-
光学频率梳由一组等间距的离散频率成分组成, 在计量学、光谱学、太赫兹波产生、光通信、任意波形产生等领域有着广泛的应用. 本文提出了一种基于光注入下脉冲电流调制1550 nm 垂直腔面发射激光器获取宽带可调谐光学频率梳的实验方案. 在该方案中, 首先采用脉冲信号电流调制激光器, 使其输出的光谱呈现出无明显梳状线的宽噪声谱; 进一步引入光注入, 获取宽带可调谐光学频率梳. 当注入功率为18.82 µW、注入波长为1551.8570 nm、调制电压为10.5 V、调制频率为0.5 GHz、脉冲宽度为200 ps时, 获取了带宽约为82.5 GHz, 信噪比约为35 dB的光学频率梳, 且该光学频率梳的单边带相位噪声低至–123.3 dBc/Hz@10 kHz. 此外, 本实验也系统研究了注入波长、调制频率、脉冲宽度对光学频率梳性能的影响. 实验结果表明: 改变调制频率可以获得不同梳距的光学频率梳, 当调制频率在0.25—3 GHz范围内, 选择优化的注入波长和脉冲宽度, 可获取带宽超过60 GHz的光学频率梳.Optical frequency combs (OFCs) each consist of a set of equally spaced discrete frequency components, and they have been widely applied to many fields such as metrology, optical arbitrary waveform generation, spectroscopy, optical communication, and THz generation. In this work, we propose a scheme for generating broadband and tunable OFCs based on a 1550 nm vertical-cavity surface-emitting laser (VCSEL) under pulsed current modulation and optical injection. Firstly, a pulsed electrical signal is utilized to drive a 1550 nm-VCSEL into the gain-switching state with a broad noisy spectrum. Next, a continuous optical wave is further introduced for generating broadband and tunable OFC. Under injection light with power of 18.82 µW and wavelength of 1551.8570 nm, and pulsed electrical signal with a frequency of 0.5 GHz and pulse width of 200 ps, an OFC with a bandwidth of 82.5 GHz and CNR of 35 dB is experimentally acquired, and the single sideband phase noise at the 0.5 GHz reaches –123.3 dBc/Hz at 10 kHz. Moreover, the influences of injection light wavelength, frequency and width of pulse electrical signal on the performance of generated OFC are investigated. The experimental results show that OFCs with different comb spacings can be obtained by varying the frequency of pulsed electrical signal. For the frequency of pulsed current signal varying in a range of 0.25 GHz–3 GHz, the bandwidth of generated OFCs can exceed 60 GHz through selecting optimized injection optical wavelength and width of pulse electrical signal.
1. 引 言
光学频率梳(optical frequency comb, OFC)由一组等间距的离散频率成分组成[1]. 由于具有稳定性良好、频率间隔均匀、相干性高等优点, OFC被广泛应用于计量学[2,3]、任意波形产生[4,5]、光谱学[6,7]、光通信[8,9]、太赫兹波产生[10,11]等领域. 目前, 获取OFC的方式主要有锁模[12,13]、外部调制[14,15]、电流调制[16-19]等. 其中, 基于电流调制半导体激光器获取OFC实验系统简单, 易于操作, 并且能够获取梳线间距灵活可调、稳定性良好的OFC, 因此, 基于电流调制半导体激光器获取OFC倍受青睐.
垂直腔面发射激光器(vertical-cavity surface-emitting laser, VCSEL)是一种典型的半导体激光器, 具有制造成本低、阈值电流低、光纤耦合效率高、易于集成等特点, 在很多领域有着广泛应用[20,21]. 尤其是VCSEL的增益有源区或激光腔中存在微弱的各向异性, 从而导致其输出包含两个正交的偏振分量[22,23], 在一定条件下可同时输出两个偏振方向正交的OFC, 为偏振敏感传感[24]和偏振分频复用光通信[25]的多载波光源提供了应用前景. 目前, 基于电流调制VCSEL获取OFC已有相关理论和实验的研究报道. 2015年, Prior等[26]实验证明了电流调制VCSEL可以同时输出两个偏振方向正交的OFC, 并可叠加为一个宽带OFC. 次年, 该课题组[27]在系统中进一步引入光注入提升OFC的带宽. 2018年, Quirce等[28]理论研究了电流调制VCSEL产生OFC的性能. 同年, 该课题组[29]在系统中引入光注入, 进一步理论研究注入光的功率、位置、偏振对OFC性能的影响. 2020年, 本课题组[30]实验研究了注入功率和波长对光注入电流调制VCSEL产生OFC性能的影响, 实验获取了带宽约为70 GHz的OFC. 需要指出的是, 上述基于电流调制VCSEL获取OFC的方案中, 都采用了正弦信号进行电流调制, 但正弦信号因其单一的频率成分无法在较低的调制频率(≤ 1 GHz)下获取平坦且宽带的OFC[31]. 2019年, Rosado等采用脉冲信号对光注入下离散模式激光器进行调制, 当调制频率为0.5 GHz时, 获取了带宽约为54 GHz, 载噪比(carrier to noise ratio, CNR)为37 dB的OFC[32]. 但目前, 基于光注入下脉冲电流调制VCSEL获取OFC, 以及调制参数对OFC性能影响的研究尚未见报道.
因此, 本文提出一种基于光注入下脉冲电流调制1550 nm-VCSEL获取宽带可调谐OFC的实验方案. 主要研究注入波长、调制频率、脉冲宽度对OFC带宽和CNR的影响. 实验结果表明, 注入波长、调制频率、脉冲宽度对OFC性能有显著影响, 在不同调制频率和匹配的注入波长下, 优化脉冲宽度, 可获得宽带可调谐的OFC.
2. 实验系统
图1是实验系统结构示意图. 可调谐激光器(TL, Santec TSL-710)输出的光通过可变衰减器(VA)、偏振控制器(PC)、20/80光纤耦合器(FC1)后被分成两部分, 其中20%进入光功率计(PM)监测注入功率的大小, 80%通过光环形器(OC)后注入到1550 nm-VCSEL(Raycan)中. VCSEL的温度和偏置电流(Ibias)由高精度低噪声电流-温度控制器(ILX-Lightwave, LDC-3908)控制, 且一个任意波形发生器(AWG, Tektronix, AWG70001A, 1.5 KSa/s—50 GSa/s)产生的高斯脉冲电信号通过电放大器(EA)放大后对VCSEL进行调制. VCSEL的输出通过OC、光纤起偏器(OFP, Opeak OM-POL-GN)、掺铒光纤放大器(EDFA)、50/50光纤耦合器(FC2)后被分成两个部分, 其中一部分进入光谱分析仪(OSA, Aragon Photonics BOSA lite +, 分辨率为20 MHz)进行光谱测定; 另一部分被一个50/50光纤耦合器(FC3)再分为两部分, 一部分进入光电探测器(PD1, U2T-XPDV2150R, 带宽为50 GHz)转换成电信号, 然后用频谱分析仪(ESA, R&S FSW, 带宽为67.0 GHz)进行频谱分析; 另一部分进入另一个光电探测器(PD2, New Focus 1544B, 带宽为12.0 GHz)转换成电信号, 然后由数字实时示波器(DSO, Agilent X91604A, 带宽为16.0 GHz)记录时间序列. 其中VA用于调节注入功率Pi的大小, PC用于调节注入光的偏振, OFP用于选择VCSEL输出光的偏振方向, EDFA用于放大光功率. 在实验过程中, 1550 nm-VCSEL的温度保持在20.10 ℃.
图 1 实验系统结构图. TL-可调谐激光器; VA-可变衰减器; PC-偏振控制器; FC-光纤耦合器; PM-光功率计; OC-光环形器; AWG-任意波形发生器; EA-电放大器; DC-直流电源; VCSEL-垂直腔面发射激光器; OFP-光纤起偏器; EDFA-掺铒光纤放大器; PD-光电探测器; ESA-频谱分析仪; DSO-数字实时示波器; OSA-光谱分析仪. 实线-光路; 虚线-电路Fig. 1. Schematic diagram of the experimental system: TL-tunable laser; VA-variable attenuator; PC-polarization controller; FC-fiber coupler; PM-power meter; OC-optical circulator; AWG-arbitrary waveform generator; EA-electric amplifier; DC-direct current; VCSEL-vertical-cavity surface-emitting laser; OFP-optical fiber polarizer; EDFA-erbium-doped fiber amplifier; PD-photo-detector; ESA-spectrum analyzer; DSO-digital storage oscilloscope; OSA-optical spectrum analyzer. Solid line-optical path; dashed line-electronic path.3. 实验结果与讨论
图2(a)是自由运行1550 nm-VCSEL的输出功率随电流的变化曲线(P-I曲线), 图中Y偏振分量(Y polarization component, Y-PC)和X偏振分量(X polarization component, X-PC)分别用实线和点线表示. 从图2(a)中可知, VCSEL的阈值电流Ith约为1.7 mA, 偏振开关电流约为6.6 mA. 当Ibias超过Ith时, Y-PC激射, X-PC被抑制; 当Ibias高于6.6 mA, 激射的偏振分量切换为X-PC, 此时X-PC激射, 而Y-PC被抑制. 图2(b)和(c)分别显示了Ibias = 6.4 mA和Ibias = 6.8 mA时, 自由运行VCSEL输出的光谱. 图2(b)中, 光谱在1552.612 nm和1552.870 nm处出现两个峰, 分别对应Y-PC和X-PC, 且Y-PC功率远高于X-PC, 此时Y-PC为主激射的偏振分量; 图2(c)中X-PC功率明显高于Y-PC, X-PC为主激射的偏振分量.两个偏振分量波长(频率)间隔约为0.258 nm (32.2 GHz). 需要说明的是, 在后续实验中使用正向脉冲电信号(调制电压Vm = 10.5 V)调制1550 nm-VCSEL, 为了实现增益开关, 实验中设置Ibias = 1.5 mA, 略低于VCSEL的Ith.
首先, 研究在特定调制参数和注入参数下1550 nm-VCSEL的输出特性. 图3(a1)给出了由AWG产生经过EA放大后对1550 nm-VCSEL进行脉冲电流调制的波形. 此时, 脉冲的调制频率fm = 0.5 GHz、峰值电压为Vm = 10.5 V. 为了更清晰地显示脉冲形状, 图3(a2)给出了一个周期(2 ns)的脉冲波形. 在本文中, 我们采用半极大全宽表征调制脉冲信号宽度(τelec), 此时τelec = 200 ps. 图3(b1)和(b2)分别是在图3(a1)所示的脉冲电流调制下1550 nm-VCSEL输出的时间序列和光谱. 从图中可以看出, 其时间序列为等间隔、峰值功率随机变化的脉冲, 脉冲间隔为2 ns ( = 1/fm). 光谱为无明显梳状线的宽噪声谱, 且噪声谱宽度与自由运行1550 nm-VCSEL的两个偏振分量波长间隔相关[29]. 这样的光谱结构是因为每一个脉冲的建立都是源于自发辐射, 后续脉冲与前序脉冲之间无固定的相位关系[33]. 进一步引入光注入, 当注入波长λi = 1551.8570 nm, 注入功率Pi = 18.82 µW时, 1550 nm-VCSEL输出的时间序列和光谱如图3(c1)和3(c2)所示. 引入光注入后, 输出时间序列仍为等间隔的脉冲, 但此时脉冲的峰值功率稳定. 在本文中, OFC的性能通过带宽和载噪比(CNR)来表征. 其中, 带宽定义为从光谱的最大值下降10 dB所包含的频率范围, 而CNR定义为光谱梳状线功率(以dB为单位)的最大值与相邻的最小值之差[29]. 根据上述定义, 此时引入光注入后可产生宽带OFC, 带宽约为82.5 GHz (166根梳状线), CNR约为35 dB. 光注入使每一个脉冲的建立主要源于注入光场, 从而使前后脉冲之间具有相位关联性, 使1550 nm-VCSEL输出优质的OFC[33].
图 3 AWG产生的脉冲调制信号在不同时间窗口的波形 (a1)—(a2), 脉冲电流调制下的VCSEL输出的时间序列 (b1) 和光谱 (b2), 以及进一步引入光注入 (λi = 1551.8570 nm, Pi = 18.82 µW) 后VCSEL输出的时间序列(c1)和光谱(c2)Fig. 3. Pulsed waveforms in different time windows generated by AWG (a1)–(a2), time series (b1) and optical spectrum (b2) of pulsed current-modulated VCSEL, time series (c1) and optical spectrum (c2) of pulsed current-modulated VCSEL under optical injection with Pi = 18.82 µW and λi = 1551.8570.图4显示光注入下脉冲电流调制1550 nm-VCSEL输出OFC的带宽和CNR随注入波长的变化趋势. 其中注入波长的变化步长设置为0.02 nm. 由图4(a)可知, 当λi < 1551.5770 nm或λi > 1552.2770 nm时, 注入波长在噪声谱外, 不能产生OFC; 当1551.5770 nm ≤ λi ≤ 1552.2770 nm, 可以获得宽带的OFC, OFC带宽超过38 GHz. 特别是当注入波长在1551.8470 nm ≤ λi ≤ 1551.8670 nm之间时, Y-PC和X-PC周围均激发出功率均衡的梳状线, 此外可以获得带宽达82.5 GHz的宽带OFC. 在图4(b)中, 随着注入波长的增大, CNR从0 dB开始, 先增大, 然后稳定在较高的水平, 然后减小. 这是因为当注入波长在噪声谱外, VCSEL不能输出梳状线, 此时CNR为0 dB. 当注入波长在噪声谱两端时, 光注入激发VCSEL输出梳状线, 但此时OFC的功率较小, CNR较低. 当注入波长在1551.6770 nm < λi < 1552.1570 nm时, 注入波长在噪声谱的中心区域附近, 此时噪声谱被有效抑制, VCSEL输出功率均衡的OFC, 此时CNR保持在较高的水平, 在33—36 dB之间波动. 因此, 实验结果表明: 注入波长是影响OFC性能的一个重要因素, 这是因为注入波长的变化会导致VCSEL中两个偏振分量的相对强弱的改变[30]. 因此, 选择合适的注入波长, 可以获得大带宽、高CNR的OFC.
图 4 Pi = 18.82 µW, Vm = 10.5 V, fm = 0.5 GHz, τelec = 200 ps时, 随着λi增大, 光注入下脉冲电流调制VCSEL输出OFC带宽 (a) 和CNR (b) 的变化趋势.Fig. 4. Evolution of the bandwidth (a) and CNR (b) as a function of the injection light wavelength for the pulsed current modulation VCSEL at Pi = 18.82 µW, Vm = 10.5 V, fm = 0.5 GHz, τelec = 200 ps.高质量的OFC除了具有大带宽和高CNR外, 还应具有高度相干和稳定的梳状线. 图5显示中心频率为0.5 GHz ( = fm) 的电信号的功率谱(图5(a))和单边带(single sideband, SSB)相位噪声(图5(b)). 如图所示, 该信号的3 dB线宽低于1 Hz(图5(a)), SSB相位噪声约为–123.3 dBc/Hz @ 10 kHz (图5(b)). 这表明基于光注入下脉冲电流调制1550 nm-VCSEL能够输出高度相干和稳定的梳状线.
接下来研究调制频率对OFC性能的影响. 图6是Pi = 18.82 µW, τelec = 125 ps时, 光注入脉冲电流调制VCSEL在不同fm下输出的光谱. 需要注意的是, 调制频率的变化会引起噪声谱包络的移动[30], 因此需要选择匹配的注入波长, 使光注入电流调制VCSE输出OFC. 如图6(a)所示, fm = 0.25 GHz, λi = 1551.3087 nm时, X-PC和Y-PC偏振分量产生的OFC相互分离, 此时OFC带宽较小, 带宽约为39 GHz (157根梳状线), CNR约为31 dB. 如图6(b)—(e)所示, 当fm为0.5 GHz, 0.75 GHz, 1.5 GHz, 2.0 GHz时, 对应的λi = 1551.7495 nm, 1551.8053 nm, 1552.5577 nm, 1551.7470 nm时, X-PC和Y-PC产生的梳状线可以连接成宽带OFC, 带宽约为73.0 GHz (147根梳状线)、69 GHz (93根梳状线)、57.0 GHz (39根梳状线)、54 GHz (28根梳状线); CNR约为35 dB, 38 dB, 43 dB, 45 dB. 进一步增大调制频率, 当fm = 3.0 GHz, λi = 1552.1287 nm时, 如图6(f)所示, 过高的调制频率使OFC功率不均匀, 带宽降低至15.0 GHz (6根梳状线), CNR约为47 dB.
图7给出了OFC带宽和CNR随fm增大的变化趋势. 在图7(a)中, 随着fm的增大, OFC的带宽呈现先增大后减小的变化趋势. 当0.25 GHz < fm ≤ 2.5 GHz时, 两个偏振分量输出的梳状线功率比较均衡, 连接成宽带OFC, OFC带宽在40 GHz以上. 在图7(b)中, 随着fm的增大, CNR呈现先快速上升, 再趋于平缓的趋势. 当0.25 GHz < fm时, 均可获得高CNR的OFC, CNR大于35 dB.
研究τelec对OFC带宽和CNR的影响. 图8给出了OFC带宽和CNR随τelec增大的变化趋势. 如图8(a)所示, 随着τelec的增大, OFC带宽呈现先增大后减小的变化趋势. 当τelec < 62.5 ps时, 较小的调制脉宽不能提供足够的调制能量, 此时两个偏振分量产生的梳状线功率差距较大, VCSEL不能输出平坦且宽带的OFC. 当62.5 ps ≤ τelec ≤ 250 ps, 适当的调制脉宽和调制能量使得VCSEL输出功率均衡的宽带OFC, OFC带宽在48 GHz以上. 特别是在175 ps ≤ τelec ≤ 250 ps的脉宽范围内, OFC带宽可以超过80 GHz. 继续增大τelec, 当τelec > 250 ps时, 较大的调制脉宽带来了较多的调制能量, 这些较强的调制能量很难均匀分布在OFC的各个梳状线上, 这导致OFC的梳状线不均衡, 带宽逐渐减少. 如图8(b)所示, τelec的变化对CNR的影响较小, CNR在35—38 dB之间波动. 因此, 实验结果表明, τelec的变化对OFC的带宽影响较大, 对CNR的影响较小. 选择合适的τelec, 可以获得宽带、高CNR的OFC.
上文研究了固定τelec = 125 ps, 不同fm下, 光注入脉冲电流调制VCSEL输出OFC的性能. 事实上, 通过优化τelec, 可以进一步提升不同fm下的OFC带宽. 图9显示Pi = 18.82 µW, Vm = 10.5 V时, 光注入脉冲电流调制VCSEL在不同fm下, 选择优化的τelec时输出的光谱. 需要注意的是: 图9中的OFC, 同样需要选择匹配的注入波长. 在图9(a)—(f)中, 当(fm, λi) = (0.25 GHz, 1551.8037 nm), (0.5 GHz, 1551.8570 nm), (0.75 GHz, 1552.4902 nm), (1.5 GHz, 1553.7906 nm), (2.0 GHz, 1553.9384 nm), (3.0 GHz, 1553.0364 nm)时, 选择优化的τelec为100 ps, 200 ps, 150 ps, 175 ps, 200 ps, 162.5 ps时, 获取的OFC带宽分别为72.25 GHz (289根梳状线)、82.5 GHz (166根梳状线)、74.25 GHz (100根梳状线)、70.5 GHz (48根梳状线)、64.0 GHz (33根梳状线)、63.0 GHz (22根梳状线), CNR分别为31 dB, 35 dB, 38 dB, 45 dB, 47 dB, 49 dB. 将以上实验结果和图6进行对比可以发现, 相同的调制频率, 优化脉冲宽度, OFC带宽分别增大了32.75 GHz, 9.5 GHz, 5.25 GHz, 13.5 GHz, 10 GHz, 48 GHz. 因此, 在不同的fm下, 通过优化的τelec, 可以通过本文提出的实验系统获取宽带可调谐OFC. 另外, 实验结果还表明: 在优化的参数条件下所获得的OFC比较稳定, 梳线功率抖动较小(小于1 dB).
4. 结 论
本文提出了一种基于光注入下脉冲电流调制1550 nm-VCSEL获取宽带可调谐OFC的实验方案. 在该方案中, 采用脉冲信号调制激光器, 使其输出的光谱呈现无明显梳状线的宽噪声谱; 进一步引入光注入获取宽带可调谐OFC. 在调制频率fm = 0.5 GHz, 脉冲宽度τelec = 200 ps, 注入波长λi = 1551.8570 nm时, 获取带宽约为82.5 GHz, CNR约为35 dB的宽带OFC, 对应的SSB相位噪声低至–123.3 dBc/Hz @ 10 kHz. 并且, 我们系统地研究了注入波长, 调制频率, 脉冲宽度对OFC性能的影响. 实验结果表明, 给定调制频率和脉冲宽度, 注入波长在1551.8470 nm ≤ λi ≤ 1551.8670 nm之间时, 可以获得带宽达82.5 GHz, CNR为35 dB的宽带OFC. 给定脉冲宽度和适当的注入波长, 调制频率当0.25 GHz < fm ≤ 2.5 GHz时, OFC带宽在40 GHz以上, CNR在35 dB以上. 给定调制频率和适当的注入波长, 脉冲宽度在175 ps ≤ τelec ≤ 250 ps的脉宽范围内, 可以获得带宽超过80 GHz的OFC, CNR在35 dB以上.
[1] Parriaux A, Hammani K, Millot G 2020 Adv. Opt. Photonics 12 223
Google Scholar
[2] Diddams S, Vahala K, Udem T 2020 Science 369 267
Google Scholar
[3] Yan X L, Zou X H, Pan W, Yan L S, Azaña J 2018 Opt. Lett. 43 283
Google Scholar
[4] Cundiff S T, Weiner A M, Andrew M 2010 Nat. Photon. 4 760
Google Scholar
[5] Li P L, Ma X L, Shi W H, Xu E M 2017 Opt. Laser Technol. 94 228
Google Scholar
[6] Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68
Google Scholar
[7] Sadiek I, Mikkonen T, Vainio M, Toivonen J, Foltynowicz A 2018 Phys. Chem. 20 27849
Google Scholar
[8] He J, Long F T, Deng R, Shi J, Dai M, Chen L 2017 J. Opt. Commun. 9 393
Google Scholar
[9] Tan J, Zhao Z P, Wang Y H, Zhang Z K, Liu J G, Zhu N H 2018 Opt. Express 26 2099
Google Scholar
[10] Ponnampalam L, Fice M, Shams H, Renaud C, Seeds A 2018 Opt. Lett. 43 2507
Google Scholar
[11] Yu J G, Li K L, Chen Y X, Zhao L, Huang Y T, Li Y T, Ma J, Shan F L 2020 IEEE Photonics J. 12 7900808
Google Scholar
[12] Davila-Rodriguez J, Bagnell K, Delfyett P J 2013 Opt. Lett. 38 3665
Google Scholar
[13] Hou L, Huang Y, Liu Y, Zhang R, Wang J, Wang B, Zhu H, Hou B, Qiu B, Marsh J H 2020 Opt. Lett. 45 2760
Google Scholar
[14] He C, Pan S, Guo R, Zhao Y, Pan M 2012 Opt. Lett. 37 3834
Google Scholar
[15] Li D, Wu S B, Liu Y, Guo Y F 2020 Appl. Opt. 59 1916
Google Scholar
[16] Qu K, Zhao S H, Li X, Tan Q G, Zhu Z H 2018 Opt. Rev. 25 264
Google Scholar
[17] Wang Z F, Ma M, Sun H, Khalil M, Adams R, Yim K, Jin X, Chen L R 2019 IEEE J. Quantum Electron. 55 8400206
Google Scholar
[18] Pascual M D G, Zhou R, Smyth F, Anandarajah P M, Barry L P 2015 Opt. Express 23 23225
Google Scholar
[19] Zhu H T, Wang R, Pu T, Xiang P, Zheng J L, Fang T 2016 Laser Phys. Lett. 14 026201
Google Scholar
[20] 郭星星, 项水英, 张雅慧, 郝跃 2021 光子学报 50 1020002
Google Scholar
Guo X X, Xiang S Y, Zhang Y H, Hao Y 2021 Acta Photon. Sin. 50 1020002
Google Scholar
[21] 钟东洲, 曾能, 杨华, 徐喆 2021 物理学报 70 074206
Google Scholar
Zhong D Z, Zeng N, Yang H, Xu Z 2021 Acta Phys. Sin. 70 074206
Google Scholar
[22] 王小发 2013 物理学报 62 104208
Google Scholar
Wang X F 2013 Acta Phys. Sin. 62 104208
Google Scholar
[23] 陈建军, 钟祝强, 李林福 2022 光学学报 42 0714003
Google Scholar
Chen J J, Zhong Z Q, Li L F 2022 Acta Opt. Sin. 42 0714003
Google Scholar
[24] Xie C, Spiga S, Dong P, Winzer P, Bergmann M, KöGel B, Neumeyr C, Amann M C 2015 J. Lightwave Technol. 33 670
Google Scholar
[25] Wang Z, Lee H C, Ahsen O O, Lee B K, Choi W J, Potsaid B, Liu J, Jayaraman V, Cable A, Kraus M F 2014 Biomed. Opt. Express 5 2931
Google Scholar
[26] Prior E, De Dios C, Ortsiefer M, Meissner P, Acedo P 2015 J. Lightwave Technol. 33 4572
Google Scholar
[27] Prior E, De Dios C, Criado R, Ortsiefer M, Meissner P, Acedo P 2016 Opt. Lett. 41 4083
Google Scholar
[28] Quirce A, De Dios C, Valle A, Pesquera L, Acedo P 2018 J. Lightwave Technol. 36 1798
Google Scholar
[29] Quirce A, De Dios C, Valle A, Acedo P 2018 IEEE J. Sel. Top. Quantum Electron. 25 2888560
Google Scholar
[30] Ren H P, Fan L, Liu N, Wu Z M, Xia G Q 2020 Photonics 7 95
Google Scholar
[31] Rosado A, Martin E P, Perez-Serrano A, Tijero J, Anandarajah P M 2020 Opt. Laser Technol. 131 106392
Google Scholar
[32] Rosado A, Pérez-Serrano A, Tijero J M G, Valle Á, Pesquera L, Esquivias I 2019 Opt. Express 27 9155
Google Scholar
[33] Rosado A, Pérez-Serrano A, Tijero J M G, Gutierrez A V, Pesquera L, Esquivias I 2019 IEEE J. Quantum Electron. 55 2001012
Google Scholar
期刊类型引用(5)
1. 郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 . 百度学术
2. 张照,许晓慧,黄金艺,牟震林,苑伟政,何洋,吕湘连. 厘米尺度亲疏水间隔表面水下气膜维持效果及机理研究. 表面技术. 2023(12): 188-196 . 百度学术
3. 陈程,卢艳. 高温壁面润湿性对气层稳定性及其壁面滑移性能的分子动力学研究. 原子与分子物理学报. 2022(02): 104-110 . 百度学术
4. 陈正云,张清福,潘翀,刘彦鹏,蔡楚江. 超疏水旋转圆盘气膜层减阻的实验研究. 实验流体力学. 2021(03): 52-59 . 百度学术
5. 任刘珍,胡海豹,宋保维,潘光,黄桥高. 超疏水表面水下减阻研究进展. 数字海洋与水下攻防. 2020(03): 204-211+177 . 百度学术
其他类型引用(6)
-
图 1 实验系统结构图. TL-可调谐激光器; VA-可变衰减器; PC-偏振控制器; FC-光纤耦合器; PM-光功率计; OC-光环形器; AWG-任意波形发生器; EA-电放大器; DC-直流电源; VCSEL-垂直腔面发射激光器; OFP-光纤起偏器; EDFA-掺铒光纤放大器; PD-光电探测器; ESA-频谱分析仪; DSO-数字实时示波器; OSA-光谱分析仪. 实线-光路; 虚线-电路
Fig. 1. Schematic diagram of the experimental system: TL-tunable laser; VA-variable attenuator; PC-polarization controller; FC-fiber coupler; PM-power meter; OC-optical circulator; AWG-arbitrary waveform generator; EA-electric amplifier; DC-direct current; VCSEL-vertical-cavity surface-emitting laser; OFP-optical fiber polarizer; EDFA-erbium-doped fiber amplifier; PD-photo-detector; ESA-spectrum analyzer; DSO-digital storage oscilloscope; OSA-optical spectrum analyzer. Solid line-optical path; dashed line-electronic path.
图 3 AWG产生的脉冲调制信号在不同时间窗口的波形 (a1)—(a2), 脉冲电流调制下的VCSEL输出的时间序列 (b1) 和光谱 (b2), 以及进一步引入光注入 (λi = 1551.8570 nm, Pi = 18.82 µW) 后VCSEL输出的时间序列(c1)和光谱(c2)
Fig. 3. Pulsed waveforms in different time windows generated by AWG (a1)–(a2), time series (b1) and optical spectrum (b2) of pulsed current-modulated VCSEL, time series (c1) and optical spectrum (c2) of pulsed current-modulated VCSEL under optical injection with Pi = 18.82 µW and λi = 1551.8570.
图 4 Pi = 18.82 µW, Vm = 10.5 V, fm = 0.5 GHz, τelec = 200 ps时, 随着λi增大, 光注入下脉冲电流调制VCSEL输出OFC带宽 (a) 和CNR (b) 的变化趋势.
Fig. 4. Evolution of the bandwidth (a) and CNR (b) as a function of the injection light wavelength for the pulsed current modulation VCSEL at Pi = 18.82 µW, Vm = 10.5 V, fm = 0.5 GHz, τelec = 200 ps.
-
[1] Parriaux A, Hammani K, Millot G 2020 Adv. Opt. Photonics 12 223
Google Scholar
[2] Diddams S, Vahala K, Udem T 2020 Science 369 267
Google Scholar
[3] Yan X L, Zou X H, Pan W, Yan L S, Azaña J 2018 Opt. Lett. 43 283
Google Scholar
[4] Cundiff S T, Weiner A M, Andrew M 2010 Nat. Photon. 4 760
Google Scholar
[5] Li P L, Ma X L, Shi W H, Xu E M 2017 Opt. Laser Technol. 94 228
Google Scholar
[6] Cingöz A, Yost D C, Allison T K, Ruehl A, Fermann M E, Hartl I, Ye J 2012 Nature 482 68
Google Scholar
[7] Sadiek I, Mikkonen T, Vainio M, Toivonen J, Foltynowicz A 2018 Phys. Chem. 20 27849
Google Scholar
[8] He J, Long F T, Deng R, Shi J, Dai M, Chen L 2017 J. Opt. Commun. 9 393
Google Scholar
[9] Tan J, Zhao Z P, Wang Y H, Zhang Z K, Liu J G, Zhu N H 2018 Opt. Express 26 2099
Google Scholar
[10] Ponnampalam L, Fice M, Shams H, Renaud C, Seeds A 2018 Opt. Lett. 43 2507
Google Scholar
[11] Yu J G, Li K L, Chen Y X, Zhao L, Huang Y T, Li Y T, Ma J, Shan F L 2020 IEEE Photonics J. 12 7900808
Google Scholar
[12] Davila-Rodriguez J, Bagnell K, Delfyett P J 2013 Opt. Lett. 38 3665
Google Scholar
[13] Hou L, Huang Y, Liu Y, Zhang R, Wang J, Wang B, Zhu H, Hou B, Qiu B, Marsh J H 2020 Opt. Lett. 45 2760
Google Scholar
[14] He C, Pan S, Guo R, Zhao Y, Pan M 2012 Opt. Lett. 37 3834
Google Scholar
[15] Li D, Wu S B, Liu Y, Guo Y F 2020 Appl. Opt. 59 1916
Google Scholar
[16] Qu K, Zhao S H, Li X, Tan Q G, Zhu Z H 2018 Opt. Rev. 25 264
Google Scholar
[17] Wang Z F, Ma M, Sun H, Khalil M, Adams R, Yim K, Jin X, Chen L R 2019 IEEE J. Quantum Electron. 55 8400206
Google Scholar
[18] Pascual M D G, Zhou R, Smyth F, Anandarajah P M, Barry L P 2015 Opt. Express 23 23225
Google Scholar
[19] Zhu H T, Wang R, Pu T, Xiang P, Zheng J L, Fang T 2016 Laser Phys. Lett. 14 026201
Google Scholar
[20] 郭星星, 项水英, 张雅慧, 郝跃 2021 光子学报 50 1020002
Google Scholar
Guo X X, Xiang S Y, Zhang Y H, Hao Y 2021 Acta Photon. Sin. 50 1020002
Google Scholar
[21] 钟东洲, 曾能, 杨华, 徐喆 2021 物理学报 70 074206
Google Scholar
Zhong D Z, Zeng N, Yang H, Xu Z 2021 Acta Phys. Sin. 70 074206
Google Scholar
[22] 王小发 2013 物理学报 62 104208
Google Scholar
Wang X F 2013 Acta Phys. Sin. 62 104208
Google Scholar
[23] 陈建军, 钟祝强, 李林福 2022 光学学报 42 0714003
Google Scholar
Chen J J, Zhong Z Q, Li L F 2022 Acta Opt. Sin. 42 0714003
Google Scholar
[24] Xie C, Spiga S, Dong P, Winzer P, Bergmann M, KöGel B, Neumeyr C, Amann M C 2015 J. Lightwave Technol. 33 670
Google Scholar
[25] Wang Z, Lee H C, Ahsen O O, Lee B K, Choi W J, Potsaid B, Liu J, Jayaraman V, Cable A, Kraus M F 2014 Biomed. Opt. Express 5 2931
Google Scholar
[26] Prior E, De Dios C, Ortsiefer M, Meissner P, Acedo P 2015 J. Lightwave Technol. 33 4572
Google Scholar
[27] Prior E, De Dios C, Criado R, Ortsiefer M, Meissner P, Acedo P 2016 Opt. Lett. 41 4083
Google Scholar
[28] Quirce A, De Dios C, Valle A, Pesquera L, Acedo P 2018 J. Lightwave Technol. 36 1798
Google Scholar
[29] Quirce A, De Dios C, Valle A, Acedo P 2018 IEEE J. Sel. Top. Quantum Electron. 25 2888560
Google Scholar
[30] Ren H P, Fan L, Liu N, Wu Z M, Xia G Q 2020 Photonics 7 95
Google Scholar
[31] Rosado A, Martin E P, Perez-Serrano A, Tijero J, Anandarajah P M 2020 Opt. Laser Technol. 131 106392
Google Scholar
[32] Rosado A, Pérez-Serrano A, Tijero J M G, Valle Á, Pesquera L, Esquivias I 2019 Opt. Express 27 9155
Google Scholar
[33] Rosado A, Pérez-Serrano A, Tijero J M G, Gutierrez A V, Pesquera L, Esquivias I 2019 IEEE J. Quantum Electron. 55 2001012
Google Scholar
期刊类型引用(5)
1. 郭沛洋,张毅,张梦卓,胡海豹. 亲水-超疏水相间表面通气减阻实验研究. 力学学报. 2024(01): 94-100 . 百度学术
2. 张照,许晓慧,黄金艺,牟震林,苑伟政,何洋,吕湘连. 厘米尺度亲疏水间隔表面水下气膜维持效果及机理研究. 表面技术. 2023(12): 188-196 . 百度学术
3. 陈程,卢艳. 高温壁面润湿性对气层稳定性及其壁面滑移性能的分子动力学研究. 原子与分子物理学报. 2022(02): 104-110 . 百度学术
4. 陈正云,张清福,潘翀,刘彦鹏,蔡楚江. 超疏水旋转圆盘气膜层减阻的实验研究. 实验流体力学. 2021(03): 52-59 . 百度学术
5. 任刘珍,胡海豹,宋保维,潘光,黄桥高. 超疏水表面水下减阻研究进展. 数字海洋与水下攻防. 2020(03): 204-211+177 . 百度学术
其他类型引用(6)
计量
- 文章访问数: 4336
- PDF下载量: 83
- 被引次数: 11