee M N, Murphy T J, Oertel J A, Olson R E, Patterson B M, Randolph R B, Schmidt D W 2020 Nat. Commun. 11 544Google Scholar

    [10]

    Haines B M, Shah R C, Smidt J M, Albright B J, Cardenas T, Douglas M R, Forrest C, Glebov V Y, Gunderson M A, Hamilton C, Henderson K, Kim Y, Lee M N, Murphy T J, Oertel J A, Olson R E, Patterson B M, Randolph R B, Schmidt D 2020 Phys. Plasmas 27 102701Google Scholar

    [11]

    Moses E I, Atherton J, Lagin L, Larson D, Keane C, MacGowan B, Patterson R, Spaeth M, Van Wonterghem B, Wegner P, Kauffman R 2016 J. Phys. Conf. Ser. 688 012073Google Scholar

    [12]

    Boehly T R, Brown D L, Craxton R S, Keck R L, Knauer J P, Kelly J H, Kessler T J, Kumpan S A, Bucks S J, Letzring S A, Marshall F J, McCrory R L, Morse S F B, Seka W, Soures J M, Verdon C P 1997 Opt. Commun. 133 495Google Scholar

    [13]

    Pu Y D, Luo X, Zhang L, Sun C K, Hu Z M, Shen G, Wang X R, Tang Q, Yuan Z, Wang F, Yang D, Yang J M, Jiang S E, Ding Y K, Wang J G 2020 Phys. Rev. E 102 023204Google Scholar

    [14]

    Peng H, Zhang X M, Wei X, Zheng W, Jing F, Sui Z, Fan D, Lin Z 1999 Proc. SPIE 3492 25

    [15]

    Ristorcelli J R 2017 Phys. Fluids 29 020705Google Scholar

    [16]

    Cook A W, Riley J J 1994 Phys. Fluids 6 2868Google Scholar

    [17]

    Dimotakis P E 2005 Annu. Rev. Fluid Mech. 37 329Google Scholar

    [18]

    Girimaji S S 1991 Combust. Sci. Tech. 78 177Google Scholar

    [19]

    Ticknor C, Kress J D, Collins L A, Clérouin J, Arnault P, Decoster A 2016 Phys. Rev. E 93 063208Google Scholar

    [20]

    Molvig K, Simakov A N, Vold E L 2014 Phys. Plasmas 21 092709Google Scholar

    [21]

    Stanton L G, Murillo M S 2016 Phys. Rev. E 93 043203Google Scholar

    [22]

    White A J, Ticknor C, Meyer E R, Kress J D, Collins L A 2019 Phys. Rev. E 100 033213Google Scholar

    [23]

    查普曼 L, 考林 T G 著 (刘大有, 王伯懿 译) 1970 非均匀气体的数学理论 (北京: 科学出版社) 第137—139页

    Chapman S, Cowling T G (translated by Liu D Y, Wang B Y) 1970 The Mathematical Theory of Non-uniform Gases (Beijing: Science Press) pp137–139 (in Chinese)

    [24]

    Brueckner K A, Jorna S 1974 Rev. Mod. Phys. 46 325Google Scholar

  • 图 1  不同混合形态下聚变燃料质量分布函数$ m(c) $的示意图 (a) 理想“颗粒”混合; (b) 非均匀混合; (c)均匀原子混合

    Fig. 1.  Schematic diagram of fusion fuel mass distribution function $ m(c) $ under different mix morphology: (a) Ideal chunk mix; (b) heterogeneous mix; (c) homogeneous atomic mix

    图 2  不同参数β函数分布的m(c)及相应的热核反应速率修正因子 (a) 不同参数下的β函数分布; (b)相应修正因子η

    Fig. 2.  m(c) taken as the distribution of β function with different parameters and corresponding correction factor of thermonuclear reaction rate: (a) β function distribution with different parameter; (b) corresponding η

    图 3  “颗粒”+氘氚小球系统互扩散过程示意图

    Fig. 3.  Schematic diagram of mutual diffusion process of chunk+DT system

    图 4  热核反应速率修正因子数值解与解析解的比较

    Fig. 4.  Comparison of numerical and analytical solutions for the correction factor of thermonuclear reaction rate

    图 5  跟踪样本离子扩散过程的示意图

    Fig. 5.  Schematic diagram of tracking ion diffusion process

    图 6  蒙卡模拟的离子数密度分布随时间演化行为与扩散方程数值解的比较 (数值解的扩散系数为2243 $ {\rm{cm}}^2/{\rm{s}} $, 到心时间为0.9 ns)

    Fig. 6.  Comparison between time evolution of ion number density distribution simulated by MC and numerical solution of diffusion equation. (diffusion coefficient of numerical solution is 2243$ {\rm{cm}}^2/{\rm{s}} $, time of diffusion to center is 0.9 ns)

    图 7  蒙卡模拟给出的氘自扩散系数与动理学理论的比较 (a) 随数密度的变化; (b) 随温度的变化

    Fig. 7.  Comparison between self diffusion coefficient of deuterium given by MC simulation and kinectic theory: (a) With number density; (b) with temperature

    图 8  蒙卡模拟给出的互扩散系数与动理学公式的比较 (a) 氘与碳; (b) 氘与金

    Fig. 8.  Comparison of the mutual diffusion coefficient between MC simulation and kinetic theories: (a) Carbon and deuterium; (b) gold and deuterium

    图 9  扩散混合下热核反应速率修正因子时间演化与平均燃料浓度的关系

    Fig. 9.  Time evolution of thermonuclear reaction rate correction factor with different average fuel concentration under diffusion mixing

    图 10  热核反应速率修正因子时间演化与颗粒尺度的关系(取燃料平均浓度0.5, 扩散系数100$ {\rm{cm}}^2/{\rm{s}} $)

    Fig. 10.  Time evolution of thermonuclear reaction rate correction factor with different chunk size under diffusion mixing

    图 11  颗粒尺度概率密度分布及不同分布下热核反应速率修正因子时间演化的差异

    Fig. 11.  Time evolution of thermonuclear reaction rate correction factor with different chunk size distribution under diffusion mixing

    图 12  金颗粒 + 氘、碳颗粒 + 氘的热核反应速率修正因子时间演化的比较

    Fig. 12.  Comparison of rate correction factors for gold + deuterium system and carbon + deuterium system

    图 13  初始不同气孔尺度靶丸聚变性能随聚变时间的变化及与Haines等[10]三维计算结果的比较

    Fig. 13.  Fusion performance of different initial pore size with the fusion time and comparison with three dimensional result simulated by Haines et al.[10]

  • [1]

    Cabot W H, Cook A W 2006 Nat. Phys. 2 562Google Scholar

    [2]

    Zhou Y 2017 Phys. Rep. 720-722 1Google Scholar

    [3]

    Zhou Y 2017 Phys. Rep. 723-725 1Google Scholar

    [4]

    Orth C D 2016 Phys. Plasmas 23 022706Google Scholar

    [5]

    Weber C R, Clark D S, Pak A, Alfonso N, Bachmann B, Hopkins L F B, Bunn T, Crippen J, Divol L, Dittrich T, Kritcher A L, Landen O L, Le Pape B S, MacPhee A G, Marley E, Masse L P, Milovich J L, Nikroo A, Patel P K, Pickworth L A, Rice N, Smalyuk V A, Stadermann M 2020 Phys. Plasmas 27 032703Google Scholar

    [6]

    Hammel B A, Tommasini R, Clark D S, Field J, Stadermann M, Weber C 2016 J. Phys. Conf. Ser. 717 012021Google Scholar

    [7]

    Murphy T J, Douglas M R, Fincke J R, Olson R E, Cobble J A, Haines B M, Hamilton C E, Lee M N, Oertel J A, Parra-Vasquez N A G, Randolph R B, Schmidt D W, Shah R C, Smidt J M, Tregillis I L 2016 J. Phys. Conf. Ser. 717 012072Google Scholar

    [8]

    Murphy T J, Albright B J, Douglas M R, Cardenas T, Cooley J H, Day T H, Denissen N A, Gore R A, Gunderson M A, Haack J R, Haines B M, Hamilton C E, Hartouni E P, Kim Y, Kozlowski P M, Lee M N, Oertel J A, Olson R E, Yin L 2021 High Energy Density Phys. 38 100929Google Scholar

    [9]

    Haines B M, Shah R C, Smidt J M, Albright B J, Cardenas T, Douglas M R, Forrest C, Glebov V Y, Gunderson M A, Hamilton C E, Henderson K C, Kim Y, Lee M N, Murphy T J, Oertel J A, Olson R E, Patterson B M, Randolph R B, Schmidt D W 2020 Nat. Commun. 11 544Google Scholar

    [10]

    Haines B M, Shah R C, Smidt J M, Albright B J, Cardenas T, Douglas M R, Forrest C, Glebov V Y, Gunderson M A, Hamilton C, Henderson K, Kim Y, Lee M N, Murphy T J, Oertel J A, Olson R E, Patterson B M, Randolph R B, Schmidt D 2020 Phys. Plasmas 27 102701Google Scholar

    [11]

    Moses E I, Atherton J, Lagin L, Larson D, Keane C, MacGowan B, Patterson R, Spaeth M, Van Wonterghem B, Wegner P, Kauffman R 2016 J. Phys. Conf. Ser. 688 012073Google Scholar

    [12]

    Boehly T R, Brown D L, Craxton R S, Keck R L, Knauer J P, Kelly J H, Kessler T J, Kumpan S A, Bucks S J, Letzring S A, Marshall F J, McCrory R L, Morse S F B, Seka W, Soures J M, Verdon C P 1997 Opt. Commun. 133 495Google Scholar

    [13]

    Pu Y D, Luo X, Zhang L, Sun C K, Hu Z M, Shen G, Wang X R, Tang Q, Yuan Z, Wang F, Yang D, Yang J M, Jiang S E, Ding Y K, Wang J G 2020 Phys. Rev. E 102 023204Google Scholar

    [14]

    Peng H, Zhang X M, Wei X, Zheng W, Jing F, Sui Z, Fan D, Lin Z 1999 Proc. SPIE 3492 25

    [15]

    Ristorcelli J R 2017 Phys. Fluids 29 020705Google Scholar

    [16]

    Cook A W, Riley J J 1994 Phys. Fluids 6 2868Google Scholar

    [17]

    Dimotakis P E 2005 Annu. Rev. Fluid Mech. 37 329Google Scholar

    [18]

    Girimaji S S 1991 Combust. Sci. Tech. 78 177Google Scholar

    [19]

    Ticknor C, Kress J D, Collins L A, Clérouin J, Arnault P, Decoster A 2016 Phys. Rev. E 93 063208Google Scholar

    [20]

    Molvig K, Simakov A N, Vold E L 2014 Phys. Plasmas 21 092709Google Scholar

    [21]

    Stanton L G, Murillo M S 2016 Phys. Rev. E 93 043203Google Scholar

    [22]

    White A J, Ticknor C, Meyer E R, Kress J D, Collins L A 2019 Phys. Rev. E 100 033213Google Scholar

    [23]

    查普曼 L, 考林 T G 著 (刘大有, 王伯懿 译) 1970 非均匀气体的数学理论 (北京: 科学出版社) 第137—139页

    Chapman S, Cowling T G (translated by Liu D Y, Wang B Y) 1970 The Mathematical Theory of Non-uniform Gases (Beijing: Science Press) pp137–139 (in Chinese)

    [24]

    Brueckner K A, Jorna S 1974 Rev. Mod. Phys. 46 325Google Scholar

  • [1] 李晨璞, 吴魏霞, 张礼刚, 胡金江, 谢革英, 郑志刚. 具有不同扩散系数的活性手征粒子分离. 物理学报, 2024, 73(20): 200201. doi: 10.7498/aps.73.20240686
    [2] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离. 物理学报, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [3] 楚硕, 郭春文, 王志军, 李俊杰, 王锦程. 浓度相关的扩散系数对定向凝固枝晶生长的影响. 物理学报, 2019, 68(16): 166401. doi: 10.7498/aps.68.20190603
    [4] 张振霞, 王辰宇, 李强, 吴书贵. 准线性扩散系数与空间高能电子特征物理量的关系研究. 物理学报, 2014, 63(7): 079401. doi: 10.7498/aps.63.079401
    [5] 付宏洋, 文德华, 燕晶. 考虑非牛顿引力下的快速转动混合星性质. 物理学报, 2012, 61(20): 209701. doi: 10.7498/aps.61.209701
    [6] 王振中, 王楠, 姚文静. 低扩散系数对Pd77Cu6Si17合金易非晶化的影响. 物理学报, 2010, 59(10): 7431-7436. doi: 10.7498/aps.59.7431
    [7] 吕耀平, 顾国锋, 陆华春, 戴瑜, 唐国宁. 在不同扩散系数下反应扩散平面波的折射. 物理学报, 2009, 58(5): 2996-3000. doi: 10.7498/aps.58.2996
    [8] 狄尧民, 胡宝林, 刘冬冬, 颜士明. 二非正交纯态相混合的concurrence. 物理学报, 2006, 55(8): 3869-3874. doi: 10.7498/aps.55.3869
    [9] 卢义刚, 冯金垣, 董彦武, 仝 杰. 二元有机混合液声速压力系数(C/P)T. 物理学报, 1999, 48(11): 2087-2091. doi: 10.7498/aps.48.2087
    [10] 卢义刚, 冯金垣, 董彦武, 仝 杰. 二元有机混合液声速温度系数(C/T)P. 物理学报, 1999, 48(11): 2082-2086. doi: 10.7498/aps.48.2082
    [11] 汤晓明, 魏赛珍, 毛祖遂, 陈晓峰, 郑永铭. 扩散系数局域变化对生长亚单层薄膜的影响. 物理学报, 1999, 48(6): 1126-1131. doi: 10.7498/aps.48.1126
    [12] 李子荣, 孟庆安, 管荻华, 王 刚. PAN为基凝胶聚合物电解质自扩散系数的NMR研究. 物理学报, 1999, 48(6): 1175-1178. doi: 10.7498/aps.48.1175
    [13] 杜九林. 太阳内部 3He核反应扩散系统的非线性分析. 物理学报, 1998, 47(8): 1404-1408. doi: 10.7498/aps.47.1404
    [14] 王刚, 杨国权, 管荻华, 姜莉, 帕斯夸利·毛罗, 皮斯托亚·詹弗兰科, 解思深. 阻抗谱法确定扩散系数. 物理学报, 1995, 44(12): 1964-1968. doi: 10.7498/aps.44.1964
    [15] 张希清, 赵家龙, 秦伟平, 窦凯, 黄世华. 用非相干光时间延迟四波混频测量二极扩散系数. 物理学报, 1993, 42(3): 417-421. doi: 10.7498/aps.42.417
    [16] 李正瀛. 电负性混合气体临界击穿场强与电子附着速率的探讨. 物理学报, 1990, 39(9): 1400-1406. doi: 10.7498/aps.39.1400
    [17] 王克逸;汪景昌. 与浓度相关的扩散系数计算--逼近法. 物理学报, 1989, 38(8): 1329-1333. doi: 10.7498/aps.38.1329
    [18] 胡孝勇, 伊藤晴雄, 生田信皓. 利用Townsend放电测定N2(A3∑u+)亚稳态分子的扩散系数和猝灭速率常数. 物理学报, 1989, 38(12): 2039-2043. doi: 10.7498/aps.38.2039
    [19] 许金奎. 热核反应中次级粒子的总产额和能谱. 物理学报, 1980, 29(9): 1151-1157. doi: 10.7498/aps.29.1151
    [20] 谢党. 测定半导体扩散层表面浓度、p-n结深度及扩散系数的霍耳效应法. 物理学报, 1966, 22(8): 877-885. doi: 10.7498/aps.22.877
计量
  • 文章访问数:  3393
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 修回日期:  2022-08-24
  • 上网日期:  2022-12-21
  • 刊出日期:  2023-01-05

/

返回文章
返回