-
The self-assembly behavior of diblock copolymer/homopolymer/nanorods hybrid system under oscillation field is performed by using Cell Dynamics Scheme (CDS) and Brownian Dynamics (BD). The effects of the amplitude and frequency of the oscillation field on the formation and evolution of the mixture morphology are investigated systematically. It is found that the oscillation field plays an important role in the formation and transformation of the ordered structure. With the frequency increasing, the orientation of the lamellar structure transforms from parallel to the field direction to random angle and then to perpendicular to the field direction. Compared with the pure rod system, the addition of polymers has a combing effect. Under high amplitude and low frequency (
$ {\rm{\omega }}\leqslant 0.01 $ ) of the oscillation field, the arrangement of nanorods transforms from vertical to horizontal. However, under high amplitude and high frequency ($ \omega > 0.01 $ ), the nanorods change from vertical/horizontal hybrid arrangement to vertical arrangement. The evolution of domain size and orientation angle of nanorods under oscillation field are further analysed. The results provide a new method and reference for fabricating and regulating the ordered structure of polymer nanocomposites.-
Keywords:
- oscillation field /
- polymer /
- nanorods /
- self-assembly
[1] Seul M, Andelman D 1995 Science 267 476Google Scholar
[2] Tanaka H 1993 Phys. Rev. Lett. 70 2770Google Scholar
[3] Marencic A P, Adamson D H, Chaikin P M, Register R A 2010 Phys. Rev. E 81 011503Google Scholar
[4] Wu S 2009 Phys. Rev. E 79 031803Google Scholar
[5] Croll A B, Shi A C, Dalnoki-Veress K 2009 Phys. Rev. E 80 051803Google Scholar
[6] Hosoi A E, Kogan D, Devereaux C E, Bernoff A J, Baker S M 2005 Phys. Rev. Lett. 95 037801Google Scholar
[7] Lopes W A 2002 Phys. Rev. E 65 031606Google Scholar
[8] Leibler L 1980 Macromolecules 13 1602Google Scholar
[9] Kletenik-Edelman O, Ploshnik E, Salant A, Shenhar R, Banin U, Rabani E 2008 Phys. Chem. C 112 4498Google Scholar
[10] Keblinski P, Kumar S K, Maritan A, Koplik J, Banavar J R 1996 Phys. Rev. Lett. 76 1106Google Scholar
[11] Harrison C, Adamson D H, Cheng Z, Sebastian J M, Sethuraman S, Huse D A, Chaikin P M 2000 Science 290 1558Google Scholar
[12] Matsuyama A, Evans R M L, Cates M E 2000 Phys. Rev. E 61 2977Google Scholar
[13] Yamaguchi D, Hashimoto T 2001 Macromolecules 34 6495Google Scholar
[14] Angelescu D E, Waller J H, Register R A, Chaikin P M 2005 Adv. Mater 17 1878Google Scholar
[15] Komura S, Kodama H 1997 Phys. Rev. E 55 1722Google Scholar
[16] Roan J R, Shakhnovich E I 1999 Phys. Rev. E 59 2109Google Scholar
[17] Ginzburg V V 2005 Macromolecules 38 2362Google Scholar
[18] He G, Ginzburg V V, Balazs A C 2006 J. Polym. Sci. B 44 2389Google Scholar
[19] Lee J Y, Thompson R B, Jasnow D, Balazs A C 2002 Macromolecules 35 4855Google Scholar
[20] Osipov M A, Gorkunov M V 2016 Eur. Phys. J. E. 39 1Google Scholar
[21] Osipov M A, Gorkunov M V, Kudryavtsev, Y V 2017 Mol. Cryst. Liq. Cryst. 647 405Google Scholar
[22] Osipov M A, Gorkunov M V, Berezkin A V, Kudryavtsev Y V 2018 Phys. Rev. E 97 042706Google Scholar
[23] Diaz J, Pinna M, Zvelindovsky A, Pagonabarraga I 2019 Soft Matter 15 6400Google Scholar
[24] Diaz J, Pinna M, Zvelindovsky A V, Pagonabarraga I 2019 Macromolecules 52 8285Google Scholar
[25] Diaz J, Pinna M, Zvelindovsky A V, Pagonabarraga I, Shenhar R 2020 Macromolecules 53 3234Google Scholar
[26] Ye X, Shi T, Lu Z, Zhang C, Sun Z, An L 2005 Macromolecules 38 8853Google Scholar
[27] Ma J W, Li X, Tang P, Yang Y 2007 J. Phys. Chem. B 111 1552Google Scholar
[28] Guo Y Q, Pan J X, Sun M N, Zhang J J 2017 J. Chem. Phys. 146 024902Google Scholar
[29] Guo Y Q 2021 Chin. Phys. B 30 048301Google Scholar
[30] Sun M, Zhang J J, Wang B, Wu H S, Pan J 2011 Phys. Rev. E 84 011802Google Scholar
[31] Sun M N, Zhang J J, Pan J X, Wang B F, Wu, H S 2016 Nano 11 1650008Google Scholar
[32] Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. B 22 026401Google Scholar
[33] Thorkelsson K, Mastroianni A J, Ercius P, Xu T 2012 Aps. March Meeting 12 498Google Scholar
[34] Thorkelsson K, Nelson J H, Alivisatos A P, Xu T 2013 ACS 13 4908Google Scholar
[35] Thorkelsson K, Bronstein N, Xu T 2016 Macromolecules 49 6669Google Scholar
[36] Ma Y Q 2000 Phys. Rev. E 62 8207Google Scholar
[37] Zhu Y J, Ma Y Q 2003 Phys. Rev. E 67 041503Google Scholar
[38] Olszowka V, Hund M, Kuntermann V, Scherdel S, Tsarkova L, Bker A, Krausch G 2006 Soft Matter 2 1089Google Scholar
[39] Wang Q, Nealey P F, de Pablo J J 2003 Macromolecules 36 1731Google Scholar
[40] Ginzburg V V, Gibbons C, Qiu F, Peng G, Balazs A C 2000 Macromolecules 33 6140Google Scholar
[41] Choi S H, Lodge T P, Bates F S 2010 Phys. Rev. Lett. 104 047802Google Scholar
[42] Huang F, Addas K, Ward A, Flynn N T, Velasco E, Hagan M F, Fraden S 2009 Phys. Rev. Lett. 102 108302Google Scholar
[43] Chen Z R, Kornfield J A, Smith S D, Grothaus J T, Satkowski M M 1997 Science 277 1248Google Scholar
[44] Mullin T 2000 Phys. Rev. Lett. 84 4741Google Scholar
[45] Wu M W, Register R A, Chaikin P M 2006 Phys. Rev. E 74 040801Google Scholar
[46] Morozov A N, van Saarloos W 2005 Phys. Rev. Lett. 95 024501Google Scholar
[47] Hong K M, Noolandi J 1983 Macromolecules 16 1083Google Scholar
[48] Morozov A N, Fraaije J G E M 2002 Phys. Rev. E 65 031803Google Scholar
[49] Zvelindovsky A V, Sevink G J A, Fraaije J G E M 2000 Phys. Rev. E 62 R3063Google Scholar
[50] Koizumi S, Hasegawa H, Hashimoto T 1994 Macromolecules 27 6532Google Scholar
[51] Ginzburg V V, Qiu F, Paniconi M, Peng G, Jasnow D, Balazs A C 1999 Phys. Rev. Lett. 82 4026Google Scholar
[52] Qiu F, Ginzburg V V, Paniconi M, Peng G, Jasnow D, Balazs A C 1999 Langmuir 15 4952Google Scholar
[53] Buxton G A, Balazs A C 2004 Mol. Simulat. 30 249Google Scholar
[54] Balazs A C, Ginzburg V V, Qiu F, Peng G, Jasnow D 2000 J. Phys. Chem. B 104 3411Google Scholar
[55] Ginzburg V V, Peng G, Qiu F, Jasnow D, Balazs, A C 1999 Phys. Rev. E 60 4352Google Scholar
[56] Zhang J J, Jin G, Ma Y 2005 Phys. Rev. E 71 051803Google Scholar
[57] Zhang J J, Jin G, Ma Y 2005 Eur. Phys. J. E 18 359Google Scholar
[58] Ito A 1998 Phys. Rev. E 58 6158Google Scholar
[59] Liu B, Tong C, Yang Y 2001 J. Phys. Chem. B 105 10091Google Scholar
[60] Tong C, Yang Y 2002 J. Chem. Phys. 116 1519Google Scholar
[61] Oono Y, Bahiana M 1988 Phys. Rev. Lett. 61 1109Google Scholar
[62] Bates F S, Fredrickson G H 1990 Annu. Rev. Phys. Chem. 41 525Google Scholar
[63] Chakrabarti A, Gunton J D 1993 Phys. Rev. E 47 R792Google Scholar
[64] Schmittmann B, Zia R K P 1998 Phys. Rep. 301 45Google Scholar
[65] Schmittmann B 1990 Phys. B 4 2269Google Scholar
[66] Oono Y, Puri S 1987 Phys. Rev. Lett. 58 836Google Scholar
[67] Oono Y, Puri S 1988 Phys. Rev. A 38 434Google Scholar
[68] Puri S, Oono Y 1988 Phys. Rev. A 38 1542Google Scholar
[69] Shinozaki A, Oono Y 1992 Phys. Rev. A 45 R2161Google Scholar
[70] Geng X B, Pan J X, Zhang J J, Sun M N, Cen J Y 2018 Chin. Phys. B 27 058102Google Scholar
[71] Shinozaki A, Oono Y 1993 Phys. Rev. E 48 2622Google Scholar
-
图 1 在
$ t=5\times {10}^{6} $ 时, 随着振荡场频率改变, AB/C/ NRs混合体系自组装形貌图 (a)斜层状纳米线结构$(\gamma = $ $ 0, \omega =0$ ); (b)平行结构($ \gamma =0.05, \omega =0.0005) $ ; (c)过渡结构($ \gamma =0.05, \omega =0.005 $ ); (d) (e)斜层结构($\gamma =0.05, $ $ \omega =0.01$ ); (f)垂直结构($\gamma = $ $ 0.05, \omega =0.05$ ). 其中,$ \gamma $ 代表振荡场的振幅,$ \omega $ 代表振荡场的频率. 红色代表A嵌段, 蓝色代表B嵌段, 黄色代表C单体, 黑色代表纳米棒Fig. 1. The self-assembly topography of AB/C/NRs hybrid system at
$ {\rm{t}}=5\times {10}^{6} $ as the frequency of the oscillating field changes: (a) Slanted layered nanowire structure ($\gamma $ $ =0, \omega =0$ ); (b) parallel structure ($ \gamma =0.05, \omega =0.0005 $ ); (c) transition structure ($\gamma = $ $ 0.05, \omega =0.005$ ); (d) (e) inclined layer structure ($ \gamma =0.05, \omega =0.01 $ ); (f) vertical structure ($ \gamma =0.05, \omega =0.05 $ ). Where,$ \gamma $ represents the amplitude of the oscillation field and$ \omega $ represents the frequency of the oscillation field. Red represents block A, blue represents block B, yellow represents monomer C, and black represents nanorods.图 2 振荡场作用下, AB/C/NRs混合体系相结构形貌图随振幅和频率变化的二维相图, 其中, 红色方块代表斜层结构, 蓝色圆圈代表平行结构, 绿色三角代表垂直结构, 紫色菱形代表过渡结构
Fig. 2. Two-dimensional phase diagram of phase structure morphology of AB/C/NRs hybrid system with amplitude and frequency variation under oscillating field, where red square represents oblique layer structure, blue circle represents parallel structure, green triangle represents vertical structure, and purple diamond represents transition structure.
图 3 在不同频率下, 均聚物C发生畴生长尺寸随时间演化的双对数图 (a)沿x轴方向的畴尺寸图
$ {R}_{x}\left(t\right) $ ; (b)沿y轴方向的畴尺寸图$ {R}_{y}\left(t\right) $ . 其中, 黑色线: 平行结构($\omega $ $ =0.0005$ ), 红色线: 过渡结构($ \omega =0.005 $ ); 蓝色线: 斜层结构($ \omega =0.01 $ ); 绿色线: 垂直结构($ \omega =0.05 $ ).$ \omega $ 代表振荡场的频率Fig. 3. Double logarithmic graph of domain growth size vs. time evolution of homopolymer C at different frequencies. (a) Domain size map
$ {R}_{x}\left(t\right) $ along the x-axis; (b) domain size$ {R}_{y}\left(t\right) $ along the y-axis. Among them, the black line: parallel structure ($\omega = $ $ 0.0005$ ), the red line: transition structure ($ \omega =0.005 $ ); blue line: oblique layer structure ($\omega = $ $ 0.01$ ); green line: vertical structure ($\omega = $ $ 0.05$ ). Omega represents the frequency of the oscillating field.图 4 在不同振荡场强度下, 纳米棒取向角平均值随时间的变化图. 其中, 黑色线: 平行结构(
$\omega = 0.0005$ ), 红色线: 过渡结构($\omega = $ $ 0.005$ ); 蓝色线: 斜层结构($ \omega =0.01 $ ); 绿色线: 垂直结构($ \omega =0.05 $ ).$ \omega $ 代表振荡场的频率Fig. 4. Variation of the mean orientation Angle of nanorods with time under different oscillating field intensities. Among them, the black line: parallel structure (
$ \omega =0.0005 $ ), the red line: transition structure ($ \omega =0.005 $ ); blue line: oblique layer structure ($\omega = $ $ 0.01$ ); green line: vertical structure ($ \omega =0.05 $ ). Omega represents the frequency of the oscillating field.图 5 振荡场作用下, AB/C/NRs混合体系畴结构随时间演化的形貌图 (a)
$t=10000$ ; (b)$ t=20000 $ ; (c)$t= $ $ 100000$ ; (d)$t= $ $ 1000000$ ; (e)$ t=2000000 $ ; (f)$ t=5000000 $ . 其中,$L=11, {N}{L}=123, $ $ \gamma =0.05, \omega =0.0005$ Fig. 5. Morphology diagram of domain structure evolution of AB/C/NRs hybrid system with time under oscillating field: (a)
$t= $ $ 10000$ ; (b)$ t=20000 $ ; (c)$ t=100000 $ ; (d)$ t=1000000 $ ; (e)$ t=2000000 $ ; (f)$ t=5000000 $ . Among them,$ L=11 $ ,${N}{L}=123 $ ,$ \gamma =0.05 $ ,$ \omega =0.0005 $ . -
[1] Seul M, Andelman D 1995 Science 267 476Google Scholar
[2] Tanaka H 1993 Phys. Rev. Lett. 70 2770Google Scholar
[3] Marencic A P, Adamson D H, Chaikin P M, Register R A 2010 Phys. Rev. E 81 011503Google Scholar
[4] Wu S 2009 Phys. Rev. E 79 031803Google Scholar
[5] Croll A B, Shi A C, Dalnoki-Veress K 2009 Phys. Rev. E 80 051803Google Scholar
[6] Hosoi A E, Kogan D, Devereaux C E, Bernoff A J, Baker S M 2005 Phys. Rev. Lett. 95 037801Google Scholar
[7] Lopes W A 2002 Phys. Rev. E 65 031606Google Scholar
[8] Leibler L 1980 Macromolecules 13 1602Google Scholar
[9] Kletenik-Edelman O, Ploshnik E, Salant A, Shenhar R, Banin U, Rabani E 2008 Phys. Chem. C 112 4498Google Scholar
[10] Keblinski P, Kumar S K, Maritan A, Koplik J, Banavar J R 1996 Phys. Rev. Lett. 76 1106Google Scholar
[11] Harrison C, Adamson D H, Cheng Z, Sebastian J M, Sethuraman S, Huse D A, Chaikin P M 2000 Science 290 1558Google Scholar
[12] Matsuyama A, Evans R M L, Cates M E 2000 Phys. Rev. E 61 2977Google Scholar
[13] Yamaguchi D, Hashimoto T 2001 Macromolecules 34 6495Google Scholar
[14] Angelescu D E, Waller J H, Register R A, Chaikin P M 2005 Adv. Mater 17 1878Google Scholar
[15] Komura S, Kodama H 1997 Phys. Rev. E 55 1722Google Scholar
[16] Roan J R, Shakhnovich E I 1999 Phys. Rev. E 59 2109Google Scholar
[17] Ginzburg V V 2005 Macromolecules 38 2362Google Scholar
[18] He G, Ginzburg V V, Balazs A C 2006 J. Polym. Sci. B 44 2389Google Scholar
[19] Lee J Y, Thompson R B, Jasnow D, Balazs A C 2002 Macromolecules 35 4855Google Scholar
[20] Osipov M A, Gorkunov M V 2016 Eur. Phys. J. E. 39 1Google Scholar
[21] Osipov M A, Gorkunov M V, Kudryavtsev, Y V 2017 Mol. Cryst. Liq. Cryst. 647 405Google Scholar
[22] Osipov M A, Gorkunov M V, Berezkin A V, Kudryavtsev Y V 2018 Phys. Rev. E 97 042706Google Scholar
[23] Diaz J, Pinna M, Zvelindovsky A, Pagonabarraga I 2019 Soft Matter 15 6400Google Scholar
[24] Diaz J, Pinna M, Zvelindovsky A V, Pagonabarraga I 2019 Macromolecules 52 8285Google Scholar
[25] Diaz J, Pinna M, Zvelindovsky A V, Pagonabarraga I, Shenhar R 2020 Macromolecules 53 3234Google Scholar
[26] Ye X, Shi T, Lu Z, Zhang C, Sun Z, An L 2005 Macromolecules 38 8853Google Scholar
[27] Ma J W, Li X, Tang P, Yang Y 2007 J. Phys. Chem. B 111 1552Google Scholar
[28] Guo Y Q, Pan J X, Sun M N, Zhang J J 2017 J. Chem. Phys. 146 024902Google Scholar
[29] Guo Y Q 2021 Chin. Phys. B 30 048301Google Scholar
[30] Sun M, Zhang J J, Wang B, Wu H S, Pan J 2011 Phys. Rev. E 84 011802Google Scholar
[31] Sun M N, Zhang J J, Pan J X, Wang B F, Wu, H S 2016 Nano 11 1650008Google Scholar
[32] Pan J X, Zhang J J, Wang B F, Wu H S, Sun M N 2013 Chin. Phys. B 22 026401Google Scholar
[33] Thorkelsson K, Mastroianni A J, Ercius P, Xu T 2012 Aps. March Meeting 12 498Google Scholar
[34] Thorkelsson K, Nelson J H, Alivisatos A P, Xu T 2013 ACS 13 4908Google Scholar
[35] Thorkelsson K, Bronstein N, Xu T 2016 Macromolecules 49 6669Google Scholar
[36] Ma Y Q 2000 Phys. Rev. E 62 8207Google Scholar
[37] Zhu Y J, Ma Y Q 2003 Phys. Rev. E 67 041503Google Scholar
[38] Olszowka V, Hund M, Kuntermann V, Scherdel S, Tsarkova L, Bker A, Krausch G 2006 Soft Matter 2 1089Google Scholar
[39] Wang Q, Nealey P F, de Pablo J J 2003 Macromolecules 36 1731Google Scholar
[40] Ginzburg V V, Gibbons C, Qiu F, Peng G, Balazs A C 2000 Macromolecules 33 6140Google Scholar
[41] Choi S H, Lodge T P, Bates F S 2010 Phys. Rev. Lett. 104 047802Google Scholar
[42] Huang F, Addas K, Ward A, Flynn N T, Velasco E, Hagan M F, Fraden S 2009 Phys. Rev. Lett. 102 108302Google Scholar
[43] Chen Z R, Kornfield J A, Smith S D, Grothaus J T, Satkowski M M 1997 Science 277 1248Google Scholar
[44] Mullin T 2000 Phys. Rev. Lett. 84 4741Google Scholar
[45] Wu M W, Register R A, Chaikin P M 2006 Phys. Rev. E 74 040801Google Scholar
[46] Morozov A N, van Saarloos W 2005 Phys. Rev. Lett. 95 024501Google Scholar
[47] Hong K M, Noolandi J 1983 Macromolecules 16 1083Google Scholar
[48] Morozov A N, Fraaije J G E M 2002 Phys. Rev. E 65 031803Google Scholar
[49] Zvelindovsky A V, Sevink G J A, Fraaije J G E M 2000 Phys. Rev. E 62 R3063Google Scholar
[50] Koizumi S, Hasegawa H, Hashimoto T 1994 Macromolecules 27 6532Google Scholar
[51] Ginzburg V V, Qiu F, Paniconi M, Peng G, Jasnow D, Balazs A C 1999 Phys. Rev. Lett. 82 4026Google Scholar
[52] Qiu F, Ginzburg V V, Paniconi M, Peng G, Jasnow D, Balazs A C 1999 Langmuir 15 4952Google Scholar
[53] Buxton G A, Balazs A C 2004 Mol. Simulat. 30 249Google Scholar
[54] Balazs A C, Ginzburg V V, Qiu F, Peng G, Jasnow D 2000 J. Phys. Chem. B 104 3411Google Scholar
[55] Ginzburg V V, Peng G, Qiu F, Jasnow D, Balazs, A C 1999 Phys. Rev. E 60 4352Google Scholar
[56] Zhang J J, Jin G, Ma Y 2005 Phys. Rev. E 71 051803Google Scholar
[57] Zhang J J, Jin G, Ma Y 2005 Eur. Phys. J. E 18 359Google Scholar
[58] Ito A 1998 Phys. Rev. E 58 6158Google Scholar
[59] Liu B, Tong C, Yang Y 2001 J. Phys. Chem. B 105 10091Google Scholar
[60] Tong C, Yang Y 2002 J. Chem. Phys. 116 1519Google Scholar
[61] Oono Y, Bahiana M 1988 Phys. Rev. Lett. 61 1109Google Scholar
[62] Bates F S, Fredrickson G H 1990 Annu. Rev. Phys. Chem. 41 525Google Scholar
[63] Chakrabarti A, Gunton J D 1993 Phys. Rev. E 47 R792Google Scholar
[64] Schmittmann B, Zia R K P 1998 Phys. Rep. 301 45Google Scholar
[65] Schmittmann B 1990 Phys. B 4 2269Google Scholar
[66] Oono Y, Puri S 1987 Phys. Rev. Lett. 58 836Google Scholar
[67] Oono Y, Puri S 1988 Phys. Rev. A 38 434Google Scholar
[68] Puri S, Oono Y 1988 Phys. Rev. A 38 1542Google Scholar
[69] Shinozaki A, Oono Y 1992 Phys. Rev. A 45 R2161Google Scholar
[70] Geng X B, Pan J X, Zhang J J, Sun M N, Cen J Y 2018 Chin. Phys. B 27 058102Google Scholar
[71] Shinozaki A, Oono Y 1993 Phys. Rev. E 48 2622Google Scholar
计量
- 文章访问数: 3174
- PDF下载量: 83
- 被引次数: 0