搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

由任意多个独立的观察者共享Werner态的纠缠

于欣淼 杨舒媛 贺衎

引用本文:
Citation:

由任意多个独立的观察者共享Werner态的纠缠

于欣淼, 杨舒媛, 贺衎

Sharing entanglement of the Werner state by arbitrarily many independent observers

Yu Xin-Miao, Yang Shu-Yuan, He Kan
PDF
HTML
导出引用
  • 量子关联共享问题是量子信息理论研究中一个有趣的课题. 最近, Srivastava等在[Phys. Rev. A 2022 105 062413]中证明了存在一类T态, 其纠缠可以被任意多个独立观察者共享. 通过选择合适的纠缠见证算子和Bob的非锐化测量, 本文证明了存在两量子比特纠缠的初始共享Werner态, 其纠缠可以被任意多个观察者Bobs和单个观察者Alice共享.
    The problem of sharing quantum correlations is an interesting problem in the study of quantum information theory. Silva et al. proposed the study of sharing quantum nonlocality at first. They studied the fundamental limits on nonlocality, asking whether a single pair of entangled qubits could generate a long sequence of nonlocal correlations. At the same time, the sequential scenario was also introduced first, in which Alice and Bob each have half of a pair of entangled qubit states. The first Bob measures his half and then passes his part to a second Bob who measures again and so on. Obviously, even partial preservation of entanglement in a shared state in spite of a few sequences of local operations performed by the sharing parties can be important for information processing schemes in which entanglement is utilized as a resource. Thus, the problem of sharing quantum entanglement has also been extensively investigated. Recently, Srivastava et al. proved that there exist a class of T-states whose entanglement can be shared by arbitrarily many independent observers in [Phys. Rev. A 2022 105 062413]. Here, we want to find whether there are other entangled states that can be shared entanglement arbitrarily many times. In this paper, we consider the problem of sharing quantum entanglement when the initial shared state is a two-qubit entangled Werner state. The goal is to maximize the number of Bobs that can share entanglement with a single Alice. By suitably choosing the entanglement witness operator and the unsharp measurement settings by the Bobs, we prove that there exist two-qubit entangled initial shared Werner states whose entanglement can be detected by arbitrarily many sequential observers Bobs with a single Alice. Then, we also consider the special case of the Werner state, that is, the maximally entangled state as the initial shared state. In this case, its entanglement can also be witnessed arbitrarily many times, and the number of Bobs increases with the decrease of parameter.
      通信作者: 贺衎, hekanquantum@163.com
    • 基金项目: 国家自然科学基金(批准号: 12271394)和山西省重点研发计划(批准号: 202102010101004)资助的课题
      Corresponding author: He Kan, hekanquantum@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12271394) and the Key R&D Program of Shanxi Province, China (Grant No. 202102010101004)
    [1]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [2]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881Google Scholar

    [3]

    Scarani V, Lblisdir S, Gisin N, Acin A 2005 Rev. Mod. Phys. 77 1225Google Scholar

    [4]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [5]

    Wang K, Wang X, Zhan X, Bian Z, Li J, Sanders B C, Xue P 2018 Phys. Rev. A 97 042112Google Scholar

    [6]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O'Brien J L 2010 Nature 464 45Google Scholar

    [7]

    Silva R, Gisin N, Guryanova Y, Popescu S 2015 Phys. Rev. Lett. 114 250401Google Scholar

    [8]

    Brown P J, Colbeck R 2020 Phys. Rev. Lett. 125 090401Google Scholar

    [9]

    Zhang T G, Fei S M 2021 Phys. Rev. A 103 032216Google Scholar

    [10]

    Bera A, Mal S, Sen (De) A, Sen U 2018 Phys. Rev. A 98 062304Google Scholar

    [11]

    Curchod F J, Johansson M, Augusiak R, Hoban M J, Wittek P, Acin A 2017 Phys. Rev. A 95 020102(RGoogle Scholar

    [12]

    Cheng S, Liu L, Baker T J, Hall M J W 2021 Phys. Rev. A 104 L060201Google Scholar

    [13]

    Das D, Ghosal A, Sasmal S, Mal S, Majumdar A S 2019 Phys. Rev. A 99 022305Google Scholar

    [14]

    Kumari A, Pan A K 2019 Phys. Rev. A 100 062130Google Scholar

    [15]

    Saha S, Das D, Sasmal S, Sarkar D, Mukherjee K, Roy A, Bhattacharya S S 2019 Quantum Inf. Process. 18 42Google Scholar

    [16]

    Bowles J, Baccari F, Salavrakos A 2020 Quantum 4 344Google Scholar

    [17]

    Foletto G, Calderaro L, Tavakoli A, Schiavon M, Picciariello F, Cabello A, Villoresi P, Vallone G 2020 Phys. Rev. Appl. 13 044008Google Scholar

    [18]

    Foletto G, Padovan M, Avesani M, Tebyanian H, Villoresi P, Vallone G 2021 Phys. Rev. A 103 062206Google Scholar

    [19]

    Feng T, Ren C, Tian Y, Luo M, Shi H, Chen J, Zhou X 2020 Phys. Rev. A 102 032220Google Scholar

    [20]

    Hu M J, Zhou Z Y, Hu X M, Li C F, Guo G C, Zhang Y S 2018 npj Quantum Inf. 4 63Google Scholar

    [21]

    Anwer H, Muhammad S, Cherifi W, Miklin N, Tavakoli A, Bourennane M 2020 Phys. Rev. Lett. 125 080403Google Scholar

    [22]

    Anwer H, Wilson N, Silva R, Muhammad S, Tavakoli A, Bourennane M 2021 Quantum 5 551Google Scholar

    [23]

    Foletto G, Calderaro L, Vallone G, Villoresi P 2020 Phys. Rev. Res. 2 033205Google Scholar

    [24]

    Mohan K, Tavakoli A, Brunner N 2019 New J. Phys. 21 083034Google Scholar

    [25]

    Schrödinger E 1936 Math. Proc. Cambridge Philos. Soc. 32 446Google Scholar

    [26]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar

    [27]

    Sasmal S, Das D, Mal S, Majumdar A S 2018 Phys. Rev. A 98 012305Google Scholar

    [28]

    Srivastava C, Pandit M, Sen U 2022 Phys. Rev. A 105 062413Google Scholar

    [29]

    Gühne O, Tóth G 2009 Phys. Rep. 474 1Google Scholar

    [30]

    Werner R F 1989 Phys. Rev. A 40 4277Google Scholar

    [31]

    Horodecki M, Horodecki P 1999 Phys. Rev. A 59 4206Google Scholar

    [32]

    Simmons G F 1963 Introduction to Topology and Modern Analysis (New York: McGraw-Hill)p224-231

    [33]

    Gühne O, Hyllus P, BrußD, Ekert A, Lewenstein M, Macchiavello C, Sanpera A 2002 Phys. Rev. A 66 062305Google Scholar

    [34]

    Gühne O, Hyllus P, Bruss D, Ekert A, Lewenstein M, Macchiavello C, Sanpera A 2003 J. Mod. Opt. 50 1079Google Scholar

  • 图 1  Alice和第一个Bob, 即${\rm{B}}_{1}$, 共享一个两体纠缠态$\rho_{{\rm{AB}}_{1}}$. ${\rm{B}}_{1}$对他所拥有的部分共享态进行测量, 然后将其传递给第二个Bob, 即${\rm{B}}_{2}$. 测量后的状态是$\rho_{{\rm{AB}}_{2}}$. 之后, ${\rm{B}}_{2}$测量$\rho_{{\rm{AB}}_{2}}$, 然后再传递给${\rm{B}}_{3}$, 以此类推

    Fig. 1.  A bipartite entangled quantum state $\rho_{{\rm{AB}}_{1}}$ is initially shared by Alice and the first Bob (${\rm{B}}_{1}$). ${\rm{B}}_{1}$ performs his measurement on his part and then passes it to the second Bob (${\rm{B}}_{2}$). The post-measurement state is $\rho_{{\rm{AB}}_{2}}$. Then, ${\rm{B}}_{2}$ measures $\rho_{{\rm{AB}}_{2}}$ on his part and passes it to ${\rm{B}}_{3}$ and so on

    图 2  $t = - 1$时初始共享态是最大纠缠态. 这里绘制了相对于参数$\epsilon$, 可以与单个Alice见证纠缠的Bobs的数量. 横轴表示参数$\epsilon $的取值, 图中将(0, 1)按长度0.01均匀分段, $\epsilon $取值为每段的右端点. 纵轴表示能成功检测到与单个Alice纠缠的Bobs的个数, 用k表示

    Fig. 2.  When $t = -1$, the initial shared state is the maximally entangled state. We plot here the number of Bobs who can witness entanglement with Alice, with respect to $\epsilon$. The horizontal axis represents the value of parameter $\epsilon$ which belongs to 100 uniformly distributed points in (0, 1). The vertical axis counts the number of Bobs k who can succeed in detecting entanglement with Alice

  • [1]

    Bennett C H, Brassard G, Crépeau C, Jozsa R, Peres A, Wootters W K 1993 Phys. Rev. Lett. 70 1895Google Scholar

    [2]

    Bennett C H, Wiesner S J 1992 Phys. Rev. Lett. 69 2881Google Scholar

    [3]

    Scarani V, Lblisdir S, Gisin N, Acin A 2005 Rev. Mod. Phys. 77 1225Google Scholar

    [4]

    Ekert A K 1991 Phys. Rev. Lett. 67 661Google Scholar

    [5]

    Wang K, Wang X, Zhan X, Bian Z, Li J, Sanders B C, Xue P 2018 Phys. Rev. A 97 042112Google Scholar

    [6]

    Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O'Brien J L 2010 Nature 464 45Google Scholar

    [7]

    Silva R, Gisin N, Guryanova Y, Popescu S 2015 Phys. Rev. Lett. 114 250401Google Scholar

    [8]

    Brown P J, Colbeck R 2020 Phys. Rev. Lett. 125 090401Google Scholar

    [9]

    Zhang T G, Fei S M 2021 Phys. Rev. A 103 032216Google Scholar

    [10]

    Bera A, Mal S, Sen (De) A, Sen U 2018 Phys. Rev. A 98 062304Google Scholar

    [11]

    Curchod F J, Johansson M, Augusiak R, Hoban M J, Wittek P, Acin A 2017 Phys. Rev. A 95 020102(RGoogle Scholar

    [12]

    Cheng S, Liu L, Baker T J, Hall M J W 2021 Phys. Rev. A 104 L060201Google Scholar

    [13]

    Das D, Ghosal A, Sasmal S, Mal S, Majumdar A S 2019 Phys. Rev. A 99 022305Google Scholar

    [14]

    Kumari A, Pan A K 2019 Phys. Rev. A 100 062130Google Scholar

    [15]

    Saha S, Das D, Sasmal S, Sarkar D, Mukherjee K, Roy A, Bhattacharya S S 2019 Quantum Inf. Process. 18 42Google Scholar

    [16]

    Bowles J, Baccari F, Salavrakos A 2020 Quantum 4 344Google Scholar

    [17]

    Foletto G, Calderaro L, Tavakoli A, Schiavon M, Picciariello F, Cabello A, Villoresi P, Vallone G 2020 Phys. Rev. Appl. 13 044008Google Scholar

    [18]

    Foletto G, Padovan M, Avesani M, Tebyanian H, Villoresi P, Vallone G 2021 Phys. Rev. A 103 062206Google Scholar

    [19]

    Feng T, Ren C, Tian Y, Luo M, Shi H, Chen J, Zhou X 2020 Phys. Rev. A 102 032220Google Scholar

    [20]

    Hu M J, Zhou Z Y, Hu X M, Li C F, Guo G C, Zhang Y S 2018 npj Quantum Inf. 4 63Google Scholar

    [21]

    Anwer H, Muhammad S, Cherifi W, Miklin N, Tavakoli A, Bourennane M 2020 Phys. Rev. Lett. 125 080403Google Scholar

    [22]

    Anwer H, Wilson N, Silva R, Muhammad S, Tavakoli A, Bourennane M 2021 Quantum 5 551Google Scholar

    [23]

    Foletto G, Calderaro L, Vallone G, Villoresi P 2020 Phys. Rev. Res. 2 033205Google Scholar

    [24]

    Mohan K, Tavakoli A, Brunner N 2019 New J. Phys. 21 083034Google Scholar

    [25]

    Schrödinger E 1936 Math. Proc. Cambridge Philos. Soc. 32 446Google Scholar

    [26]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. 47 777Google Scholar

    [27]

    Sasmal S, Das D, Mal S, Majumdar A S 2018 Phys. Rev. A 98 012305Google Scholar

    [28]

    Srivastava C, Pandit M, Sen U 2022 Phys. Rev. A 105 062413Google Scholar

    [29]

    Gühne O, Tóth G 2009 Phys. Rep. 474 1Google Scholar

    [30]

    Werner R F 1989 Phys. Rev. A 40 4277Google Scholar

    [31]

    Horodecki M, Horodecki P 1999 Phys. Rev. A 59 4206Google Scholar

    [32]

    Simmons G F 1963 Introduction to Topology and Modern Analysis (New York: McGraw-Hill)p224-231

    [33]

    Gühne O, Hyllus P, BrußD, Ekert A, Lewenstein M, Macchiavello C, Sanpera A 2002 Phys. Rev. A 66 062305Google Scholar

    [34]

    Gühne O, Hyllus P, Bruss D, Ekert A, Lewenstein M, Macchiavello C, Sanpera A 2003 J. Mod. Opt. 50 1079Google Scholar

  • [1] 蒋世民, 贾欣燕, 樊代和. 非马尔科夫环境中Werner态的量子非局域关联检验研究. 物理学报, 2024, 73(16): 160301. doi: 10.7498/aps.73.20240450
    [2] 李岩, 任志红. 多量子比特WV纠缠态在Lipkin-Meshkov-Glick模型下的量子Fisher信息. 物理学报, 2023, 72(22): 220302. doi: 10.7498/aps.72.20231179
    [3] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验. 物理学报, 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [4] 张乐, 袁训锋, 谭小东. 退相位环境下Werner态在石墨烯基量子通道中的隐形传输. 物理学报, 2022, 71(7): 070304. doi: 10.7498/aps.71.20211881
    [5] 石韬, 吕丽花, 李有泉. 量子中继过程中纠缠态的选择. 物理学报, 2021, 70(23): 230303. doi: 10.7498/aps.70.20211211
    [6] 陶志炜, 任益充, 艾则孜姑丽·阿不都克热木, 刘世韦, 饶瑞中. 基于纠缠相干态的量子照明雷达. 物理学报, 2021, 70(17): 170601. doi: 10.7498/aps.70.20210462
    [7] 赵瑞通, 梁瑞生, 王发强. 电子自旋辅助实现光子偏振态的量子纠缠浓缩. 物理学报, 2017, 66(24): 240301. doi: 10.7498/aps.66.240301
    [8] 马亚云, 冯晋霞, 万振菊, 高英豪, 张宽收. 连续变量1.34 m量子纠缠态光场的实验制备. 物理学报, 2017, 66(24): 244205. doi: 10.7498/aps.66.244205
    [9] 梁建武, 程资, 石金晶, 郭迎. 基于量子图态的量子秘密共享. 物理学报, 2016, 65(16): 160301. doi: 10.7498/aps.65.160301
    [10] 任宝藏, 邓富国. 光子两自由度超并行量子计算与超纠缠态操控. 物理学报, 2015, 64(16): 160303. doi: 10.7498/aps.64.160303
    [11] 陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛. 基于纠缠态的量子通信网络的量子信道建立速率模型. 物理学报, 2015, 64(4): 040301. doi: 10.7498/aps.64.040301
    [12] 孙新梅, 查新未, 祁建霞, 兰倩. 基于非最大纠缠的五粒子Cluster态的高效量子态共享方案. 物理学报, 2013, 62(23): 230302. doi: 10.7498/aps.62.230302
    [13] 徐健, 陈小余, 李海涛. 多进制量子图态纠缠的确定. 物理学报, 2012, 61(22): 220304. doi: 10.7498/aps.61.220304
    [14] 刘玉玲, 满忠晓, 夏云杰. 用非最大纠缠信道对任意二粒子纠缠态的量子秘密分享. 物理学报, 2008, 57(5): 2680-2686. doi: 10.7498/aps.57.2680
    [15] 唐有良, 刘 翔, 张小伟, 唐筱芳. 用一个纠缠态实现多粒子纠缠态的量子隐形传送. 物理学报, 2008, 57(12): 7447-7451. doi: 10.7498/aps.57.7447
    [16] 周小清, 邬云文. 利用三粒子纠缠态建立量子隐形传态网络的探讨. 物理学报, 2007, 56(4): 1881-1887. doi: 10.7498/aps.56.1881
    [17] 李艳玲, 冯 健, 於亚飞. 量子纠缠态的普适远程克隆. 物理学报, 2007, 56(12): 6797-6802. doi: 10.7498/aps.56.6797
    [18] 刘传龙, 郑亦庄. 纠缠相干态的量子隐形传态. 物理学报, 2006, 55(12): 6222-6228. doi: 10.7498/aps.55.6222
    [19] 石名俊, 杜江峰, 朱栋培, 阮图南. 混合纠缠态的几何描述. 物理学报, 2000, 49(10): 1912-1918. doi: 10.7498/aps.49.1912
    [20] 石名俊, 杜江峰, 朱栋培. 量子纯态的纠缠度. 物理学报, 2000, 49(5): 825-829. doi: 10.7498/aps.49.825
计量
  • 文章访问数:  3371
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-25
  • 修回日期:  2023-01-10
  • 上网日期:  2023-02-11
  • 刊出日期:  2023-04-05

/

返回文章
返回