搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳

张竣珲 樊利 吴正茂 苟宸豪 骆阳 夏光琼

引用本文:
Citation:

基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳

张竣珲, 樊利, 吴正茂, 苟宸豪, 骆阳, 夏光琼

Broadband and tunable optical frequency comb based on 1550 nm verticalcavity surface-emitting laser under pulsed current modulation and optical injection

Zhang Jun-Hui, Fan Li, Wu Zheng-Mao, Gou Chen-Hao, Luo Yang, Xia Guang-Qiong
PDF
HTML
导出引用
  • 光学频率梳由一组等间距的离散频率成分组成, 在计量学、光谱学、太赫兹波产生、光通信、任意波形产生等领域有着广泛的应用. 本文提出了一种基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳的实验方案. 在该方案中, 首先采用脉冲信号电流调制激光器, 使其输出的光谱呈现出无明显梳状线的宽噪声谱; 进一步引入光注入, 获取宽带可调谐光学频率梳. 当注入功率为18.82 µW、注入波长为1551.8570 nm、调制电压为10.5 V、调制频率为0.5 GHz、脉冲宽度为200 ps时, 获取了带宽约为82.5 GHz, 信噪比约为35 dB的光学频率梳, 且该光学频率梳的单边带相位噪声低至–123.3 dBc/Hz@10 kHz. 此外, 本实验也系统研究了注入波长、调制频率、脉冲宽度对光学频率梳性能的影响. 实验结果表明: 改变调制频率可以获得不同梳距的光学频率梳, 当调制频率在0.25—3 GHz范围内, 选择优化的注入波长和脉冲宽度, 可获取带宽超过60 GHz的光学频率梳.
    Optical frequency combs (OFCs) each consist of a set of equally spaced discrete frequency components, and they have been widely applied to many fields such as metrology, optical arbitrary waveform generation, spectroscopy, optical communication, and THz generation. In this work, we propose a scheme for generating broadband and tunable OFCs based on a 1550 nm vertical-cavity surface-emitting laser (VCSEL) under pulsed current modulation and optical injection. Firstly, a pulsed electrical signal is utilized to drive a 1550 nm-VCSEL into the gain-switching state with a broad noisy spectrum. Next, a continuous optical wave is further introduced for generating broadband and tunable OFC. Under injection light with power of 18.82 µW and wavelength of 1551.8570 nm, and pulsed electrical signal with a frequency of 0.5 GHz and pulse width of 200 ps, an OFC with a bandwidth of 82.5 GHz and CNR of 35 dB is experimentally acquired, and the single sideband phase noise at the 0.5 GHz reaches –123.3 dBc/Hz at 10 kHz. Moreover, the influences of injection light wavelength, frequency and width of pulse electrical signal on the performance of generated OFC are investigated. The experimental results show that OFCs with different comb spacings can be obtained by varying the frequency of pulsed electrical signal. For the frequency of pulsed current signal varying in a range of 0.25 GHz–3 GHz, the bandwidth of generated OFCs can exceed 60 GHz through selecting optimized injection optical wavelength and width of pulse electrical signal.
      通信作者: 夏光琼, gqxia@swu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61775184, 61875167)资助的课题.
      Corresponding author: Xia Guang-Qiong, gqxia@swu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61775184, 61875167).
    [1]

    Parriaux A, Hammani K, Millot G 2020 Adv. Opt. Photonics 12 223Google Scholar

    [2]

    Diddams S, Vahala K, Udem T 2020 Science 369 267Google Scholar

    [3]

    Yan X L, Zou X H, Pan W, Yan L S, Azaña J 2018 Opt. Lett. 43 283Google Scholar

    [4]

    Cundiff S T, Weiner A M, Andrew M 2010 Nat. Photon. 4 760Google Scholar

    [5]

    Li P L, Ma X L, Shi W H, Xu E M 2017 Opt. Laser Technol. 94 228Google Scholar

    [6]

    Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68Google Scholar

    [7]

    Sadiek I, Mikkonen T, Vainio M, Toivonen J, Foltynowicz A 2018 Phys. Chem. 20 27849Google Scholar

    [8]

    He J, Long F T, Deng R, Shi J, Dai M, Chen L 2017 J. Opt. Commun. 9 393Google Scholar

    [9]

    Tan J, Zhao Z P, Wang Y H, Zhang Z K, Liu J G, Zhu N H 2018 Opt. Express 26 2099Google Scholar

    [10]

    Ponnampalam L, Fice M, Shams H, Renaud C, Seeds A 2018 Opt. Lett. 43 2507Google Scholar

    [11]

    Yu J G, Li K L, Chen Y X, Zhao L, Huang Y T, Li Y T, Ma J, Shan F L 2020 IEEE Photonics J. 12 7900808Google Scholar

    [12]

    Davila-Rodriguez J, Bagnell K, Delfyett P J 2013 Opt. Lett. 38 3665Google Scholar

    [13]

    Hou L, Huang Y, Liu Y, Zhang R, Wang J, Wang B, Zhu H, Hou B, Qiu B, Marsh J H 2020 Opt. Lett. 45 2760Google Scholar

    [14]

    He C, Pan S, Guo R, Zhao Y, Pan M 2012 Opt. Lett. 37 3834Google Scholar

    [15]

    Li D, Wu S B, Liu Y, Guo Y F 2020 Appl. Opt. 59 1916Google Scholar

    [16]

    Qu K, Zhao S H, Li X, Tan Q G, Zhu Z H 2018 Opt. Rev. 25 264Google Scholar

    [17]

    Wang Z F, Ma M, Sun H, Khalil M, Adams R, Yim K, Jin X, Chen L R 2019 IEEE J. Quantum Electron. 55 8400206Google Scholar

    [18]

    Pascual M D G, Zhou R, Smyth F, Anandarajah P M, Barry L P 2015 Opt. Express 23 23225Google Scholar

    [19]

    Zhu H T, Wang R, Pu T, Xiang P, Zheng J L, Fang T 2016 Laser Phys. Lett. 14 026201Google Scholar

    [20]

    郭星星, 项水英, 张雅慧, 郝跃 2021 光子学报 50 1020002Google Scholar

    Guo X X, Xiang S Y, Zhang Y H, Hao Y 2021 Acta Photon. Sin. 50 1020002Google Scholar

    [21]

    钟东洲, 曾能, 杨华, 徐喆 2021 物理学报 70 074206Google Scholar

    Zhong D Z, Zeng N, Yang H, Xu Z 2021 Acta Phys. Sin. 70 074206Google Scholar

    [22]

    王小发 2013 物理学报 62 104208Google Scholar

    Wang X F 2013 Acta Phys. Sin. 62 104208Google Scholar

    [23]

    陈建军, 钟祝强, 李林福 2022 光学学报 42 0714003Google Scholar

    Chen J J, Zhong Z Q, Li L F 2022 Acta Opt. Sin. 42 0714003Google Scholar

    [24]

    Xie C, Spiga S, Dong P, Winzer P, Bergmann M, KöGel B, Neumeyr C, Amann M C 2015 J. Lightwave Technol. 33 670Google Scholar

    [25]

    Wang Z, Lee H C, Ahsen O O, Lee B K, Choi W J, Potsaid B, Liu J, Jayaraman V, Cable A, Kraus M F 2014 Biomed. Opt. Express 5 2931Google Scholar

    [26]

    Prior E, De Dios C, Ortsiefer M, Meissner P, Acedo P 2015 J. Lightwave Technol. 33 4572Google Scholar

    [27]

    Prior E, De Dios C, Criado R, Ortsiefer M, Meissner P, Acedo P 2016 Opt. Lett. 41 4083Google Scholar

    [28]

    Quirce A, De Dios C, Valle A, Pesquera L, Acedo P 2018 J. Lightwave Technol. 36 1798Google Scholar

    [29]

    Quirce A, De Dios C, Valle A, Acedo P 2018 IEEE J. Sel. Top. Quantum Electron. 25 2888560Google Scholar

    [30]

    Ren H P, Fan L, Liu N, Wu Z M, Xia G Q 2020 Photonics 7 95Google Scholar

    [31]

    Rosado A, Martin E P, Perez-Serrano A, Tijero J, Anandarajah P M 2020 Opt. Laser Technol. 131 106392Google Scholar

    [32]

    Rosado A, Pérez-Serrano A, Tijero J M G, Valle Á, Pesquera L, Esquivias I 2019 Opt. Express 27 9155Google Scholar

    [33]

    Rosado A, Pérez-Serrano A, Tijero J M G, Gutierrez A V, Pesquera L, Esquivias I 2019 IEEE J. Quantum Electron. 55 2001012Google Scholar

  • 图 1  实验系统结构图. TL-可调谐激光器; VA-可变衰减器; PC-偏振控制器; FC-光纤耦合器; PM-光功率计; OC-光环形器; AWG-任意波形发生器; EA-电放大器; DC-直流电源; VCSEL-垂直腔面发射激光器; OFP-光纤起偏器; EDFA-掺铒光纤放大器; PD-光电探测器; ESA-频谱分析仪; DSO-数字实时示波器; OSA-光谱分析仪. 实线-光路; 虚线-电路

    Fig. 1.  Schematic diagram of the experimental system: TL-tunable laser; VA-variable attenuator; PC-polarization controller; FC-fiber coupler; PM-power meter; OC-optical circulator; AWG-arbitrary waveform generator; EA-electric amplifier; DC-direct current; VCSEL-vertical-cavity surface-emitting laser; OFP-optical fiber polarizer; EDFA-erbium-doped fiber amplifier; PD-photo-detector; ESA-spectrum analyzer; DSO-digital storage oscilloscope; OSA-optical spectrum analyzer. Solid line-optical path; dashed line-electronic path.

    图 2  (a)自由运行1550 nm-VCSEL输出的偏振分解P-I曲线; (b)Ibias = 6.4 mA时的光谱; (c) Ibias = 6.8 mA时的光谱

    Fig. 2.  (a) Polarization-resolved P-I curve; (b) optical spectrum of the free-running 1550 nm-VCSEL biased at 6.4 mA; (c) optical spectrum of the free-running 1550 nm-VCSEL biased at 6.8 mA.

    图 3  AWG产生的脉冲调制信号在不同时间窗口的波形 (a1)—(a2), 脉冲电流调制下的VCSEL输出的时间序列 (b1) 和光谱 (b2), 以及进一步引入光注入 (λi = 1551.8570 nm, Pi = 18.82 µW) 后VCSEL输出的时间序列(c1)和光谱(c2)

    Fig. 3.  Pulsed waveforms in different time windows generated by AWG (a1)–(a2), time series (b1) and optical spectrum (b2) of pulsed current-modulated VCSEL, time series (c1) and optical spectrum (c2) of pulsed current-modulated VCSEL under optical injection with Pi = 18.82 µW and λi = 1551.8570.

    图 4  Pi = 18.82 µW, Vm = 10.5 V, fm = 0.5 GHz, τelec = 200 ps时, 随着λi增大, 光注入下脉冲电流调制VCSEL输出OFC带宽 (a) 和CNR (b) 的变化趋势.

    Fig. 4.  Evolution of the bandwidth (a) and CNR (b) as a function of the injection light wavelength for the pulsed current modulation VCSEL at Pi = 18.82 µW, Vm = 10.5 V, fm = 0.5 GHz, τelec = 200 ps.

    图 5  中心频率为0.5 GHz电信号的功率谱 (a) 和单边带相位噪声 (b), 其中ESA的分辨率为1 Hz

    Fig. 5.  Power spectrum (a) and SSB phase noise (b) centered at 0.5 GHz under a resolution bandwidth of 1 Hz.

    图 6  Pi = 18.82 µW, Vm = 10.5 V, τelec = 125 ps时, 光注入脉冲电流调制VCSEL在不同fm下输出的光谱

    Fig. 6.  Output from the VCSEL under optical injection and pulse current modulation with Pi = 18.82 µW, Vm = 10.5 V, τelec = 125 ps and different fm.

    图 7  Pi = 18.82 µW, Vm = 10.5 V, τelec = 125 ps时, 光注入脉冲电流调制VCSEL随着fm的增大, 输出OFC带宽(a)和CNR (b)的变化趋势.

    Fig. 7.  Evolution of the bandwidth (a) and CNR (b) as a function of the pulsed modulation frequency at Pi = 18.82 µW, Vm = 10.5 V, τelec = 125 ps.

    图 8  Pi = 18.82 µW, Vm = 10.5 V, fm = 0.5 GHz时, 光注入脉冲电流调制VCSEL随着τelec的增大, 输出OFC带宽(a)和CNR (b)的变化趋势.

    Fig. 8.  Evolution of the bandwidth (a) and CNR (b) as a function of the pulse width at Pi = 18.82 µW, Vm = 10.5 V, fm = 0.5 GHz

    图 9  Pi = 18.82 µW, Vm = 10.5 V时, 光注入脉冲电流调制VCSEL在不同fm下, 选择优化的τelec时输出的光谱

    Fig. 9.  Output from the VCSEL under optical injection and pulse current modulation with optimized τelec and Pi = 18.82 µW, Vm = 10.5 V at different fm.

  • [1]

    Parriaux A, Hammani K, Millot G 2020 Adv. Opt. Photonics 12 223Google Scholar

    [2]

    Diddams S, Vahala K, Udem T 2020 Science 369 267Google Scholar

    [3]

    Yan X L, Zou X H, Pan W, Yan L S, Azaña J 2018 Opt. Lett. 43 283Google Scholar

    [4]

    Cundiff S T, Weiner A M, Andrew M 2010 Nat. Photon. 4 760Google Scholar

    [5]

    Li P L, Ma X L, Shi W H, Xu E M 2017 Opt. Laser Technol. 94 228Google Scholar

    [6]

    Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68Google Scholar

    [7]

    Sadiek I, Mikkonen T, Vainio M, Toivonen J, Foltynowicz A 2018 Phys. Chem. 20 27849Google Scholar

    [8]

    He J, Long F T, Deng R, Shi J, Dai M, Chen L 2017 J. Opt. Commun. 9 393Google Scholar

    [9]

    Tan J, Zhao Z P, Wang Y H, Zhang Z K, Liu J G, Zhu N H 2018 Opt. Express 26 2099Google Scholar

    [10]

    Ponnampalam L, Fice M, Shams H, Renaud C, Seeds A 2018 Opt. Lett. 43 2507Google Scholar

    [11]

    Yu J G, Li K L, Chen Y X, Zhao L, Huang Y T, Li Y T, Ma J, Shan F L 2020 IEEE Photonics J. 12 7900808Google Scholar

    [12]

    Davila-Rodriguez J, Bagnell K, Delfyett P J 2013 Opt. Lett. 38 3665Google Scholar

    [13]

    Hou L, Huang Y, Liu Y, Zhang R, Wang J, Wang B, Zhu H, Hou B, Qiu B, Marsh J H 2020 Opt. Lett. 45 2760Google Scholar

    [14]

    He C, Pan S, Guo R, Zhao Y, Pan M 2012 Opt. Lett. 37 3834Google Scholar

    [15]

    Li D, Wu S B, Liu Y, Guo Y F 2020 Appl. Opt. 59 1916Google Scholar

    [16]

    Qu K, Zhao S H, Li X, Tan Q G, Zhu Z H 2018 Opt. Rev. 25 264Google Scholar

    [17]

    Wang Z F, Ma M, Sun H, Khalil M, Adams R, Yim K, Jin X, Chen L R 2019 IEEE J. Quantum Electron. 55 8400206Google Scholar

    [18]

    Pascual M D G, Zhou R, Smyth F, Anandarajah P M, Barry L P 2015 Opt. Express 23 23225Google Scholar

    [19]

    Zhu H T, Wang R, Pu T, Xiang P, Zheng J L, Fang T 2016 Laser Phys. Lett. 14 026201Google Scholar

    [20]

    郭星星, 项水英, 张雅慧, 郝跃 2021 光子学报 50 1020002Google Scholar

    Guo X X, Xiang S Y, Zhang Y H, Hao Y 2021 Acta Photon. Sin. 50 1020002Google Scholar

    [21]

    钟东洲, 曾能, 杨华, 徐喆 2021 物理学报 70 074206Google Scholar

    Zhong D Z, Zeng N, Yang H, Xu Z 2021 Acta Phys. Sin. 70 074206Google Scholar

    [22]

    王小发 2013 物理学报 62 104208Google Scholar

    Wang X F 2013 Acta Phys. Sin. 62 104208Google Scholar

    [23]

    陈建军, 钟祝强, 李林福 2022 光学学报 42 0714003Google Scholar

    Chen J J, Zhong Z Q, Li L F 2022 Acta Opt. Sin. 42 0714003Google Scholar

    [24]

    Xie C, Spiga S, Dong P, Winzer P, Bergmann M, KöGel B, Neumeyr C, Amann M C 2015 J. Lightwave Technol. 33 670Google Scholar

    [25]

    Wang Z, Lee H C, Ahsen O O, Lee B K, Choi W J, Potsaid B, Liu J, Jayaraman V, Cable A, Kraus M F 2014 Biomed. Opt. Express 5 2931Google Scholar

    [26]

    Prior E, De Dios C, Ortsiefer M, Meissner P, Acedo P 2015 J. Lightwave Technol. 33 4572Google Scholar

    [27]

    Prior E, De Dios C, Criado R, Ortsiefer M, Meissner P, Acedo P 2016 Opt. Lett. 41 4083Google Scholar

    [28]

    Quirce A, De Dios C, Valle A, Pesquera L, Acedo P 2018 J. Lightwave Technol. 36 1798Google Scholar

    [29]

    Quirce A, De Dios C, Valle A, Acedo P 2018 IEEE J. Sel. Top. Quantum Electron. 25 2888560Google Scholar

    [30]

    Ren H P, Fan L, Liu N, Wu Z M, Xia G Q 2020 Photonics 7 95Google Scholar

    [31]

    Rosado A, Martin E P, Perez-Serrano A, Tijero J, Anandarajah P M 2020 Opt. Laser Technol. 131 106392Google Scholar

    [32]

    Rosado A, Pérez-Serrano A, Tijero J M G, Valle Á, Pesquera L, Esquivias I 2019 Opt. Express 27 9155Google Scholar

    [33]

    Rosado A, Pérez-Serrano A, Tijero J M G, Gutierrez A V, Pesquera L, Esquivias I 2019 IEEE J. Quantum Electron. 55 2001012Google Scholar

  • [1] 周沛, 张仁恒, 朱尖, 李念强. 基于双路光电反馈下光注入半导体激光器的高性能线性调频信号产生. 物理学报, 2022, 71(21): 214204. doi: 10.7498/aps.71.20221308
    [2] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [3] 夏文泽, 刘洋, 赫明钊, 曹士英, 杨伟雷, 张福民, 缪东晶, 李建双. 双光梳非线性异步光学采样测距中关键参数的数值分析. 物理学报, 2021, 70(18): 180601. doi: 10.7498/aps.70.20210565
    [4] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [5] 张浩, 郭星星, 项水英. 基于单向注入垂直腔面发射激光器系统的密钥分发. 物理学报, 2018, 67(20): 204202. doi: 10.7498/aps.67.20181038
    [6] 苏斌斌, 陈建军, 吴正茂, 夏光琼. 混沌光注入垂直腔面发射激光器混沌输出的时延和带宽特性. 物理学报, 2017, 66(24): 244206. doi: 10.7498/aps.66.244206
    [7] 刘庆喜, 潘炜, 张力月, 李念强, 阎娟. 基于外光注入互耦合垂直腔面发射激光器的混沌随机特性研究. 物理学报, 2015, 64(2): 024209. doi: 10.7498/aps.64.024209
    [8] 邓伟, 夏光琼, 吴正茂. 基于双光反馈垂直腔面发射激光器的双信道混沌同步通信. 物理学报, 2013, 62(16): 164209. doi: 10.7498/aps.62.164209
    [9] 马雅男, 罗斌, 潘炜, 闫连山, 邹喜华, 易安林, 叶佳, 温坤华, 郑狄. 垂直腔面发射激光器的饱和效应对慢光延时影响的研究. 物理学报, 2012, 61(1): 014215. doi: 10.7498/aps.61.014215
    [10] 李硕, 关宝璐, 史国柱, 郭霞. 亚波长光栅调制的偏振稳定垂直腔面发射激光器研究. 物理学报, 2012, 61(18): 184208. doi: 10.7498/aps.61.184208
    [11] 曹体, 林晓东, 夏光琼, 陈兴华, 吴正茂. 光注入和光电反馈联合作用下垂直腔表面发射激光器的动力学特性研究. 物理学报, 2012, 61(11): 114202. doi: 10.7498/aps.61.114202
    [12] 毛明明, 徐晨, 魏思民, 解意洋, 刘久澄, 许坤. 质子注入能量对垂直腔面发射激光器的阈值和功率的影响. 物理学报, 2012, 61(21): 214207. doi: 10.7498/aps.61.214207
    [13] 王宝强, 徐晨, 刘英明, 解意洋, 刘发, 赵振波, 周康, 沈光地. 光子晶体垂直腔面发射激光器的电流分布研究. 物理学报, 2010, 59(12): 8542-8547. doi: 10.7498/aps.59.8542
    [14] 吕玉祥, 孙帅, 杨星. 基于光注入Fabry-Perot半导体激光器实现同步全光分路时钟提取与波长转换. 物理学报, 2009, 58(4): 2467-2475. doi: 10.7498/aps.58.2467
    [15] 王同喜, 关宝璐, 郭霞, 沈光地. 载流子输运和寄生参数对隧道再生双有源区垂直腔面发射激光器调制特性的影响. 物理学报, 2009, 58(3): 1694-1699. doi: 10.7498/aps.58.1694
    [16] 范 燕, 夏光琼, 吴正茂. 光注入下外光反馈半导体激光器输出自相关特性研究. 物理学报, 2008, 57(12): 7663-7667. doi: 10.7498/aps.57.7663
    [17] 牛生晓, 张明江, 安 义, 贺虎成, 李静霞, 王云才. 外光注入半导体激光器实现重复速率可调全光时钟分频. 物理学报, 2008, 57(11): 6998-7004. doi: 10.7498/aps.57.6998
    [18] 杨 浩, 郭 霞, 关宝璐, 王同喜, 沈光地. 注入电流对垂直腔面发射激光器横模特性的影响. 物理学报, 2008, 57(5): 2959-2965. doi: 10.7498/aps.57.2959
    [19] 王云才, 赵跃鹏, 张明江, 安 义, 王纪龙. 外光注入半导体激光器实现时钟分频. 物理学报, 2007, 56(12): 6982-6988. doi: 10.7498/aps.56.6982
    [20] 赵红东, 康志龙, 王胜利, 陈国鹰, 张以谟. 高速调制响应垂直腔面发射激光器中的微腔效应. 物理学报, 2003, 52(1): 77-80. doi: 10.7498/aps.52.77
计量
  • 文章访问数:  2269
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-30
  • 修回日期:  2022-09-25
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-01-05

/

返回文章
返回