-
表面增强拉曼散射(surface-enhanced Raman scattering, SERS)已广泛应用于食品和药物检测、生物和医学传感等领域. 而非金属SERS基底的研究近年来逐渐成为SERS领域研究的热点. 本文研究了2,3,5,6-四氟-7,7,8,8-四氰基喹二甲烷(F4TCNQ)对二硫化钼(MoS2)薄膜SERS活性的调制作用. 不同纳米结构的F4TCNQ可以影响从MoS2表面转移的电子的束缚能力, 从而改变F4TCNQ/MoS2纳米复合材料表面局部功函数分布, 表现出不同的SERS敏感性. 在最优化的F4TCNQ/MoS2纳米复合基底上4-巯基苯甲酸(4-MBA)分子的增强因子可达
$ 6.9\times {10}^{4} $ , 检测极限浓度低至10–6 mol/L. 本文所研究的F4TCNQ/MoS2纳米复合材料不仅提供了一种良好的SERS活性基底, 而且为化学增强机理的基底研究提供了新的参考.-
关键词:
- F4TCNQ/MoS2 /
- 表面增强拉曼散射 /
- 化学增强 /
- 能级调控
Surface-enhanced Raman scattering (SERS) has been widely used in food and drug detection, biological and medical sensing. In recent years, the study of non-metallic SERS substrates has gradually become a hot field of SERS. Here, we investigate the modulation effect on SERS activities of 2,3,5,6-tetrafluoro-7,7,8,8-tetrachyanoquindimethylene (F4TCNQ) grown on molybdenum disulfide (MoS2) films. The different nanostructures of F4TCNQ can have an effect on the bound capability of charges transferred from the surface of MoS2, which changes the electron density distribution on the surface of the F4TCNQ/MoS2 nanocomposite material. Therefore, the interface exhibits different charge localizations in the F4TCNQ/MoS2 nanocomposite. The charge transfer efficiency between the substrate and the adsorbed probe molecules leads the substrate to show a different SERS sensitivity. The enhancement factor of 4-mercaptobenzoic acid (4-MBA) molecules on the most optimized 7-min F4TCNQ/MoS2 nanocomposite substrate can reach$ 6.9\times {10}^{4} $ , and the detection limit concentration is as low as 10–6 mol/L. The result of research on F4TCNQ/MoS2 nanocomposite provides an effective optimization scheme of energy level regulation for SERS based on the chemical enhancement mechanism, and opens up a new way to further exploit its functional applications.-
Keywords:
- F4TCNQ/MoS2 /
- surface-enhanced Raman scattering /
- chemical enhancement /
- energy level modulation
[1] Zhang W, Ma J, Sun D W 2021 Crit. Rev. Food Sci. Nutr. 61 2623Google Scholar
[2] Zhang D, Pu H, Huang L, Sun D W 2021 Trends Food Sci. Technol. 109 690Google Scholar
[3] Zanchi C, Giuliani L, Lucotti A, Pistaffa M, Trusso S, Neri F, Tommasini M, Ossi P M 2020 Appl. Surf. Sci. 507 145109Google Scholar
[4] Premasiri W R, Lee J C, Sauer-Budge A, Theberge R, Costello C E, Ziegler L D 2016 Anal. Bioanal. Chem. 408 4631Google Scholar
[5] Perumal J, Wang Y, Attia A B E, Dinish U S, Olivo M 2021 Nanoscale 13 553Google Scholar
[6] Wei H, Peng Z, Yang C, Tian Y, Sun L, Wang G, Liu M 2021 Nanomaterials 11 2026Google Scholar
[7] Camden J P, Dieringer J A, Wang Y, Masiello D J, Marks L D, Schatz G C, Van Duyne R P 2008 J. Am. Chem. Soc. 130 12616Google Scholar
[8] Shafi M, Zhou M, Duan P, Liu W, Zhang W, Zha Z, Gao J, Wali S, Jiang S, Man B, Liu M 2022 Sensors and Actuators B: Chem. 356 131360Google Scholar
[9] Wang G, Wei H, Tian Y, Wu M, Sun Q, Peng Z, Sun L, Liu M 2020 Opt. Express 28 18843Google Scholar
[10] Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553Google Scholar
[11] Liu M, Shi Y, Zhang G, Zhang Y, Wu M, Ren J, Man B 2018 Appl. Spectrosc. 72 1613Google Scholar
[12] Tian Y, Wei H, Xu Y, et al. 2020 Nanomaterials 10 1910Google Scholar
[13] Ling X, Fang W, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, Dresselhaus M S 2014 Nano Lett. 14 3033Google Scholar
[14] Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 ACS Photon. 3 1164Google Scholar
[15] Li J, Xu X, Huang B, Lou Z, Li B 2021 ACS Appl. Mater. Inter. 13 10047Google Scholar
[16] Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, Zhao Z 2017 Nat. Commun. 8 1993Google Scholar
[17] Chen L, Xie Q, Wan L, Zhang W, Fu S, Zhang H, Ling X, Yuan J, Miao L, Shen C, Li X, Zhang W, Zhu B, Wang H-Q 2019 ACS Appl. Energy Mater. 2 5862Google Scholar
[18] Mun J, Kang J, Zheng Y, Luo S, Wu Y, Gong H, Lai J C, Wu H C, Xue G, Tok J B H, Bao Z 2020 Adv. Electron. Mater. 6 2000251Google Scholar
[19] Wang H, Levchenko S V, Schultz T, Koch N, Scheffler M, Rossi M 2019 Adv. Electron. Mater. 5 1800891Google Scholar
[20] Venables J, Spiller G, Hanbucken M 1999 Rep. Prog. Phys. 47 399Google Scholar
[21] Park J, Choudhary N, Smith J, Lee G, Kim M, Choi W 2015 Appl. Phys. Lett. 106 012104Google Scholar
[22] McHale G, Aqil S, Shirtcliffe N J, Newton M I, Erbil H Y 2005 Langmuir 21 11053Google Scholar
[23] Xiao K, Rondinone A J, Puretzky A A, Ivanov I N, Retterer S T, Geohegan D B 2009 Chem. Mater. 21 4275Google Scholar
[24] Newaz A K M, Prasai D, Ziegler J I, Caudel D, Robinson S, Haglund Jr R F, Bolotin K I 2013 Solid State Commun. 155 49Google Scholar
[25] Finkelstein G, Shtrikman H, Bar-Joseph I I 1995 Phys. Rev. Lett. 74 976Google Scholar
[26] Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, Ogletree F, Li J, Grossman J C, Wu J 2013 Sci. Rep. 3 2657Google Scholar
[27] Ji P, Mao Z, Wang Z, Xue X, Zhang Y, Lv J, Shi X 2019 Nanomaterials 9 983Google Scholar
[28] Wu H, Wang H, Li G 2017 Analyst 142 326Google Scholar
[29] Jiang X, Sun X, Yin D, Li X, Yang M, Han X, Yang L, Zhao B 2017 Phys. Chem. Chem. Phys. 19 11212Google Scholar
[30] Kuhrt R, Hantusch M, Buechner B, Knupfer M 2021 J. Phys. Chem. C 125 18961Google Scholar
[31] Wang J, Ji Z, Yang G, Chuai X, Liu F, Zhou Z, Lu C, Wei W, Shi X, Niu J, Wang L, Wang H, Chen J, Lu N, Jiang C, Li L, Liu M 2018 Adv. Funct. Mater. 28 1806244Google Scholar
[32] Le O K, Chihaia V, Van On V, Son D N 2021 RSC Adv. 11 8033Google Scholar
[33] Ji L F, Fan J X, Zhang S F, Ren A M 2018 Phys. Chem. Chem. Phys. 20 3784Google Scholar
[34] Deneme I, Liman G, Can A, Demirel G, Usta H 2021 Nat. Commun. 12 6119Google Scholar
-
图 1 (a)纯和(b)喷金MoS2薄膜的扫描电子显微镜图; (c)—(g) 不同生长时间的F4TCNQ/MoS2 (T1—T5)的扫描电子显微镜图(喷金); (f) MoS2薄膜上F4TCNQ纳米岛的数量和直径随时间分布图
Fig. 1. SEM images of (a) pure MoS2 and (b) gold-sprayed MoS2 thin films; (c)−(g) SEM images of F4TCNQ/MoS2 (T1−T5) with different growth times (gold-sprayed); (f) the quantity and size distributions of F4TCNQ nanoisland deposited on MoS2 film over time.
图 2 (a), (b) MoS2薄膜边缘处的AFM图和相应的高度图; (c), (d) 小范围的MoS2薄膜表面的AFM图和相应高度图; (e)—(i) T1—T5样品的形貌图、沿图中直线扫描的高度和接触电势差谱线图
Fig. 2. (a), (b) The AFM image and the corresponding height profile of the edge of MoS2 film, respectively. (c), (d) The AFM image and the corresponding height profile of the small range of MoS2 film surfaces, respectively. (e)−(i) The topography of T1−T5 samples, height and CPD spectrum scanned along the line in AFM figures.
图 4 4-MBA分子(10–3 mol/L)在T1—T5上的拉曼光谱(a)及其拉曼峰强度与生长时间之间的关系(b); (c) 5组4-MBA分子(10–3 mol/L)在T1—T5基底上的1593
$ {\rm{c}\rm{m}}^{-1} $ 处的拉曼峰强度与生长时间之间的关系; (d) 10–3 mol/L浓度的4-MBA分子在不同基底上的拉曼光谱; (e) 不同浓度(10–7—10–3 mol/L)的4-MBA分子在T2上的SERS图谱; (f) T2基底上4-MBA 分子的1097$ {\rm{c}\rm{m}}^{-1} $ 和1593$ {\rm{c}\rm{m}}^{-1} $ 处的拉曼峰值强度与浓度之间的关系; (g) F4TCNQ/MoS2纳米复合异质结构的电荷转移以及该基底与4-MBA探针分子的电荷转移示意图Fig. 4. The Raman spectra (a) of 4-MBA molecules (10–3 mol/L) on T1−T5 substrates; (b) the interrelationship between the corresponding Raman peak intensities and different growth times in the panel (a); (c) the relationship of the Raman peak intensity at 1593
$ {\rm{c}\rm{m}}^{-1} $ for 5 groups of 4-MBA molecules (10–3 mol/L) on T1−T5 substrates and the growth times; (d) Raman spectra of 4-MBA molecules on different substrates; (e) SERS spectra of 4-MBA molecules on T2 substrate with different concentrations (10–7− 10–3 mol/L); (f) the relationship between the intensity of the SERS peak at 1097 and 1593$ {\rm{c}\rm{m}}^{-1} $ and different 4-MBA concentrations; (g) the schematic of the charge transfer (CT) pathways in F4TCNQ/MoS2 nanocomposite heterostructures and the CT pathways between F4TCNQ/MoS2 substrate and 4-MBA probe molecule.图 5 (a) R6G分子(10–9 mol/L)在T1—T5基底上的拉曼光谱; (b) MB分子(10–5 mol/L)在T1—T5基底上的拉曼光谱; (c) R6G分子的拉曼峰强度与生长时间之间的关系; (d) MB分子的拉曼峰强度与生长时间之间的关系
Fig. 5. (a) The Raman spectra of R6G molecules (10–9 mol/L) on T1−T5 substrates; (b) the Raman spectra of MB molecules (10–5 mol/L) on T1−T5 substrates; (c) the interrelationship between the Raman peak intensities of R6G molecules and growth times; (d) the interrelationship between the Raman peak intensities of MB molecules and growth times.
表 1 MoS2和T1—T5样品的水接触角、CPD和相应的费米能级值
Table 1. Water contact angles, CPD values and corresponding Fermi level values on MoS2 and T1−T5 substrates.
检测基底 角度/(°) CPD/$ \rm{V} $ 费米能级/$ \rm{e}\rm{V} $ MoS2 $ 47\pm 0.2 $ 0.048 –5.08 T1 $ 66.6\pm 1.1 $ –0.1 –5.23 T2 $ 68\pm 0.9 $ –0.043 –5.17 T3 $ 70.7\pm 1.6 $ –0.168 –5.3 T4 $ 71\pm 2.8 $ –0.083 –5.21 T5 $ 72.6\pm 2 $ –0.129 –5.26 -
[1] Zhang W, Ma J, Sun D W 2021 Crit. Rev. Food Sci. Nutr. 61 2623Google Scholar
[2] Zhang D, Pu H, Huang L, Sun D W 2021 Trends Food Sci. Technol. 109 690Google Scholar
[3] Zanchi C, Giuliani L, Lucotti A, Pistaffa M, Trusso S, Neri F, Tommasini M, Ossi P M 2020 Appl. Surf. Sci. 507 145109Google Scholar
[4] Premasiri W R, Lee J C, Sauer-Budge A, Theberge R, Costello C E, Ziegler L D 2016 Anal. Bioanal. Chem. 408 4631Google Scholar
[5] Perumal J, Wang Y, Attia A B E, Dinish U S, Olivo M 2021 Nanoscale 13 553Google Scholar
[6] Wei H, Peng Z, Yang C, Tian Y, Sun L, Wang G, Liu M 2021 Nanomaterials 11 2026Google Scholar
[7] Camden J P, Dieringer J A, Wang Y, Masiello D J, Marks L D, Schatz G C, Van Duyne R P 2008 J. Am. Chem. Soc. 130 12616Google Scholar
[8] Shafi M, Zhou M, Duan P, Liu W, Zhang W, Zha Z, Gao J, Wali S, Jiang S, Man B, Liu M 2022 Sensors and Actuators B: Chem. 356 131360Google Scholar
[9] Wang G, Wei H, Tian Y, Wu M, Sun Q, Peng Z, Sun L, Liu M 2020 Opt. Express 28 18843Google Scholar
[10] Ling X, Xie L, Fang Y, Xu H, Zhang H, Kong J, Dresselhaus M S, Zhang J, Liu Z 2010 Nano Lett. 10 553Google Scholar
[11] Liu M, Shi Y, Zhang G, Zhang Y, Wu M, Ren J, Man B 2018 Appl. Spectrosc. 72 1613Google Scholar
[12] Tian Y, Wei H, Xu Y, et al. 2020 Nanomaterials 10 1910Google Scholar
[13] Ling X, Fang W, Lee Y H, Araujo P T, Zhang X, Rodriguez-Nieva J F, Lin Y, Zhang J, Kong J, Dresselhaus M S 2014 Nano Lett. 14 3033Google Scholar
[14] Muehlethaler C, Considine C R, Menon V, Lin W C, Lee Y H, Lombardi J R 2016 ACS Photon. 3 1164Google Scholar
[15] Li J, Xu X, Huang B, Lou Z, Li B 2021 ACS Appl. Mater. Inter. 13 10047Google Scholar
[16] Zheng Z, Cong S, Gong W, Xuan J, Li G, Lu W, Geng F, Zhao Z 2017 Nat. Commun. 8 1993Google Scholar
[17] Chen L, Xie Q, Wan L, Zhang W, Fu S, Zhang H, Ling X, Yuan J, Miao L, Shen C, Li X, Zhang W, Zhu B, Wang H-Q 2019 ACS Appl. Energy Mater. 2 5862Google Scholar
[18] Mun J, Kang J, Zheng Y, Luo S, Wu Y, Gong H, Lai J C, Wu H C, Xue G, Tok J B H, Bao Z 2020 Adv. Electron. Mater. 6 2000251Google Scholar
[19] Wang H, Levchenko S V, Schultz T, Koch N, Scheffler M, Rossi M 2019 Adv. Electron. Mater. 5 1800891Google Scholar
[20] Venables J, Spiller G, Hanbucken M 1999 Rep. Prog. Phys. 47 399Google Scholar
[21] Park J, Choudhary N, Smith J, Lee G, Kim M, Choi W 2015 Appl. Phys. Lett. 106 012104Google Scholar
[22] McHale G, Aqil S, Shirtcliffe N J, Newton M I, Erbil H Y 2005 Langmuir 21 11053Google Scholar
[23] Xiao K, Rondinone A J, Puretzky A A, Ivanov I N, Retterer S T, Geohegan D B 2009 Chem. Mater. 21 4275Google Scholar
[24] Newaz A K M, Prasai D, Ziegler J I, Caudel D, Robinson S, Haglund Jr R F, Bolotin K I 2013 Solid State Commun. 155 49Google Scholar
[25] Finkelstein G, Shtrikman H, Bar-Joseph I I 1995 Phys. Rev. Lett. 74 976Google Scholar
[26] Tongay S, Suh J, Ataca C, Fan W, Luce A, Kang J S, Liu J, Ko C, Raghunathanan R, Zhou J, Ogletree F, Li J, Grossman J C, Wu J 2013 Sci. Rep. 3 2657Google Scholar
[27] Ji P, Mao Z, Wang Z, Xue X, Zhang Y, Lv J, Shi X 2019 Nanomaterials 9 983Google Scholar
[28] Wu H, Wang H, Li G 2017 Analyst 142 326Google Scholar
[29] Jiang X, Sun X, Yin D, Li X, Yang M, Han X, Yang L, Zhao B 2017 Phys. Chem. Chem. Phys. 19 11212Google Scholar
[30] Kuhrt R, Hantusch M, Buechner B, Knupfer M 2021 J. Phys. Chem. C 125 18961Google Scholar
[31] Wang J, Ji Z, Yang G, Chuai X, Liu F, Zhou Z, Lu C, Wei W, Shi X, Niu J, Wang L, Wang H, Chen J, Lu N, Jiang C, Li L, Liu M 2018 Adv. Funct. Mater. 28 1806244Google Scholar
[32] Le O K, Chihaia V, Van On V, Son D N 2021 RSC Adv. 11 8033Google Scholar
[33] Ji L F, Fan J X, Zhang S F, Ren A M 2018 Phys. Chem. Chem. Phys. 20 3784Google Scholar
[34] Deneme I, Liman G, Can A, Demirel G, Usta H 2021 Nat. Commun. 12 6119Google Scholar
计量
- 文章访问数: 3943
- PDF下载量: 56
- 被引次数: 0