搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锌离子掺杂钴基金属有机材料[(CH3)2NH2]Co1–xZnx(HCOO)3中的低温反常磁现象

刘荣肇 樊振军 王浩成 宁昊明 米振宇 刘广耀 宋小会

引用本文:
Citation:

锌离子掺杂钴基金属有机材料[(CH3)2NH2]Co1–xZnx(HCOO)3中的低温反常磁现象

刘荣肇, 樊振军, 王浩成, 宁昊明, 米振宇, 刘广耀, 宋小会

Abnormal magnetic phenomenon at low temperature in Zn doped $ \left[{(\mathbf{C}\mathbf{H}}_{3}{)}_{2}\mathbf{N}{\mathbf{H}}_{2}\right]{\mathbf{C}\mathbf{o}}_{\mathit{x}}{\mathbf{Z}\mathbf{n}}_{1-\mathit{x}}{\left[\mathbf{H}\mathbf{C}\mathbf{O}\mathbf{O}\right]}_{3} $ frameworks

Liu Rong-Zhao, Fan Zhen-Jun, Wang Hao-Cheng, Ning Hao-Ming, Mi Zhen-Yu, Liu Guang-Yao, Song Xiao-Hui
PDF
HTML
导出引用
  • 金属有机框架材料(MOFs)是一种有机配体桥接金属离子组成的新型无机-有机杂化多孔材料, 它具有功能可调、稳定性好以及多孔性等特点, 受到人们的广泛关注. 本文利用水热法制备了高质量的锌离子掺杂的钴基[(CH3)2NH2]Co1–xZnx(HCOO3)单晶样品 (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5). 单晶衍射、摇摆曲线、能量色散X射线光谱的实验结果表明, 锌离子均匀掺杂进了钴基金属有机框架材料中, 没有出现局部团簇等现象. 低温场冷曲线和比热曲线的测量结果表明, 非磁锌离子的掺杂减弱了Co基MOFs材料中Co离子之间的长程反铁磁相互作用, 使得Co-MOF的反铁磁相变温度由纯钴的15 K变为14.2 K (x = 0.1), 12.8 K (x = 0.2). 通过对掺锌样品低温下的磁滞回线的细致研究发现, 掺锌样品相对于纯钴样品在低温下具有更大的磁滞损耗和矫顽场. 相比于纯钴样品450 Oe (1 Oe = 103/(4π) A/m)的矫顽场, 掺锌样品的矫顽场最高达到3600 Oe, 并且磁滞面积也为纯钴样品的3倍以上. 另一方面, 在DMCo0.9Zn0.1F样品的磁滞回线上发现一系列台阶, 这一台阶现象随着温度升高而逐渐消失, 类似于单分子磁体的量子隧穿现象. 以往研究表明, 在这一类钙钛矿结构的金属有机骨架材料中, 存在长程磁相互作用和磁单离子行为的竞争. 我们认为非磁锌离子的掺杂减弱了Co离子之间的长程相互作用, 使得Co离子在低温下显示出量子隧穿引起的台阶效应.
    Metal-organic framework (MOF) is a new type of inorganic-organic hybrid porous material composed of organic ligands bridging metal ions, and it has the characteristics of tunable functions, good stability and porosity. In this study, Zn doped Co-based metal organic frame works single-crystal samples$\left[{(\rm{C}\rm{H}}_{3}{)}_{2}\rm{N}{\rm{H}}_{2}\right]{\rm{C}\rm{o}}_{1-x}{\rm{Z}\rm{n}}_{x} $$ {\left[\rm{H}\rm{C}\rm{O}\rm{O}\right]}_{3}$are synthesized by the solvothermal method with normal ratio x = 0, 0.1, 0.2, 0.3, 0.4, 0.5. Single crystal diffraction, scanning electron microscope and energy dispersive X-ray spectroscopy results show that Zn ions are uniformly doped into Co-based MOFs crystals. The field cooling curves show that antiferromagnetic phase transition temperature of Co-based MOFs decreases from 15 K for pure Co-MOF x = 0 to 12.8 K for x = 0.2. Abnormal large magnetic hysteresis is obtained for Zn doped crystals with large coercive field 3600 Oe (x = 0.3) compared with 450 Oe coercive field for pure Co-MOF (x = 0), and the hysteresis area of Zinc-doped sample is more than 3 times that of pure cobalt sample. On the other hand, we find a series of steps on the hysteresis loop of DMCo0.9Zn0.1F sample, which gradually disappears with the increase of temperature, similar to the quantum tunneling phenomenon of a single molecule magnet. Previous studies have shown that the long range magnetic interaction and the magnetic single-ion behavior competition coexist in these systems. It is believed that the doping of non-magnetic zinc ions weakens the long-range interaction between Co ions and makes Co ions show the step effect caused by quantum tunneling at low temperature.
      通信作者: 樊振军, fanzj@cugb.edu.cn ; 宋小会, xhsong@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11674376)资助的课题.
      Corresponding author: Fan Zhen-Jun, fanzj@cugb.edu.cn ; Song Xiao-Hui, xhsong@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 1674376).
    [1]

    Yaghi O M, Li G M, Li H L 1995 Nature 378 703Google Scholar

    [2]

    Schröder M 2010 Functional Metal-organic Frameworks: Gas Storage, Separation and Catalysis (Vol. 293) (Berlin: Springer) pp115–153

    [3]

    Kuppler R J, Timmons D J, Fang Q R, Li J R, Makala T A, Young M D, Yuan D, Zhao D, Zhuang W, Zhou H C 2009 Coord. Chem. Rev. 253 3042Google Scholar

    [4]

    Rao C N R, Cheetham A K, Thirumurugan A 2008 J. Phys. Condens. Matter 20 083202Google Scholar

    [5]

    Jain P, Dalal N S, Toby B H, Kroto H W, Cheetham A K 2008 J. Am. Chem. Soc. 130 10450Google Scholar

    [6]

    Zhang W, Xiong R G 2012 Chem. Rev. 112 1163Google Scholar

    [7]

    Stroppa A, Barone P, Jain P, Perez-Mato J M, Picozzi S 2013 Adv. Mater. 25 2284Google Scholar

    [8]

    Hu K L, Kurmoo M, Wang Z, Gao S 2009 Chem. A Eur. J. 15 12050Google Scholar

    [9]

    Weng D F, Wang Z M, Gao S 2011 Chem. Soc. Rev. 40 3157Google Scholar

    [10]

    Fan F R, Wu H, Nabok D, Hu S B, Ren W, Draxl C, Stroppa A 2017 J. Am. Chem. Soc. 139 12883Google Scholar

    [11]

    Vinoda K, Deepakb C S, Sharma S, Sornaduraia D, Satyaa A T, Ravindrana T R, Sundara C S, Bharathi A 2015 RSC Adv. 5 37818Google Scholar

    [12]

    Jain P, Ramachandran V, Clark R J, Zhou H D, Toby B H, Dalal N S, Kroto H W, Cheetham A K 2009 J. Am. Chem. Soc. 131 13625Google Scholar

    [13]

    Xu G C, Z W, Ma X M, Chen Y H, Z L, Cai H L, Wang Z M, Xiong R G, Gao S 2011 J. Am. Chem. Soc. 133 14948Google Scholar

    [14]

    Kundys B, Lappas A, Viret M, Kapustianyk V, Rudyk V, Semak S, Simon C, Bakaimi I 2010 Phys. Rev. B 81 224434Google Scholar

    [15]

    Stroppa A, Jain P, Barone P, Marsman M, Perez-Mato J M, Cheetham A K, Kroto H W, Picozzi S 2011 Angew. Chem. Int. Ed. 50 5847Google Scholar

    [16]

    Sante D D, Stroppa A, Jain P, Picozzi S 2013 J. Am. Chem. Soc. 135 18126Google Scholar

    [17]

    Jain P, Stroppa A, Nabok D, Marino A, Rubano A, Paparo D, Matsubara M, Nakotte H, Fiebig M, Picozzi S, Choi E S, Cheetham A K, Drax C, Dalal N S, Zapf V S 2016 npj Quantum Mater. 1 16012Google Scholar

    [18]

    Gómez-Aguirre L C, Pato-Doldán B, Mira J, Castro-García S, Señarís-Rodríguez M A, Sánchez-Andújar M, Singleton J, Zapf V S 2016 J. Am. Chem. Soc. 138 1122Google Scholar

    [19]

    Tian Y, Shen S, Cong J, Yan L, Wang S, Sun Y 2016 J. Am. Chem. Soc. 138 782Google Scholar

    [20]

    Mączka M, Gągor A, Hermanowicz K, Sieradzki A, Macalik L, Pikul A 2016 J. Solid State Chem. 237 150Google Scholar

    [21]

    Wang X Y, Gan L, Zhang S W, Gao S 2004 Inorg. Chem. 43 4615Google Scholar

    [22]

    Tian Y, Wang W, Chai Y, Cong J, Shen S, Yan L, Wang S, Han X, Sun Y 2014 Phys. Rev. Lett. 112 017202Google Scholar

    [23]

    Pato-Dolda B, Sanchez-Andujar M, Gomez-Aguirre L C, Yanez-Vilar S, Lopez-Beceiro J, Gracia-Fernandez C, Haghighirad A A, Ritter F, Castro-Garcia D S, Senaris-Rodriguez M A 2012 Phys. Chem. Chem. Phys. 14 8498Google Scholar

    [24]

    Friedman J R, Sarachik M P, Tejada J, Ziolo R 1996 Phys. Rev. Lett. 76 3830Google Scholar

  • 图 1  (a) 类钙钛矿型结构[(CH)3NH2]Co1–xZnx(HOOC)3的晶体框架; (b) DMCo0.9Zn0.1F 单晶样品的摇摆曲线, 插图所示为单晶样品的实物图

    Fig. 1.  (a) Crystal framework diagram of the perovskite-like structure [(CH)3NH2]Co1–xZnx(HOOC)3; (b) rocking curve of the DMCo0.9Zn0.1F single crystal sample, the inset shows the single crystal physical map of the sample.

    图 2  (a) 不同掺杂比例样品在0.1 T磁场下的场冷曲线; (b) 不同磁场强度下DMCo0.9Zn0.1F样品比热随温度的变化曲线

    Fig. 2.  (a) Field cooling curves of samples with different doping ratios under 0.1 T magnetic field; (b) variation curves of specific heat with temperaturefor DMCo0.9Zn0.1F sample under different magnetic fields.

    图 3  (a) DMCo0.9Zn0.1F 单晶样品在不同磁场下的场冷和零场冷曲线(1 emu = 10–3 A·m2); (b) 不同掺杂比例样品在1.8 K的磁滞回线, 掺杂比例分别为x = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 插图所示为由磁滞回线得到的矫顽场大小Hc随掺杂比例的变化曲线

    Fig. 3.  (a) Field-cooling and zero-field-cooling curves of DMCo0.9Zn0.1F single crystal samples under different magnetic fields; (b) magnetic hysteresis loops of samples with different doping ratios at 1.8 K, and the doping ratios are x = 0 , 0.1, 0.2, 0.3, 0.4, 0.5. The inset in panel (b) shows the change curve of the coercive field size obtained from the hysteresis loop with the doping ratio.

    图 4  (a) DMCo0.9Zn0.1F单晶样品在不同温度下的磁滞回线; (b) DMCo0.9Zn0.1F在1.8 K时的磁滞回线和其微分曲线(反铁磁背底被扣除), 从微分曲线上可以看到, 在±0.1 T和±0.32 T附近有磁化强度随磁场变化的共振峰

    Fig. 4.  (a) Magnetic hysteresis loops of DMCo0.9Zn0.1F single crystal samples at different temperatures; (b) magnetic hysteresis loops and differential curves of DMCo0.9Zn0.1F at 1.8 K (the antiferromagnetic background is deduction), it can be seen on the differential curve that there are resonance peaks with magnetization varying with magnetic field near ±0.1 T and ±0.32 T.

    表 1  室温和150 K温度下, [(CH)3NH2]Co0.9Zn0.1(HOOC)3单晶四圆衍射结果

    Table 1.  Unit cell parameters obtained by single crystal X-ray diffraction analysis of [(CH)3NH2]Co0.9Zn0.1(HOOC)3 at room temperature and 150 K.

    参数取值
    Temperature/K275150
    Formula weight/(g·mol–1)232.66240.72
    Crystal systemTrigonalMonoclinic
    Space group$ R\bar 3c $C1c1
    a8.158(3)14.143(2)
    b8.158(3)8.1739(13)
    c22.168(9)8.7634(14)
    α/(°)9090
    β/(°)90122.365
    γ/(°)12090
    Z64
    Volume/Å31277.7(10)855.7(2)
    F(000)692493
    hmin, max–10, 10–18, 18
    kmin, max–10, 10–10, 10
    lmin, max–29, 29–9, 11
    Reflection collected50163639
    Independent reflections359[R(int) = 0.0570]1600[R(int) = 0.0490]
    Data/restraints/parameters359/0/271600/10/126
    R(reflections)0.0200(337)0.0538(1562)
    wR2(reflections)0.0530(359)0.1425(1600)
    Final R indices [I > 2σ(I)]R1 = 0.0200, wR2 = 0.0528R1 = 0.0538, wR2 = 0.1421
    Final R indices [all data]R1 = 0.0209, wR2 = 0.0530R1 = 0.0543, wR2 = 0.1424
    Goodness-of-fit on F 21.1881.137
    下载: 导出CSV
  • [1]

    Yaghi O M, Li G M, Li H L 1995 Nature 378 703Google Scholar

    [2]

    Schröder M 2010 Functional Metal-organic Frameworks: Gas Storage, Separation and Catalysis (Vol. 293) (Berlin: Springer) pp115–153

    [3]

    Kuppler R J, Timmons D J, Fang Q R, Li J R, Makala T A, Young M D, Yuan D, Zhao D, Zhuang W, Zhou H C 2009 Coord. Chem. Rev. 253 3042Google Scholar

    [4]

    Rao C N R, Cheetham A K, Thirumurugan A 2008 J. Phys. Condens. Matter 20 083202Google Scholar

    [5]

    Jain P, Dalal N S, Toby B H, Kroto H W, Cheetham A K 2008 J. Am. Chem. Soc. 130 10450Google Scholar

    [6]

    Zhang W, Xiong R G 2012 Chem. Rev. 112 1163Google Scholar

    [7]

    Stroppa A, Barone P, Jain P, Perez-Mato J M, Picozzi S 2013 Adv. Mater. 25 2284Google Scholar

    [8]

    Hu K L, Kurmoo M, Wang Z, Gao S 2009 Chem. A Eur. J. 15 12050Google Scholar

    [9]

    Weng D F, Wang Z M, Gao S 2011 Chem. Soc. Rev. 40 3157Google Scholar

    [10]

    Fan F R, Wu H, Nabok D, Hu S B, Ren W, Draxl C, Stroppa A 2017 J. Am. Chem. Soc. 139 12883Google Scholar

    [11]

    Vinoda K, Deepakb C S, Sharma S, Sornaduraia D, Satyaa A T, Ravindrana T R, Sundara C S, Bharathi A 2015 RSC Adv. 5 37818Google Scholar

    [12]

    Jain P, Ramachandran V, Clark R J, Zhou H D, Toby B H, Dalal N S, Kroto H W, Cheetham A K 2009 J. Am. Chem. Soc. 131 13625Google Scholar

    [13]

    Xu G C, Z W, Ma X M, Chen Y H, Z L, Cai H L, Wang Z M, Xiong R G, Gao S 2011 J. Am. Chem. Soc. 133 14948Google Scholar

    [14]

    Kundys B, Lappas A, Viret M, Kapustianyk V, Rudyk V, Semak S, Simon C, Bakaimi I 2010 Phys. Rev. B 81 224434Google Scholar

    [15]

    Stroppa A, Jain P, Barone P, Marsman M, Perez-Mato J M, Cheetham A K, Kroto H W, Picozzi S 2011 Angew. Chem. Int. Ed. 50 5847Google Scholar

    [16]

    Sante D D, Stroppa A, Jain P, Picozzi S 2013 J. Am. Chem. Soc. 135 18126Google Scholar

    [17]

    Jain P, Stroppa A, Nabok D, Marino A, Rubano A, Paparo D, Matsubara M, Nakotte H, Fiebig M, Picozzi S, Choi E S, Cheetham A K, Drax C, Dalal N S, Zapf V S 2016 npj Quantum Mater. 1 16012Google Scholar

    [18]

    Gómez-Aguirre L C, Pato-Doldán B, Mira J, Castro-García S, Señarís-Rodríguez M A, Sánchez-Andújar M, Singleton J, Zapf V S 2016 J. Am. Chem. Soc. 138 1122Google Scholar

    [19]

    Tian Y, Shen S, Cong J, Yan L, Wang S, Sun Y 2016 J. Am. Chem. Soc. 138 782Google Scholar

    [20]

    Mączka M, Gągor A, Hermanowicz K, Sieradzki A, Macalik L, Pikul A 2016 J. Solid State Chem. 237 150Google Scholar

    [21]

    Wang X Y, Gan L, Zhang S W, Gao S 2004 Inorg. Chem. 43 4615Google Scholar

    [22]

    Tian Y, Wang W, Chai Y, Cong J, Shen S, Yan L, Wang S, Han X, Sun Y 2014 Phys. Rev. Lett. 112 017202Google Scholar

    [23]

    Pato-Dolda B, Sanchez-Andujar M, Gomez-Aguirre L C, Yanez-Vilar S, Lopez-Beceiro J, Gracia-Fernandez C, Haghighirad A A, Ritter F, Castro-Garcia D S, Senaris-Rodriguez M A 2012 Phys. Chem. Chem. Phys. 14 8498Google Scholar

    [24]

    Friedman J R, Sarachik M P, Tejada J, Ziolo R 1996 Phys. Rev. Lett. 76 3830Google Scholar

  • [1] 何院耀, 杨兵. 基于哈伯德模型的超冷原子量子模拟研究进展. 物理学报, 2025, 74(1): 017101. doi: 10.7498/aps.74.20241595
    [2] 弭孟娟, 于立轩, 肖寒, 吕兵兵, 王以林. 有机阳离子插层调控二维反铁磁MPX3磁性能. 物理学报, 2024, 73(5): 057501. doi: 10.7498/aps.73.20232010
    [3] 张茂芳, 游慧敏, 尹相国, 张云波. 半开放系统中的粒子逃逸问题. 物理学报, 2022, 71(16): 167302. doi: 10.7498/aps.71.20220450
    [4] 于佳, 刘通, 赵康, 潘伯津, 穆青隔, 阮彬彬, 任治安. 112型铁基化合物EuFeAs2的单晶生长与表征. 物理学报, 2018, 67(20): 207403. doi: 10.7498/aps.67.20181393
    [5] 李德铭, 方松科, 童金山, 苏健, 张娜, 宋桂林. Ca2+掺杂对SmFeO3的介电、铁磁特性及磁相变温度的影响. 物理学报, 2018, 67(6): 067501. doi: 10.7498/aps.67.20172433
    [6] 万亚州, 高明, 李勇, 郭海波, 李拥华, 徐飞, 马忠权. 掺杂非晶氧化硅薄膜中三元化合态与电子结构的第一性原理计算. 物理学报, 2017, 66(18): 188802. doi: 10.7498/aps.66.188802
    [7] 彭勇, 罗昔贤, 付姚, 邢明铭. 热分解含硫金属有机配合物制备近红外PbS量子点. 物理学报, 2013, 62(20): 208105. doi: 10.7498/aps.62.208105
    [8] 周运清, 孔令民, 王瑞, 张存喜. 微波作用下有直接隧穿量子点系统中的泵流特性. 物理学报, 2011, 60(7): 077202. doi: 10.7498/aps.60.077202
    [9] 周远明, 俞国林, 高矿红, 林铁, 郭少令, 褚君浩, 戴宁. 弱耦合GaAs/AlGaAs/InGaAs双势阱隧穿结构的磁隧穿特性研究. 物理学报, 2010, 59(6): 4221-4225. doi: 10.7498/aps.59.4221
    [10] 周亮, 张靖仪. 带电带磁粒子的量子隧穿辐射. 物理学报, 2010, 59(6): 4380-4384. doi: 10.7498/aps.59.4380
    [11] 马玉彬. 脱氧La0.5Ca0.5MnO3样品的铁磁-反铁磁转变和电阻率变化. 物理学报, 2009, 58(7): 4976-4979. doi: 10.7498/aps.58.4976
    [12] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. NiS2-xSex在x=1.00附近的反铁磁量子相变. 物理学报, 2008, 57(4): 2409-2414. doi: 10.7498/aps.57.2409
    [13] 孟庆苗, 苏九清, 蒋继建. 带有整体磁单极子的Barriola-Vilenkin黑洞时空中静质量不为零的粒子的量子隧穿辐射. 物理学报, 2007, 56(7): 3723-3726. doi: 10.7498/aps.56.3723
    [14] 唐 霖, 黄建华, 段正路, 张卫平, 周兆英, 冯焱颖, 朱 荣. 冷原子穿越激光束的量子隧穿时间. 物理学报, 2006, 55(12): 6606-6611. doi: 10.7498/aps.55.6606
    [15] 程金光, 隋 郁, 千正男, 刘志国, 黄喜强, 苗继鹏, 吕 喆, 王先杰, 苏文辉. 单晶NdMnO3的比热研究. 物理学报, 2005, 54(9): 4359-4364. doi: 10.7498/aps.54.4359
    [16] 竺 云, 王太宏. 量子点器件的三端电测量研究. 物理学报, 2003, 52(3): 677-682. doi: 10.7498/aps.52.677
    [17] 郭 永, 顾秉林, 川添良幸. 磁量子结构中二维自旋电子的隧穿输运. 物理学报, 2000, 49(9): 1814-1820. doi: 10.7498/aps.49.1814
    [18] 聂一行, 石云龙, 张云波, 梁九卿, 蒲富恪. 外磁场中单畴反铁磁颗粒的宏观量子效应. 物理学报, 2000, 49(8): 1580-1585. doi: 10.7498/aps.49.1580
    [19] 余登科, 顾 强, 汪汉廷, 沈觉涟. 双层Heisenberg反铁磁体中的量子相变. 物理学报, 1999, 48(13): 169-174. doi: 10.7498/aps.48.169
    [20] 聂一行, 张云波, 梁九卿, 蒲富格. 反铁磁粒子的势助量子隧穿和宏观量子效应. 物理学报, 1999, 48(5): 966-972. doi: 10.7498/aps.48.966
计量
  • 文章访问数:  4293
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-09-07
  • 修回日期:  2022-11-07
  • 上网日期:  2022-11-16
  • 刊出日期:  2023-02-05

/

返回文章
返回