搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中继透镜分辨率在像素编码曝光成像中对图像重构质量的影响分析

贺芷椰 张彦东 唐春华 李军利 李四维 于斌

引用本文:
Citation:

中继透镜分辨率在像素编码曝光成像中对图像重构质量的影响分析

贺芷椰, 张彦东, 唐春华, 李军利, 李四维, 于斌

Analysis of influence of imaging resolution of relay lens on image reconstruction quality in pixel-wise coded exposure imaging technology

He Zhi-Ye, Zhang Yan-Dong, Tang Chun-Hua, Li Jun-Li, Li Si-Wei, Yu Bin
PDF
HTML
导出引用
  • 像素编码曝光成像技术是一种先进的高速成像技术, 其利用数字微镜器件(digital micromirror device, DMD)对相机每个像素的曝光进行编码, 将多帧图像信息融入到单帧编码图像中, 然后再利用解码算法进行图像重构, 将低帧频相机的图像采集速率提升数倍, 实现低帧频相机的高速成像. 在该技术中, DMD的像素与相机像素之间的精确匹配是实现编码曝光成像的前提, 因此, 相关研究人员主要关注于如何实现像素的精确匹配. 然而, 两者之间中继成像系统的分辨率作为编码曝光成像的另一重要影响因素, 却鲜有人研究和分析. 为此, 本文从理论上分析了中继成像系统的分辨率对解码图像重建效果的影响, 并结合模拟和实际成像实验对理论分析进行验证. 在此基础上, 搭建了像素编码曝光成像系统, 提出了一种基于条纹相位的成像系统点扩散函数估计方法, 并将Richard-Lucy反卷积算法引入到编码图像的重构过程中, 有效改善编码曝光成像的质量, 对于像素编码曝光成像技术的发展具有重要的意义.
    Pixel-wise coded exposure (PCE) imaging based on digital micromirror device (DMD) is an advanced high-speed imaging technology, which can realize the high-speed imaging by using a low-frame-rate camera. During exposure time, the multi-frame image information of a dynamic object can be integrated into one encoded image, and then the multi-frame sub-exposure images can be extracted by the post-processing algorithm. Therefore, the accurate pixel-to-pixel alignment between the DMD and the camera is the key step to realize PCE imaging, which has drawn much attention from researchers. So their studies mainly focused on how to achieve accurate pixel matching. However, the resolution of the relay imaging lens, as another important influence factor of PCE imaging, also has a significant influence on the imaging results, but few people have studied and analyzed it. To solve this problem, in this work, we theoretically analyze the influence of the resolution of the relay imaging system on the reconstructed decoded images, and verifies the theoretical analysis through simulation and imaging experiments. On this basis, a PCE imaging system is built, and a point spread function (PSF) estimation method of relay lens based on the fringe phase is proposed. Furthermore, a Richard-Lucy deconvolution algorithm is introduced into the reconstruction process of coded image to effectively improve the quality of PCE imaging, which is of great significance in developing the PCE imaging technology.
      通信作者: 李四维, zhcptlsw@163.com ; 于斌, yubin@szu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61975131, 62175166, 62022059)、深圳市基础研究项目(批准号: JCYJ20200109105411133)、广东省基础与应用基础研究基金(批准号: 2019A1515110412)、广东省普通高校特色创新项目(批准号: 2021KTSCX285, 2022KTSCX314)和珠海城市职业技术学院科研项目(批准号: KY2020Z01Z, KY2021Z01Z, KY2021Y04Z)资助的课题.
      Corresponding author: Li Si-Wei, zhcptlsw@163.com ; Yu Bin, yubin@szu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975131, 62175166, 62022059), the Basic Research Project of Shenzhen, China (Grant No. JCYJ20200109105411133), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2019A1515110412), the (Key) Project of the Science and Technology Innovation in Colleges and Universities of Guangdong Province, China (Grant Nos. 2021KTSCX285, 2022KTSCX314), and the Zhuhai City Polytechnic Scientific Research Projects, China (Grant Nos. KY2020Z01Z, KY2021Z01Z, KY2021Y04Z).
    [1]

    Akiyama M, Yang Z B, Gnapowski S, Hamid S, Hosseini R, Akiyama H 2014 IEEE Trans. Plasma Sci. 42 3215Google Scholar

    [2]

    李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁 2016 物理学报 65 064201Google Scholar

    Li M F, Mo X F, Zhao L J, Huo J, Yang R, Li K, Zhang A N 2016 Acta Phys. Sin. 65 064201Google Scholar

    [3]

    Zhang J, Xiong T, Tran T, Chin S, Cummings R E 2016 Opt. Express 24 9013Google Scholar

    [4]

    Khan S R, Feldman M, Gunturk B K 2018 Signal Process. Image Commun. 60 107Google Scholar

    [5]

    冯维, 张福民, 王惟婧, 曲兴华 2017 物理学报 66 234201Google Scholar

    Feng W, Zhang F M, Wang W J, Qu X H 2017 Acta Phys. Sin. 66 234201Google Scholar

    [6]

    Qiao Y, Xu X P, Liu T, Pan Y 2015 Appl Opt. 54 60Google Scholar

    [7]

    Tang C Y, Chen Y T, Li Q, Feng H J, Xu Z H 2015 Optica 35 0410002

    [8]

    Bub G, Tecza M, Helmes M, Lee P, Kohl P 2009 Nat. Methods 7 209

    [9]

    Ri S, Fujigaki M, Morimoto Y 2009 Opt. Eng. 48 103605Google Scholar

    [10]

    Liu D Y, Gu J W, Hitomi Y, Gupta M, Mitsunaga T, Nayar S K 2013 IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 36 248

    [11]

    Feng W, Zhang F M, Qu X H, Zheng S W 2016 Sensors 16 331

    [12]

    Peng X, Tian J D, Zhang P, Wei L B, Qiu W J, Li E B, Zhang D W 2005 Opt. Lett. 30 1965Google Scholar

    [13]

    Niu B, Qu X H, Guan X H, Zhang F M 2021 Opt. Express 29 27562Google Scholar

    [14]

    Gunturk B K, Feldman M 2013 Proc. SPIE 8660 86600PGoogle Scholar

    [15]

    Feng W, Zhang F M, Wang W J, Xing W, Qu X H 2017 Appl. Opt. 56 3831Google Scholar

    [16]

    Wang C M, Tu C 2014 Int. J. Signal Process. Image Process. Pattern Recognit. 7 217

    [17]

    Gao L, Liang J Y, Li C Y, Wang L H 2014 Nature 516 74Google Scholar

    [18]

    Adekunle A, Barakat N 2009 Opt. Express 17 1831Google Scholar

    [19]

    Liu Y, Wang Z F 2015 J. Visual Commun. Image Represent. 31 208Google Scholar

    [20]

    Gu B, Li W J, Wong J T, Zhu M Y, Wang M H 2012 J. Visual Commun. Image Represent. 23 604Google Scholar

    [21]

    Ri S, Fujigaki M, Matui T, Morimoto Y 2006 Appl. Opt. 45 6940Google Scholar

    [22]

    Ri S, Fujigaki M, Matui T, Morimoto Y 2006 Exp. Mech. 46 67Google Scholar

  • 图 1  (a) 像素编码曝光成像光路设计; (b) 实验装置; (c) DMD微反射镜与CCD像素对应关系

    Fig. 1.  (a) Optical configuration design of pixel-wise coded exposure; (b) experimental device; (c) mapping relationship between DMD micro-mirrors and the CCD pixels.

    图 2  (a) 单帧编码图像; (b) DMD与CCD之间的同步控制原理; (c) 不同时刻的重构图像信息

    Fig. 2.  (a) Single frame encoded image; (b) principle of synchronous control between DMD and CCD; (c) reconstructed image information at different times.

    图 3  (a) $ \sigma $ = 0.3 pixelsize时的成像效果; (b) $ \sigma $ = 0.6 pixelsize时的成像效果; (c) $ \sigma $ = 0.9 pixelsize时的成像效果

    Fig. 3.  (a) Imaging effect of image I when $ \sigma $ = 0.3 pixelsize; (b) imaging effect of image I when $ \sigma $ = 0.6 pixelsize; (c) imaging effect of image I when $ \sigma $ = 0.9 pixelsize.

    图 4  (a) 单帧条纹编码图像; (b) 数值模拟产生的PSF; (c) 重构的条纹图像信息; (d) 计算获得的相位图; (e) 图(d)中黄线虚线处的切面相位值

    Fig. 4.  (a) Single frame fringe encoded image; (b) numerical simulation of PSF; (c) reconstructed fringe image information; (d) calculated phase diagram; (e) section phase value at dotted line of yellow line in Figure (d).

    图 5  单帧编码图像

    Fig. 5.  Single frame encoded image.

    图 6  (a)—(c) 不同$ \sigma $值的编码图像; (e)—(g) 对编码图像直接提取得到的重构图像; (h)—(k)对编码图像反卷积处理后的重构图像

    Fig. 6.  (a)–(c) Coded images of different $ \sigma $; (e)–(g) the reconstructed image obtained by directly extracting the coded image; (h)–(k) the reconstructed image after deconvolution of the coded image.

    图 7  (a) 编码图像; (b) 重构的条纹图像信息; (c) 相位图; (d) 图(c)中黄线位置的切面相位值的线性拟合结果

    Fig. 7.  (a) Coded images; (b) reconstructed fringe image information; (c) phase diagram; (d) linear fitting results of phase values of the yellow line position in Figure (c).

    图 8  (a) 低分辨率条件下的编码图像及重构结果; (b) 编码图象(a)经反卷积处理及重构的结果; (c) 高分辨率条件下的编码图像及重构结果; (d) 编码图象(c)经反卷积处理及重构的结果

    Fig. 8.  (a) Coded images and reconstruction results at low resolution; (b) results of deconvolution and reconstruction of coded image (a); (c) coded images and reconstruction results at high resolution; (d) results of deconvolution and reconstruction of coded image (c).

  • [1]

    Akiyama M, Yang Z B, Gnapowski S, Hamid S, Hosseini R, Akiyama H 2014 IEEE Trans. Plasma Sci. 42 3215Google Scholar

    [2]

    李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁 2016 物理学报 65 064201Google Scholar

    Li M F, Mo X F, Zhao L J, Huo J, Yang R, Li K, Zhang A N 2016 Acta Phys. Sin. 65 064201Google Scholar

    [3]

    Zhang J, Xiong T, Tran T, Chin S, Cummings R E 2016 Opt. Express 24 9013Google Scholar

    [4]

    Khan S R, Feldman M, Gunturk B K 2018 Signal Process. Image Commun. 60 107Google Scholar

    [5]

    冯维, 张福民, 王惟婧, 曲兴华 2017 物理学报 66 234201Google Scholar

    Feng W, Zhang F M, Wang W J, Qu X H 2017 Acta Phys. Sin. 66 234201Google Scholar

    [6]

    Qiao Y, Xu X P, Liu T, Pan Y 2015 Appl Opt. 54 60Google Scholar

    [7]

    Tang C Y, Chen Y T, Li Q, Feng H J, Xu Z H 2015 Optica 35 0410002

    [8]

    Bub G, Tecza M, Helmes M, Lee P, Kohl P 2009 Nat. Methods 7 209

    [9]

    Ri S, Fujigaki M, Morimoto Y 2009 Opt. Eng. 48 103605Google Scholar

    [10]

    Liu D Y, Gu J W, Hitomi Y, Gupta M, Mitsunaga T, Nayar S K 2013 IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 36 248

    [11]

    Feng W, Zhang F M, Qu X H, Zheng S W 2016 Sensors 16 331

    [12]

    Peng X, Tian J D, Zhang P, Wei L B, Qiu W J, Li E B, Zhang D W 2005 Opt. Lett. 30 1965Google Scholar

    [13]

    Niu B, Qu X H, Guan X H, Zhang F M 2021 Opt. Express 29 27562Google Scholar

    [14]

    Gunturk B K, Feldman M 2013 Proc. SPIE 8660 86600PGoogle Scholar

    [15]

    Feng W, Zhang F M, Wang W J, Xing W, Qu X H 2017 Appl. Opt. 56 3831Google Scholar

    [16]

    Wang C M, Tu C 2014 Int. J. Signal Process. Image Process. Pattern Recognit. 7 217

    [17]

    Gao L, Liang J Y, Li C Y, Wang L H 2014 Nature 516 74Google Scholar

    [18]

    Adekunle A, Barakat N 2009 Opt. Express 17 1831Google Scholar

    [19]

    Liu Y, Wang Z F 2015 J. Visual Commun. Image Represent. 31 208Google Scholar

    [20]

    Gu B, Li W J, Wong J T, Zhu M Y, Wang M H 2012 J. Visual Commun. Image Represent. 23 604Google Scholar

    [21]

    Ri S, Fujigaki M, Matui T, Morimoto Y 2006 Appl. Opt. 45 6940Google Scholar

    [22]

    Ri S, Fujigaki M, Matui T, Morimoto Y 2006 Exp. Mech. 46 67Google Scholar

  • [1] 张健, 陈家霖, 陈笑然, 冒添逸, 沈姗姗, 何睿清. 基于自校验的单像素成像系统动态干扰去除方法. 物理学报, 2023, 72(3): 034201. doi: 10.7498/aps.72.20221918
    [2] 谷同凯, 王兰兰, 国阳, 蒋维涛, 史永胜, 杨硕, 陈金菊, 刘红忠. 光盘上集成的液体微透镜阵列与可重构超分辨成像. 物理学报, 2023, 72(9): 099501. doi: 10.7498/aps.72.20222251
    [3] 廖涌泉, 张晓雪, 刘卉, 朱香渝, 陈旭东, 林志立. 基于数字微镜器件超像素法实现散射介质传输矩阵的自参考干涉测量. 物理学报, 2023, 72(22): 224201. doi: 10.7498/aps.72.20230660
    [4] 胡金虎, 林丹樱, 张炜, 张晨爽, 屈军乐, 于斌. 结合虚拟单像素成像解卷积的双边照明光片荧光显微技术. 物理学报, 2022, 71(2): 028701. doi: 10.7498/aps.71.20211358
    [5] 姚春霞, 何其利, 张锦, 付天宇, 吴朝, 王山峰, 黄万霞, 袁清习, 刘鹏, 王研, 张凯. 免分析光栅一次曝光相位衬度成像方法. 物理学报, 2021, 70(2): 028701. doi: 10.7498/aps.70.20201170
    [6] 胡渝曜, 梁东, 王晶, 刘军. 基于电动可调焦透镜的大范围快速光片显微成像. 物理学报, 2020, 69(8): 088701. doi: 10.7498/aps.69.20191908
    [7] 王美昌, 于斌, 张炜, 林丹樱, 屈军乐. 基于数字微镜器件的数字线扫描荧光显微成像技术. 物理学报, 2020, 69(23): 238701. doi: 10.7498/aps.69.20200908
    [8] 李明飞, 阎璐, 杨然, 刘院省. 基于Hadamard矩阵优化排序的快速单像素成像. 物理学报, 2019, 68(6): 064202. doi: 10.7498/aps.68.20181886
    [9] 李少东, 陈永彬, 刘润华, 马晓岩. 基于压缩感知的窄带高速自旋目标超分辨成像物理机理分析. 物理学报, 2017, 66(3): 038401. doi: 10.7498/aps.66.038401
    [10] 王心怡, 范全平, 魏来, 杨祖华, 张强强, 陈勇, 彭倩, 晏卓阳, 肖沙里, 曹磊峰. Fresnel波带片编码成像的高分辨重建. 物理学报, 2017, 66(5): 054203. doi: 10.7498/aps.66.054203
    [11] 姚伟强, 黄文浩, 杨初平. 单像素探测频谱重构成像理论分析. 物理学报, 2017, 66(3): 034201. doi: 10.7498/aps.66.034201
    [12] 冯维, 张福民, 王惟婧, 曲兴华. 基于数字微镜器件的自适应高动态范围成像方法及应用. 物理学报, 2017, 66(23): 234201. doi: 10.7498/aps.66.234201
    [13] 李明飞, 莫小范, 赵连洁, 霍娟, 杨然, 李凯, 张安宁. 基于Walsh-Hadamard变换的单像素遥感成像. 物理学报, 2016, 65(6): 064201. doi: 10.7498/aps.65.064201
    [14] 张宇, 唐志列, 吴泳波, 束刚. 基于声透镜的三维光声成像技术. 物理学报, 2015, 64(24): 240701. doi: 10.7498/aps.64.240701
    [15] 王大勇, 王云新, 郭莎, 戎路, 张亦卓. 基于多角度无透镜傅里叶变换数字全息的散斑噪声抑制成像研究. 物理学报, 2014, 63(15): 154205. doi: 10.7498/aps.63.154205
    [16] 王华英, 刘飞飞, 廖薇, 宋修法, 于梦杰, 刘佐强. 优化的数字全息显微成像系统. 物理学报, 2013, 62(5): 054208. doi: 10.7498/aps.62.054208
    [17] 王华英, 于梦杰, 江亚男, 宋修法, 朱巧芬, 刘飞飞. 利用小尺寸电荷耦合器件实现数字全息高分辨成像. 物理学报, 2013, 62(24): 244203. doi: 10.7498/aps.62.244203
    [18] 王淑莹, 章海军, 张冬仙. 基于微球透镜的任选区高分辨光学显微成像新方法研究. 物理学报, 2013, 62(3): 034207. doi: 10.7498/aps.62.034207
    [19] 王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞. 无透镜傅里叶变换显微数字全息成像系统的焦深. 物理学报, 2012, 61(4): 044208. doi: 10.7498/aps.61.044208
    [20] 陈湛旭, 唐志列, 万 巍, 何永恒. 基于声透镜成像系统的光声层析成像. 物理学报, 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
计量
  • 文章访问数:  2287
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-07
  • 修回日期:  2022-10-06
  • 上网日期:  2022-10-27
  • 刊出日期:  2023-01-20

/

返回文章
返回