搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面向纯相位型全息显示的自适应混合约束迭代算法

高乾程 何泽浩 刘珂瑄 韩超 曹良才

引用本文:
Citation:

面向纯相位型全息显示的自适应混合约束迭代算法

高乾程, 何泽浩, 刘珂瑄, 韩超, 曹良才

Adaptive mixed-constraint Gerchberg-Saxton algorithm for phase-only holographic display

Gao Qian-Cheng, He Ze-Hao, Liu Ke-Xuan, Han Chao, Cao Liang-Cai
PDF
HTML
导出引用
  • 纯相位型计算全息图舍弃全息面上的振幅信息, 降低了全息显示的图像质量. 迭代法通过多次正、逆向的波前传播计算, 优化了纯相位型计算全息图的相位轮廓, 提升了全息再现的图像质量. 然而, 传统迭代法可能存在迭代发散、收敛速度偏慢以及再现质量受限等问题. 本文提出了一种基于角谱传播模型的自适应混合约束迭代算法, 通过在迭代中加入自适应的反馈机制和频带约束策略, 增加了迭代优化的自由度, 提升了迭代的收敛性和全息再现的图像质量. 仿真和实验结果表明, 提出的算法能够在较短的计算时间内获得更高重建质量的纯相位型计算全息图, 对于高质量的全息显示具有重要应用价值.
    At present, spatial light modulators are incapable of modulating both the amplitude and phase of the wavefront simultaneously. Therefore, when a spatial light modulator is used for holographic display, it is necessary to encode the complex amplitude of the object wave into amplitude-only or phase-only computer-generated-hologram. The phase-only holographic display has attracted much attention of researchers due to its characteristics of high diffraction efficiency and no conjugate image. However, current optimization algorithms for generating phase-only hologram have the problems of iterative divergence, slow convergence speed, and poor reconstruction quality, which is difficult to satisfy the requirements for high-quality holographic display. In this work, we propose an accurate adaptive mixed constraint Gerchberg-Saxton algorithm by constraining the frequency bandwidth in the hologram plane and adaptively constraining the amplitude of the reconstructed image in the image plane based on the angular spectrum propagation theory. Firstly, we use the angular spectrum propagation model without paraxial approximation to simulate the forward and backward propagation of the light wave for ensuring the accuracy of the wavefront propagation. Secondly, dividing the image plane into signal area and noise area according to the spatial distribution of target image, and different adaptive feedback strategies are set up for the two regions based on the optimized effect of the phase-only hologram. The adaptive feedback strategy is established, which can accelerate the convergence speed of the proposed algorithm and enhance the hologram of freedom of the optimization. Finally, the frequency bandwidth constraint strategy is introduced in the hologram plane to optimize the edge pixels and compensate for the frequency information loss of the phase-only computer-generated hologram, which improves the reconstruction quality of the hologram. After 100 iterations, the average correlation coefficient of the holographic reconstructed image of the proposed algorithm is about 0.9857, and the average peak signal-to-noise ratio is about 31.02 dB. The correlation coefficient and the peak signal-to-noise ratio of the reconstructed images of the proposed algorithm are better than those of the Gerchberg-Saxton algorithm with only frequency bandwidth constraint strategy, and the proposed algorithm has clearer texture and better display effect. The results of numerical simulations and optical experiments show the feasibility and effectiveness of the proposed method. The proposed adaptive mixed constraint Gerchberg-Saxton algorithm is a promising technology for high-quality holographic display.
      通信作者: 韩超, hanchaozh@126.com ; 曹良才, clc@tsinghua.edu.cn
    • 基金项目: 国家自然科学基金区域创新发展联合基金 (批准号: U22A2079 ) 、安徽工程大学检测技术与节能装置安徽省重点实验室开放基金(批准号: DTESD2020A06)、2021年度安徽高校研究生科学研究项目(批准号: YJS20210447)和芜湖市科技计划项目(批准号: 2021cg21)资助的课题.
      Corresponding author: Han Chao, hanchaozh@126.com ; Cao Liang-Cai, clc@tsinghua.edu.cn
    • Funds: Project supported by the Regional Innovation and Development Joint Funds of the National Natural Science Foundation of China (Grant No. U22A2079), the Open Research Fund of Anhui Key Laboratory of Detection Technology and Energy Saving Devices, Anhui Polytechnic University, China (Grant No. DTESD2020A06), the 2021 Anhui University Graduate Scientific Research Project, China (Grant No. YJS20210447), and the Science and Technology Planning Project of Wuhu City, China (Grant No. 2021cg21).
    [1]

    Goodman J W, Lawrence R W 1967 Appl. Phys. Lett. 11 77Google Scholar

    [2]

    Gabor D 1948 Nature 161 777Google Scholar

    [3]

    Zhang H, Zhao Y, Cao L C, Jin G F 2014 Chin. Opt. Lett. 12 060002Google Scholar

    [4]

    He Z H, Sui X M, Jin G F, Cao L C 2019 Appl. Opt. 58 A74Google Scholar

    [5]

    Ma Q G, Cao L C, He Z H, Zhang S D 2019 Chin. Opt. Lett. 17 111001Google Scholar

    [6]

    贾甲, 王涌天, 刘娟, 李昕, 谢敬辉 2012 激光与光电子学进展 49 050002Google Scholar

    Jia J, Wang Y T, Liu J, Li X, Xie J H 2012 Lasers Optoelectron. Prog. 49 050002Google Scholar

    [7]

    Chang C L, Bang Kiseung, Wetzstein Gordon, Lee Byoungho, Gao L 2020 Optica 7 1563Google Scholar

    [8]

    Zhang H, Xie J H, Liu J, Wang Y T 2009 Appl. Opt. 48 5834Google Scholar

    [9]

    王迪, 侯页好, 黄倩, 郑义微, 王琼华 2022 中国激光 49 1909001Google Scholar

    Wang D, Hou Y H, Huang Q, Zheng Y W, Wang Q H 2022 Chin. J. Lasers 49 1909001Google Scholar

    [10]

    王一同, 周宏强, 闫景逍, 合聪, 黄玲玲 2021 中国激光 48 1918004

    Wang Y T, Zhou H Q, Yan J X, He C, Huang L L 2021 Chin. J. Lasers 48 1918004

    [11]

    范爽, 张亚萍, 王帆, 高云龙, 钱晓凡, 张永安, 许蔚, 曹良才 2018 物理学报 67 094203Google Scholar

    Fan S, Zhang Y P, Wang F, Gao Y L, Qian X F, Zhang Y A, Xu W, Cao L C 2018 Acta Phys. Sin. 67 094203Google Scholar

    [12]

    席思星, 于娜娜, 王晓雷, 朱巧芬, 董昭, 王微, 刘秀红, 王华英 2019 物理学报 68 110502Google Scholar

    Xi S X, Yu N N, Wang X L, Zhu Q F, Dong Z, Wang W, Liu X H, Wang H Y 2019 Acta Phys. Sin. 68 110502Google Scholar

    [13]

    曹良才, 何泽浩, 刘珂瑄, 隋晓萌 2022 红外与激光工程 51 20210935Google Scholar

    Cao L C, He Z H, Liu K X, Sui X M 2022 Inf. Laser. Eng. 51 20210935Google Scholar

    [14]

    何泽浩, 隋晓萌, 曹良才, 金国藩 2021 中国激光 48 1209002Google Scholar

    He Z H, Sui X M, Cao L C, Jin G F 2021 Chin. J. Lasers 48 1209002Google Scholar

    [15]

    He Z H, Sui X M, Jin G F, Chu D P, Cao L C 2021 Opt. Express 29 119Google Scholar

    [16]

    Liu K X, He Z H, Cao L C 2021 Chin. Opt. Lett. 19 50501Google Scholar

    [17]

    Sui X M, He Z H, Jin G F, Chu D P, Cao L C 2021 Opt. Express 29 2597Google Scholar

    [18]

    Liu K, He Z H, Cao L C 2022 Appl. Phys. Lett. 120 061103Google Scholar

    [19]

    Wu J C, Liu K X, Sui X M, Cao L C 2021 Opt. Lett. 46 2908Google Scholar

    [20]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [21]

    Zhou P C, Bi Y, Sun M Y, Wang H, Li F, Qi Y 2014 Appl. Opt. 53 G209Google Scholar

    [22]

    Chang C L, Xia J, Yang L, Lei W, Yang Z M, Chen J H 2015 Appl. Opt. 54 6994Google Scholar

    [23]

    Chen L Z, Zhang H, He Z H, Wang X Y, Cao L C, Jin G F 2020 Appl. Sci. 10 3652Google Scholar

    [24]

    Wu Y, Wang J, Chen C, Liu C J, Jin F M, Chen N 2021 Opt. Express 29 1412Google Scholar

  • 图 1  AMCGS算法中的信号区与噪声区

    Fig. 1.  Signal area and noise area on the reconstruction plane in the AMCGS algorithm.

    图 2  AMCGS算法原理图

    Fig. 2.  Schematic of AMCGS algorithm.

    图 3  目标图像(a)—(d)及其AMCGS反馈策略仿真重建结果(e)—(h) (a), (e) 狒狒; (b), (f) 船; (c), (g) 芭芭拉; (d), (h) 女人

    Fig. 3.  Target images (a)–(d) and corresponding simulation results by the proposed AMCGS feedback (e)–(h): (a), (e) Baboon;(b), (f) ship; (c), (g) barbara; (d), (h) women.

    图 4  AMCGS算法与RSGS算法仿真重建结果CC值随迭代次数的变化曲线 (a) 狒狒; (b) 船; (c) 芭芭拉; (d) 女人

    Fig. 4.  CCs under different iteration numbers of the reconstructions by the AMCGS algorithm and RSGS algorithm: (a) Baboon; (b) ship; (c) barbara; (d) women.

    图 5  AMCGS算法与RSGS算法仿真重建结果PSNR值随迭代次数的变化曲线 (a) 狒狒; (b) 船; (c) 芭芭拉; (d) 女人

    Fig. 5.  PSNRs under different iteration numbers of the reconstructions by the AMCGS algorithm and RSGS algorithm: (a) Baboon; (b) ship; (c) barbara; (d) women.

    图 6  全息再现仿真结果对比 (a)—(d) 传统随机相位法; (e)—(h) AMCGS算法

    Fig. 6.  Comparison of holographic reconstructions simulation results: (a)–(d) Traditional random-phase method; (e)–(h) AMCGS algorithm.

    图 7  光学实验系统结构

    Fig. 7.  Schematic of optical experimental setup.

    图 8  光学实验结果对比 (a)—(d) 传统随机相位法; (e)—(h) AMCGS算法

    Fig. 8.  Comparison of optics experimental results: (a)–(d) Conventional random phase method; (e)–(h) AMCGS algorithm.

    表 1  传统GS算法, RSGS算法以及AMCGS算法迭代100次所需时间

    Table 1.  Time required for 100 iterations of GS algorithm, RSGS algorithm and AMCGS algorithm.

    算法类型时间/s
    BaboonBarbaraShipWomen
    传统GS算法3.022.982.963.12
    RSGS算法10.0510.0310.0610.10
    AMCGS算法10.4710.1110.0810.26
    下载: 导出CSV
  • [1]

    Goodman J W, Lawrence R W 1967 Appl. Phys. Lett. 11 77Google Scholar

    [2]

    Gabor D 1948 Nature 161 777Google Scholar

    [3]

    Zhang H, Zhao Y, Cao L C, Jin G F 2014 Chin. Opt. Lett. 12 060002Google Scholar

    [4]

    He Z H, Sui X M, Jin G F, Cao L C 2019 Appl. Opt. 58 A74Google Scholar

    [5]

    Ma Q G, Cao L C, He Z H, Zhang S D 2019 Chin. Opt. Lett. 17 111001Google Scholar

    [6]

    贾甲, 王涌天, 刘娟, 李昕, 谢敬辉 2012 激光与光电子学进展 49 050002Google Scholar

    Jia J, Wang Y T, Liu J, Li X, Xie J H 2012 Lasers Optoelectron. Prog. 49 050002Google Scholar

    [7]

    Chang C L, Bang Kiseung, Wetzstein Gordon, Lee Byoungho, Gao L 2020 Optica 7 1563Google Scholar

    [8]

    Zhang H, Xie J H, Liu J, Wang Y T 2009 Appl. Opt. 48 5834Google Scholar

    [9]

    王迪, 侯页好, 黄倩, 郑义微, 王琼华 2022 中国激光 49 1909001Google Scholar

    Wang D, Hou Y H, Huang Q, Zheng Y W, Wang Q H 2022 Chin. J. Lasers 49 1909001Google Scholar

    [10]

    王一同, 周宏强, 闫景逍, 合聪, 黄玲玲 2021 中国激光 48 1918004

    Wang Y T, Zhou H Q, Yan J X, He C, Huang L L 2021 Chin. J. Lasers 48 1918004

    [11]

    范爽, 张亚萍, 王帆, 高云龙, 钱晓凡, 张永安, 许蔚, 曹良才 2018 物理学报 67 094203Google Scholar

    Fan S, Zhang Y P, Wang F, Gao Y L, Qian X F, Zhang Y A, Xu W, Cao L C 2018 Acta Phys. Sin. 67 094203Google Scholar

    [12]

    席思星, 于娜娜, 王晓雷, 朱巧芬, 董昭, 王微, 刘秀红, 王华英 2019 物理学报 68 110502Google Scholar

    Xi S X, Yu N N, Wang X L, Zhu Q F, Dong Z, Wang W, Liu X H, Wang H Y 2019 Acta Phys. Sin. 68 110502Google Scholar

    [13]

    曹良才, 何泽浩, 刘珂瑄, 隋晓萌 2022 红外与激光工程 51 20210935Google Scholar

    Cao L C, He Z H, Liu K X, Sui X M 2022 Inf. Laser. Eng. 51 20210935Google Scholar

    [14]

    何泽浩, 隋晓萌, 曹良才, 金国藩 2021 中国激光 48 1209002Google Scholar

    He Z H, Sui X M, Cao L C, Jin G F 2021 Chin. J. Lasers 48 1209002Google Scholar

    [15]

    He Z H, Sui X M, Jin G F, Chu D P, Cao L C 2021 Opt. Express 29 119Google Scholar

    [16]

    Liu K X, He Z H, Cao L C 2021 Chin. Opt. Lett. 19 50501Google Scholar

    [17]

    Sui X M, He Z H, Jin G F, Chu D P, Cao L C 2021 Opt. Express 29 2597Google Scholar

    [18]

    Liu K, He Z H, Cao L C 2022 Appl. Phys. Lett. 120 061103Google Scholar

    [19]

    Wu J C, Liu K X, Sui X M, Cao L C 2021 Opt. Lett. 46 2908Google Scholar

    [20]

    Gerchberg R W, Saxton W O 1972 Optik 35 237

    [21]

    Zhou P C, Bi Y, Sun M Y, Wang H, Li F, Qi Y 2014 Appl. Opt. 53 G209Google Scholar

    [22]

    Chang C L, Xia J, Yang L, Lei W, Yang Z M, Chen J H 2015 Appl. Opt. 54 6994Google Scholar

    [23]

    Chen L Z, Zhang H, He Z H, Wang X Y, Cao L C, Jin G F 2020 Appl. Sci. 10 3652Google Scholar

    [24]

    Wu Y, Wang J, Chen C, Liu C J, Jin F M, Chen N 2021 Opt. Express 29 1412Google Scholar

  • [1] 徐平, 肖钰斐, 黄海漩, 杨拓, 张旭琳, 袁霞, 李雄超, 王梦禹, 徐海东. 简单结构超表面实现波长和偏振态同时复用全息显示新方法. 物理学报, 2021, 70(8): 084201. doi: 10.7498/aps.70.20201047
    [2] 彭玮婷, 刘娟, 李昕, 薛高磊, 韩剑, 胡滨, 王涌天. 新颖材料器件为全息显示带来的新机遇. 物理学报, 2018, 67(2): 024213. doi: 10.7498/aps.67.20172026
    [3] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信. 物理学报, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [4] 张昊, 常琛亮, 夏军. 单环多段光强分布检测光学涡旋拓扑荷值. 物理学报, 2016, 65(6): 064101. doi: 10.7498/aps.65.064101
    [5] 谷婷婷, 黄素娟, 闫成, 缪庄, 常征, 王廷云. 基于数字全息图的光纤折射率测量研究. 物理学报, 2015, 64(6): 064204. doi: 10.7498/aps.64.064204
    [6] 夏军, 常琛亮, 雷威. 基于液晶空间光调制器的全息显示. 物理学报, 2015, 64(12): 124213. doi: 10.7498/aps.64.124213
    [7] 黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云. 多环涡旋光束的实验研究. 物理学报, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [8] 李俊昌, 楼宇丽, 桂进斌, 彭祖杰, 宋庆和. 数字全息图取样模型的简化研究. 物理学报, 2013, 62(12): 124203. doi: 10.7498/aps.62.124203
    [9] 周文静, 胡文涛, 瞿惠, 朱亮, 于瀛洁. 单幅层析全息图的记录及数据重建. 物理学报, 2012, 61(16): 164212. doi: 10.7498/aps.61.164212
    [10] 于瀛洁, 王涛, 郑华东. 基于数字闪耀光栅的位相全息图光电再现优化. 物理学报, 2009, 58(5): 3154-3160. doi: 10.7498/aps.58.3154
    [11] 杨晓苹, 翟宏琛. 双随机相位加密中相息图的优化设计. 物理学报, 2005, 54(4): 1578-1582. doi: 10.7498/aps.54.1578
    [12] 王寯越, 朱佩平, 郑 欣, 袁清习, 田玉莲, 黄万霞, 吴自玉. 基于离散Fourier变换的内源全息图重构计算方法. 物理学报, 2005, 54(3): 1172-1177. doi: 10.7498/aps.54.1172
    [13] 王英利, 姚保利, 陈懿, 樊美公, 郑媛, 门克内木乐, 雷铭, 陈国夫, 韩勇, 闫起强, 孟宪娟. 吲哚俘精酰胺的偏振全息图像光存储实验研究. 物理学报, 2004, 53(1): 66-69. doi: 10.7498/aps.53.66
    [14] 郑君, 叶志成, 唐伟国, 刘大禾. 体积全息图中的光子禁带. 物理学报, 2001, 50(11): 2144-2148. doi: 10.7498/aps.50.2144
    [15] 肖体乔, 徐洪杰, 张映箕, 陈建文, 徐至展. 利用数字重现电子全息图观测微电磁场分布. 物理学报, 1998, 47(9): 1450-1457. doi: 10.7498/aps.47.1450
    [16] 许蕾, 张肇群. 全息图记录三维散射目标信息的基元微观方式. 物理学报, 1996, 45(9): 1457-1462. doi: 10.7498/aps.45.1457
    [17] 于美文, 张存林. 光致各向异性记录介质偏振全息图的透射矩阵. 物理学报, 1992, 41(5): 759-765. doi: 10.7498/aps.41.759
    [18] 蔡履中, 张幼文. 彩虹全息图成象的傅里叶分析. 物理学报, 1982, 31(8): 1020-1029. doi: 10.7498/aps.31.1020
    [19] 张幼文, 蔡履中, 朱伟光. 彩虹全息图和普通全息图的空间频率带宽. 物理学报, 1982, 31(4): 427-436. doi: 10.7498/aps.31.427
    [20] 赵霖, 阎书琴, 汪淡莲, 肖敬孝, 张洪钧, 戴建华. 提高全息图衍射效率的一种方法. 物理学报, 1981, 30(1): 143-146. doi: 10.7498/aps.30.143
计量
  • 文章访问数:  4781
  • PDF下载量:  119
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-25
  • 修回日期:  2022-10-14
  • 上网日期:  2022-11-11
  • 刊出日期:  2023-01-20

/

返回文章
返回