-
本文报道了一种基于1,2-二氰基苯 (O-DCB) 与聚 (3-己基噻吩) (P3HT) 复合薄膜的高耐久性有机阻变存储器 (ORSM). ORSM表现出非易失型和双极性存储特性, 电流开关比 (Ion/off) 超过104, 耐久性高达400次, 保持时间为105 s, Vset和Vreset分别为–6.9 V和2.6 V. 器件的阻变机理是陷阱电荷的俘获与去俘获, 即负偏压或正偏压诱导电荷陷阱的填充和抽离过程, 导致电荷传输方式的改变, 从而产生高低电阻间的切换. 器件的高耐久性一方面是由于O-DCB较小的分子尺寸和较好的溶解性形成了均匀分布且稳定的电荷陷阱, 另一方面是由于O-DCB较好的分子平面促进了其与P3HT共轭链的相互作用. 该研究为高耐久性ORSM的实现提供了一种有效途径, 加快了ORSM的商业化应用进程.
-
关键词:
- 有机阻变存储器 /
- 聚合物/小分子复合薄膜 /
- 分子平面性 /
- 高耐久性
As the emerging data storage technology, organic resistive switching memory (ORSM) possesses numerous superiorities as the substitution for or the complementation of the traditional Si-based semiconductor memory. Poly(3-hexylthiophene) (P3HT) has been widely used as a polymer donor component of ORSMs due to its advantages of high mobility and high chemical stability. Up to now, ORSM based on P3HT has achieved high on/off current ratio (Ion/off), but the endurance still needs to be improved. Herein, high endurance ORSMs based on 1,2-dicyanobenzene (O-DCB) and P3HT composite are fabricated by spin coating and thermally evaporating, and exhibit non-volatile and bipolar memory characteristics. The ORSMs based on P3HT:15 wt.% O-DCB and P3HT:30 wt.% O-DCB exhibit the values of Ion/off exceeding 104 and 103 respectively, and both of them exert excellent endurance of 400 times, retention time of more than 105 s. The mechanism of the switching is explored by linear fitting of I-V curve and electrochemical impedance spectrum . The results indicate that the filling and vacant process of the charge traps induced by O-DCB and the inherent traps in P3HT bulk lead to a resistive switching effect. The negative or positive bias triggers off trapping and detrapping process, which leads the conductive way of charges to change, resulting in the resistive switching effect. The excellent endurance of ORSM is attributed to the uniform distribution of O-DCB in P3HT bulk because of the small molecular size and high solubility of O-DCB, resulting in well-distributed and stable charge traps. On the other hand, the out-bound planarity of O-DCB molecular promotes the close interaction with the conjugated chains of P3HT. This study enlightens an effective strategy to carry out high-endurance ORSM and facilitates their electronic applications in future.-
Keywords:
- organic resistive switching memory /
- polymer/molecule composite film /
- molecular planarity /
- high endurance
[1] Zhang Z, Wang Z, Shi T, Bi C, Rao F, Cai Y, Liu Q, Wu H, Zhou P 2020 InfoMat 2 261Google Scholar
[2] Service R F 2018 Science 361 321Google Scholar
[3] Debenedictis E P 2019 Computer 52 114Google Scholar
[4] Zahoor F, Azni Zulkifli T Z, Khanday F A 2020 Nanoscale Res. Lett. 15 90Google Scholar
[5] Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951Google Scholar
[6] Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S, Hersam M C 2018 Nature 554 500Google Scholar
[7] Gismatulin A A, Orlov O M, Gritsenko V A, Kruchinin V N, Mizginov D S, Krasnikov G Y 2020 Appl. Phys. Lett. 116 203502Google Scholar
[8] Younis A, Lin C H, Guan X, Shahrokhi S, Huang C Y, Wang Y, He T, Singh S, Hu L, Retamal J R D, He J H, Wu T 2021 Adv. Mater. 33 2005000Google Scholar
[9] 朱佳雪, 张续猛, 王睿, 刘琦 2022 物理学报 71 148503Google Scholar
Zhu J X, Zhang X M, Wang R, Liu Q 2022 Acta Phys. Sin. 71 148503Google Scholar
[10] 古亚娜, 梁燕, 王光义, 夏晨阳 2022 物理学报 71 110501Google Scholar
Gu Y N, Liang Y, Wang G Y, Xia C Y 2022 Acta Phys. Sin. 71 110501Google Scholar
[11] Paul F, Paul S 2022 Small 18 2106442Google Scholar
[12] Lee J H, Park S P, Park K, Kim H J 2019 Adv. Funct. Mater. 30 1907437
[13] Gao S, Yi X, Shang J, Liu G, Li R W 2019 Chem. Soc. Rev. 48 1531Google Scholar
[14] 卢颖, 陈威林, 高双, 李润伟 2020 材料导报 34 1146Google Scholar
Lu Y, Chen W L, Gao S, Li R W 2020 Mat. Rep. 34 1146Google Scholar
[15] 陈威林, 高双, 伊晓辉, 尚杰, 刘钢, 李润伟 2019 功能高分子学报 32 434
Chen W L, Gao S, Yi X H, Shang J, Liu G, Li R W 2019 J. Funct. Polym. 32 434
[16] Lian H, Cheng X Z, Hao H T, Han J B, Lau M T, Li Z K, Zhou Z, Dong Q C, Wong W Y 2022 Chem. Soc. Rev. 51 1926Google Scholar
[17] 孙艳梅 2017 博士学位论文 (哈尔滨: 黑龙江大学)
Sun Y M 2017 Ph. D. Dissertation (Haerbin: Heilongjiang University) (in Chinese)
[18] 朱志强 2021 硕士学位论文 (常州: 常州大学)
Zhu Z Q 2021 M.S. Thesis (Changzhou: Changzhou University) (in Chinese)
[19] Hou J, Zhang B, Li D, Fu Y, Liu G, Chen Y 2019 J. Mater. Chem. C 7 14664Google Scholar
[20] Narasimhan Arunagirinathan R, Gopikrishna P, Das D, Iyer P K 2019 ACS Appl. Electron. Mater. 1 600Google Scholar
[21] Sun Y, Li L, Wen D, Bai X 2015 J. Phys. Chem. C 119 19520Google Scholar
[22] Po R, Bernardi A, Calabrese A, Carbonera C, Corso G, Pellegrino A 2014 Energy Environ. Sci. 7 925Google Scholar
[23] Li Y, Zhang Y, Wu B, Pang S, Yuan X, Duan C, Huang F, Cao Y 2022 Solar RRL 2200073
[24] Xian K, Liu Y, Liu J, Yu J, Xing Y, Peng Z, Zhou K, Gao M, Zhao W, Lu G, Zhang J, Hou J, Geng Y, Ye L 2022 J. Mater. Chem. A 10 3418Google Scholar
[25] Liu M, Fan Q, Yang K, Zhao Z, Zhao X, Zhou Z, Zhang J, Lin F, Jen A K Y, Zhang F 2022 Sci. China Chem. 65 1642Google Scholar
[26] Song J, Guo T, Huang C, Liu M, Cui H, Huang W, Wang Y, Li T 2022 Chem. Eng. J. 446
[27] Chaudhary D, Munjal S, Khare N, Vankar V D 2018 Carbon 130 553Google Scholar
[28] Jin Z, Liu G, Wang J 2013 AIP Adv. 3 052113Google Scholar
[29] Liang J, Su Y, Lin Q, Zhou H, Zhang S, Pei Y, Hu R 2014 Semicond. Sci. Technol. 29 115029Google Scholar
[30] Sherazi S S H, Rehman M M, Ur Rehman H M M, Kim W Y, Siddiqui G U, Karimov K S 2020 Semicond. Sci. Technol. 35 125012Google Scholar
[31] Sim R, Ming W, Setiawan Y, Lee P S 2012 J. Phys. Chem. C 117 677
[32] Wang P, Liu Q, Zhang C Y, Jiang J, Wang L H, Chen D Y, Xu Q F, Lu J M 2015 Nanoscale 7 19579Google Scholar
[33] 丛麟权, 李文骁, 马瑛, 曲旭坡, 邢颖 2020 染料与染色 57 24
Cong L Q, Li W X, Ma Y, Qu X P, Xing Y 2020 Dyestuffs and Coloration 57 24
[34] 王述 1983 辽宁化工 56
Wang S 1983 Liaoning Chem. Ind. 56 (in Chinses)
[35] Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar
[36] Yuan J, Wang Y, Li L, Wang S, Tang X, Wang H, Li M, Zheng C, Chen R 2020 J. Phys. Chem. C 124 10129Google Scholar
[37] Zhang L, Li Y, Shi J, Shi G, Cao S 2013 Mater. Chem. Phys. 142 626Google Scholar
[38] Wu J Y, Lai T H, Fang M J, Chen J Y, Kuo M Y, Chiu Y H, Hsieh P Y, Tsao C W, Chang H E, Chang Y P, Wang C Y, Chen C Y, Sone M, Wu W W, Chang T F M, Hsu Y J 2022 ACS Appl. Nano Mater. 5 8404Google Scholar
[39] Khan M U, Hassan G, Raza M A, Bae J, Kobayashi N P 2019 J. Mater. Sci.: Mater. Electron. 30 4607Google Scholar
[40] Rose A 1955 Phys. Rev. 97 1538Google Scholar
[41] Cölle M, Büchel M, De Leeuw D M 2006 Org. Electron. 7 305Google Scholar
[42] Jiang X L, Zhao Y G, Chen Y S, Li D, Luo Y X, Zhao D Y, Sun Z, Sun J R, Zhao H W 2013 Appl. Phys. Lett. 102 253507Google Scholar
[43] Pan S, Zhu Z, Yu H, Lan W, Wei B, Guo K 2021 J. Mater. Chem. C 9 5643Google Scholar
[44] Yamazaki Y, Yamashita K, Tani Y, Aoyama T, Ogawa T 2020 J. Mater. Chem. C 8 14423Google Scholar
[45] Barsukov Y, Macdonald J 2005 Impedance Spectroscopy: Theory, Experiment, and Applications (New Jersey: Wiley-Interscience) pp1–528
[46] Zhou G, Yao Y, Lu Z, Yang X, Han J, Wang G, Rao X, Li P, Liu Q, Song Q 2017 Nanotechnology 28 425202Google Scholar
[47] Lai Y C, Ohshimizu K, Lee W Y, Hsu J C, Higashihara T, Ueda M, Chen W C 2011 J. Mater. Chem. 21 14502Google Scholar
[48] Chen J C, Liu C L, Sun Y S, Tung S H, Chen W C 2012 Soft Matter 8 526Google Scholar
[49] Lian S L, Liu C L, Chen W C 2011 ACS Appl. Mater. Interfaces 3 4504Google Scholar
[50] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌 2020 物理学报 69 198801Google Scholar
Zhou P C, Zhang W D, Gu J L, Chen H M, Hu T D, Pu H Y, Lan W X, Wei B 2020 Acta Phys. Sin. 69 198801Google Scholar
[51] Meyer E A, Castellano R K, Diederich F 2003 Angew. Chem., Int. Ed. Engl. 42 1210Google Scholar
-
图 2 (a) O-DCB的吸收光谱、激发光谱和发射光谱; P3HT, P3HT: 15% O-DCB和P3HT: 30% O-DCB的 (b) 吸收光谱和 (c) 荧光光谱; P3HT, P3HT: 15% O-DCB, P3HT: 30% O-DCB和P3HT: 45% O-DCB薄膜的AFM形貌图; P3HT: 15% O-DCB和P3HT: 30% O-DCB薄膜S和N元素的分布图
Fig. 2. (a) Absorption, excitation and emission spectra of O-DCB; (b) normalized UV-vis absorption spectra and (c) PL spectra of P3HT, P3HT: 15% O-DCB and P3HT: 30% O-DCB. AFM images of (d) P3HT, (e) P3HT: 15% O-DCB, (f) P3HT: 30% O-DCB, and (g) P3HT: 45% O-DCB films. Distribution maps of S and N elements of (h)(i) P3HT: 15% O-DCB and (j)(k) P3HT: 30% O-DCB films.
图 3 (a) P3HT, (b) P3HT: 15% O-DCB, (c) P3HT: 30% O-DCB, (d) P3HT: 45% O-DCB器件的I-V特性; (e) P3HT: 15% O-DCB和 (f) P3HT: 30% O-DCB器件的Ion/off-V特性; (g) P3HT: 15% O-DCB和 (h) P3HT: 30% O-DCB器件的切换速度测试
Fig. 3. I-V characterizations of devices with (a) P3HT, (b) P3HT:15% O-DCB, (c) P3HT:30% O-DCB, and (d) P3HT:45% O-DCB. Ion/off-V characterizations of devices with (e) P3HT:15% O-DCB and (f) P3HT:30% O-DCB. Switching speed test of devices with (g) P3HT:15% O-DCB and (h) P3HT:30% O-DCB.
图 5 (a) D1和 (b) D2的I-V曲线的线性拟合结果; (c) P3HT器件以及 (d)(f) D1和 (e)(g) D2分别在(d)(e) LRS和(f)(g) HRS的Nyquist图; (h) 阻抗的虚部与频率关系图
Fig. 5. Linear fitting of the I-V curves of (a) D1 and (b) D2. Nyquist plots of (c) P3HT based device, (d)(f) D1 and (e)(g) D2 in (d)(e) LRS and (f)(g) HRS; (h) plots of the imaginary part of the impedance vs. frequency of devices in LRS.
图 6 (a) ORSM的能级结构图; (b)—(f)器件的阻变机理示意图 (b) 陷阱电荷俘获阶段; (c) 陷阱填满阶段; (d) 陷阱电荷去俘获阶段; (e) 空陷阱阶段; (f) 电流泄露
Fig. 6. (a) Energy diagram of the ORSM; (b)–(f) Schematic illustration of the switching mechanism: Charge transfer processes of (b) trap filling, (c) fully filling trap, (d) trap pumping, (e) vacant trap, and (f) current leakage.
表 1 D1和D2的器件参数汇总
Table 1. Summary of device parameters for D1 and D2.
器件 Vset/V Vreset/V Ion/off 耐久性 保持性/s 存储类型 D1 –6.9 2.6 1.5×104 400 105 Flash D2 –6.2 2.8 1.0×103 400 105 Flash -
[1] Zhang Z, Wang Z, Shi T, Bi C, Rao F, Cai Y, Liu Q, Wu H, Zhou P 2020 InfoMat 2 261Google Scholar
[2] Service R F 2018 Science 361 321Google Scholar
[3] Debenedictis E P 2019 Computer 52 114Google Scholar
[4] Zahoor F, Azni Zulkifli T Z, Khanday F A 2020 Nanoscale Res. Lett. 15 90Google Scholar
[5] Wong H S P, Lee H Y, Yu S, Chen Y S, Wu Y, Chen P S, Lee B, Chen F T, Tsai M J 2012 Proc. IEEE 100 1951Google Scholar
[6] Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S, Hersam M C 2018 Nature 554 500Google Scholar
[7] Gismatulin A A, Orlov O M, Gritsenko V A, Kruchinin V N, Mizginov D S, Krasnikov G Y 2020 Appl. Phys. Lett. 116 203502Google Scholar
[8] Younis A, Lin C H, Guan X, Shahrokhi S, Huang C Y, Wang Y, He T, Singh S, Hu L, Retamal J R D, He J H, Wu T 2021 Adv. Mater. 33 2005000Google Scholar
[9] 朱佳雪, 张续猛, 王睿, 刘琦 2022 物理学报 71 148503Google Scholar
Zhu J X, Zhang X M, Wang R, Liu Q 2022 Acta Phys. Sin. 71 148503Google Scholar
[10] 古亚娜, 梁燕, 王光义, 夏晨阳 2022 物理学报 71 110501Google Scholar
Gu Y N, Liang Y, Wang G Y, Xia C Y 2022 Acta Phys. Sin. 71 110501Google Scholar
[11] Paul F, Paul S 2022 Small 18 2106442Google Scholar
[12] Lee J H, Park S P, Park K, Kim H J 2019 Adv. Funct. Mater. 30 1907437
[13] Gao S, Yi X, Shang J, Liu G, Li R W 2019 Chem. Soc. Rev. 48 1531Google Scholar
[14] 卢颖, 陈威林, 高双, 李润伟 2020 材料导报 34 1146Google Scholar
Lu Y, Chen W L, Gao S, Li R W 2020 Mat. Rep. 34 1146Google Scholar
[15] 陈威林, 高双, 伊晓辉, 尚杰, 刘钢, 李润伟 2019 功能高分子学报 32 434
Chen W L, Gao S, Yi X H, Shang J, Liu G, Li R W 2019 J. Funct. Polym. 32 434
[16] Lian H, Cheng X Z, Hao H T, Han J B, Lau M T, Li Z K, Zhou Z, Dong Q C, Wong W Y 2022 Chem. Soc. Rev. 51 1926Google Scholar
[17] 孙艳梅 2017 博士学位论文 (哈尔滨: 黑龙江大学)
Sun Y M 2017 Ph. D. Dissertation (Haerbin: Heilongjiang University) (in Chinese)
[18] 朱志强 2021 硕士学位论文 (常州: 常州大学)
Zhu Z Q 2021 M.S. Thesis (Changzhou: Changzhou University) (in Chinese)
[19] Hou J, Zhang B, Li D, Fu Y, Liu G, Chen Y 2019 J. Mater. Chem. C 7 14664Google Scholar
[20] Narasimhan Arunagirinathan R, Gopikrishna P, Das D, Iyer P K 2019 ACS Appl. Electron. Mater. 1 600Google Scholar
[21] Sun Y, Li L, Wen D, Bai X 2015 J. Phys. Chem. C 119 19520Google Scholar
[22] Po R, Bernardi A, Calabrese A, Carbonera C, Corso G, Pellegrino A 2014 Energy Environ. Sci. 7 925Google Scholar
[23] Li Y, Zhang Y, Wu B, Pang S, Yuan X, Duan C, Huang F, Cao Y 2022 Solar RRL 2200073
[24] Xian K, Liu Y, Liu J, Yu J, Xing Y, Peng Z, Zhou K, Gao M, Zhao W, Lu G, Zhang J, Hou J, Geng Y, Ye L 2022 J. Mater. Chem. A 10 3418Google Scholar
[25] Liu M, Fan Q, Yang K, Zhao Z, Zhao X, Zhou Z, Zhang J, Lin F, Jen A K Y, Zhang F 2022 Sci. China Chem. 65 1642Google Scholar
[26] Song J, Guo T, Huang C, Liu M, Cui H, Huang W, Wang Y, Li T 2022 Chem. Eng. J. 446
[27] Chaudhary D, Munjal S, Khare N, Vankar V D 2018 Carbon 130 553Google Scholar
[28] Jin Z, Liu G, Wang J 2013 AIP Adv. 3 052113Google Scholar
[29] Liang J, Su Y, Lin Q, Zhou H, Zhang S, Pei Y, Hu R 2014 Semicond. Sci. Technol. 29 115029Google Scholar
[30] Sherazi S S H, Rehman M M, Ur Rehman H M M, Kim W Y, Siddiqui G U, Karimov K S 2020 Semicond. Sci. Technol. 35 125012Google Scholar
[31] Sim R, Ming W, Setiawan Y, Lee P S 2012 J. Phys. Chem. C 117 677
[32] Wang P, Liu Q, Zhang C Y, Jiang J, Wang L H, Chen D Y, Xu Q F, Lu J M 2015 Nanoscale 7 19579Google Scholar
[33] 丛麟权, 李文骁, 马瑛, 曲旭坡, 邢颖 2020 染料与染色 57 24
Cong L Q, Li W X, Ma Y, Qu X P, Xing Y 2020 Dyestuffs and Coloration 57 24
[34] 王述 1983 辽宁化工 56
Wang S 1983 Liaoning Chem. Ind. 56 (in Chinses)
[35] Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C 2012 Nature 492 234Google Scholar
[36] Yuan J, Wang Y, Li L, Wang S, Tang X, Wang H, Li M, Zheng C, Chen R 2020 J. Phys. Chem. C 124 10129Google Scholar
[37] Zhang L, Li Y, Shi J, Shi G, Cao S 2013 Mater. Chem. Phys. 142 626Google Scholar
[38] Wu J Y, Lai T H, Fang M J, Chen J Y, Kuo M Y, Chiu Y H, Hsieh P Y, Tsao C W, Chang H E, Chang Y P, Wang C Y, Chen C Y, Sone M, Wu W W, Chang T F M, Hsu Y J 2022 ACS Appl. Nano Mater. 5 8404Google Scholar
[39] Khan M U, Hassan G, Raza M A, Bae J, Kobayashi N P 2019 J. Mater. Sci.: Mater. Electron. 30 4607Google Scholar
[40] Rose A 1955 Phys. Rev. 97 1538Google Scholar
[41] Cölle M, Büchel M, De Leeuw D M 2006 Org. Electron. 7 305Google Scholar
[42] Jiang X L, Zhao Y G, Chen Y S, Li D, Luo Y X, Zhao D Y, Sun Z, Sun J R, Zhao H W 2013 Appl. Phys. Lett. 102 253507Google Scholar
[43] Pan S, Zhu Z, Yu H, Lan W, Wei B, Guo K 2021 J. Mater. Chem. C 9 5643Google Scholar
[44] Yamazaki Y, Yamashita K, Tani Y, Aoyama T, Ogawa T 2020 J. Mater. Chem. C 8 14423Google Scholar
[45] Barsukov Y, Macdonald J 2005 Impedance Spectroscopy: Theory, Experiment, and Applications (New Jersey: Wiley-Interscience) pp1–528
[46] Zhou G, Yao Y, Lu Z, Yang X, Han J, Wang G, Rao X, Li P, Liu Q, Song Q 2017 Nanotechnology 28 425202Google Scholar
[47] Lai Y C, Ohshimizu K, Lee W Y, Hsu J C, Higashihara T, Ueda M, Chen W C 2011 J. Mater. Chem. 21 14502Google Scholar
[48] Chen J C, Liu C L, Sun Y S, Tung S H, Chen W C 2012 Soft Matter 8 526Google Scholar
[49] Lian S L, Liu C L, Chen W C 2011 ACS Appl. Mater. Interfaces 3 4504Google Scholar
[50] 周朋超, 张卫东, 顾嘉陆, 陈卉敏, 胡腾达, 蒲华燕, 兰伟霞, 魏斌 2020 物理学报 69 198801Google Scholar
Zhou P C, Zhang W D, Gu J L, Chen H M, Hu T D, Pu H Y, Lan W X, Wei B 2020 Acta Phys. Sin. 69 198801Google Scholar
[51] Meyer E A, Castellano R K, Diederich F 2003 Angew. Chem., Int. Ed. Engl. 42 1210Google Scholar
计量
- 文章访问数: 4159
- PDF下载量: 60
- 被引次数: 0