搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Markov环境下“X”态基于CHSH不等式的量子非局域关联检验

曾柏云 辜鹏宇 蒋世民 贾欣燕 樊代和

引用本文:
Citation:

Markov环境下“X”态基于CHSH不等式的量子非局域关联检验

曾柏云, 辜鹏宇, 蒋世民, 贾欣燕, 樊代和

Quantum nonlocality testing of the “X” state based on the CHSH inequality in Markov environment

Zeng Bai-Yun, Gu Peng-Yu, Jiang Shi-Min, Jia Xin-Yan, Fan Dai-He
PDF
HTML
导出引用
  • 量子非局域关联是量子理论最基础的特征之一. “X”态作为实验中常见的一种量子态, 因其在演化过程中仍保持“X”形的稳定性, 而被广泛应用于开放量子系统的研究中. 利用Clauser-Horne-Shimony-Holt (CHSH)不等式, 在Markov环境这种典型的开放量子系统下, 研究了两种通过局部变换操作所关联的“X”态在振幅阻尼环境和相位阻尼环境中量子非局域检验结果随时间的演化情况. 研究结果表明, 在相位阻尼环境中, 随着演化时间的增加, 两种“X”态具有相同的CHSH不等式检验结果. 在振幅阻尼环境中, 利用局部变换操作得到的“X”态, 可获得较长的成功进行量子非局域关联检验的演化时间. 最后, 详细给出了两种类型“X”态在相位阻尼环境和振幅阻尼环境中成功进行量子非局域关联检验的保真度范围.
    Quantum nonlocality is one of the most fundamental characteristics of quantum theory. As a commonly used quantum state generated in experiment, the “X” state is a typical one in the research of open quantum systems, since it remains the stability of the “X” shape during the evolution. Using the Clauser-Horne-Harmony-Holt (CHSH) inequality, the quantum nonlocality testing of two “X” states associated with local transformation operations is studied under the Markov environment. The results show that in the phase damping environment, the two “X” states have the same CHSH inequality testing results with the increase of the evolution time. Moreover, the maximum of quantum nonlocality test of the two “X” states will decrease nonlinearly. When $0.78 \lt F \lt 1$, the maximum value ${S_m}$ of testing quantum nonlocality will gradually transition from ${S_m} \gt 2$ to ${S_m} \lt 2$ with the increase of the evolution time of the two “X” states, and the research on the quantum nonlocality test cannot be successfully carried out. In the amplitude damping environment, the “X” state obtained by the local transformation operation has a longer evolution time for successfully testing quantum nonlocality when $F \gt 0.78$. In particular, when $F = 1$, the “X” state with the density matrix ${\rho _W}$ cannot successfully test the quantum nonlocality after the evolution time $\varGamma t \gt 0.22$. For the “X” state with density matrix ${\tilde \rho _W}$, the quantum nonlocality testing cannot be performed until the evolution time $\varGamma t \gt 0.26$. These results show that the local transformation operation of the “X” state is more conducive to the quantum nonlocality testing based on the CHSH inequality. Finally, the fidelity ranges of successfully testing the quantum nonlocality of the two “X” states in phase and amplitude damping environments are given in detail. The results show that on the premise of the successful testing of quantum nonlocality , the two types of “X” states evolving in the phase damping environment have a large range of valid fidelity. Meanwhile, for the same evolution time, the local transformation operation is helpful in improving the fidelity range of quantum nonlocality test in amplitude damping environment for “X” state with density matrix ${\rho _W}$.
      通信作者: 樊代和, dhfan@swjtu.edu.cn
    • 基金项目: 计算物理国防科技重点实验室(批准号: 6142A05180401)和国家自然科学基金 (批准号: 12147208)资助的课题.
      Corresponding author: Fan Dai-He, dhfan@swjtu.edu.cn
    • Funds: Project supported by the Key Laboratory Project of Computational Physics of National Defense Science and Technology of China (Grant No. 6142A05180401) and the National Natural Science Foundation of China (Grant No. 12147208)
    [1]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. Lett. 47 777

    [2]

    Horodecki R 2021 arXiv: 2103.07712 v2 [quant-ph]

    [3]

    Kaur E, Horodecki K, Das S 2022 Phys. Rev. Appl. 18 054033Google Scholar

    [4]

    Kahanamoku-Meyer G D, Choi S, Vazirani U V, Yao N Y 2022 Nat. Phys. 18 918Google Scholar

    [5]

    Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008Google Scholar

    [6]

    Bell J S 1964 Physics 1 195Google Scholar

    [7]

    Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880Google Scholar

    [8]

    Shaukat MI 2022 Eur. Phys. J. Plus 137 205

    [9]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Information (Cambridge: Cambridge University Press) pp380–386

    [10]

    Yu T, Eberly J 2007 Quantum Inf. Comput. 7 459

    [11]

    Quesada N, Al-Qasimi A, James D F 2012 J. Mod. Opt. 59 1322Google Scholar

    [12]

    Guo Y N, Wang X, Chen X J 2022 Quantum Inf. Process. 21 149Google Scholar

    [13]

    Kelleher C, Holweck F, Lévay P, Saniga M 2021 Results Phys. 22 103859Google Scholar

    [14]

    Namitha C, Satyanarayana S 2018 J. Phys. B: At. Mol. Opt. Phys. 51 045506Google Scholar

    [15]

    Zhao F, Wang D, Ye L 2022 Int. J. Theor. Phys. 61 1Google Scholar

    [16]

    曾柏云, 辜鹏宇, 胡强, 贾欣燕, 樊代和 2022 物理学报 71 170302Google Scholar

    Zeng B Y, Gu P Y, Hu Q, Jia X Y, Fan D H 2022 Acta Phys. Sin. 71 170302Google Scholar

    [17]

    胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和 2022 物理学报 71 070301Google Scholar

    Hu Q, Zeng B Y, Gu P Y, Jia X Y, Fan D H 2022 Acta Phys. Sin. 71 070301Google Scholar

    [18]

    Zhang Y S, Huang Y F, Li C F, Guo G C 2002 Phys. Rev. A 66 062315Google Scholar

    [19]

    Seiler J, Strohm T, Schleich W P 2021 Phys. Rev. A 104 032218Google Scholar

    [20]

    Yu T, Eberly J 2004 Phys. Rev. Lett. 93 140404Google Scholar

    [21]

    Li W, He Z, Wang Q 2017 Int. J. Theor. Phys. 56 2813Google Scholar

    [22]

    Mishra S, Thapliyal K, Pathak A 2022 Quantum Inf. Process. 21 70Google Scholar

  • 图 1  量子系统示意图, 其中腔A和腔B中各有一个二能级原子, 且其存在纠缠特性

    Fig. 1.  Schematic diagram of quantum system. Cavity A and cavity B have one two-level atom entanglement down respectively.

    图 2  相位阻尼环境中, $S_{{\text{m}} \text- {{\boldsymbol{\rho}} _W}}^{{\text{ph}}}$$S_{{\text{m}} \text- {{\tilde {\boldsymbol{\rho}} }_W}}^{{\text{ph}}}$随演化时间$\varGamma t$和保真度F的变化关系图

    Fig. 2.  $S_{{\text{m}} \text- {{\boldsymbol{\rho}} _W}}^{{\text{ph}}}$ and $S_{{\text{m}} \text- {{\tilde {\boldsymbol{\rho}} }_W}}^{{\text{ph}}}$ versus evolution time $\varGamma t$ and fidelity F in a phase damping environment.

    图 3  振幅阻尼环境中, $S_{{\text{m}} \text- {{\boldsymbol{\rho}} _W}}^{{\text{am}}}$($S_{{\text{m}} \text- {{\tilde {\boldsymbol{\rho}} }_{\text{W}}}}^{{\text{am}}}$)随保真度F和演化时间$ \varGamma t $的变化关系图 (a), (b) 保真度在$ 0.25 \leqslant F \leqslant 1 $变化时的情况; (c), (d) $ F = 0.78 $$ F = 1.00 $时的情况

    Fig. 3.  $S_{{\text{m}} \text- {{\boldsymbol{\rho}} _W}}^{{\text{am}}}$($S_{{\text{m}} \text- {{\tilde {\boldsymbol{\rho}} }_W}}^{{\text{am}}}$) versus evolution time $ \varGamma t $ in amplitude damping environment: (a), (b) The situation when the fidelity changes in $ 0.25 \leqslant F \leqslant 1 $ respectively; (c), (d) the situation when $ F = 0.78 $ and $ F = 1.00 $ respectively.

    图 4  ${F_{\min }}$与时间$\varGamma t$的变化关系图. 其中蓝色点划线表示密度矩阵为${{\boldsymbol{\rho}} _W}$的“X”态在振幅阻尼信道下的演化曲线; 红色虚线表示密度矩阵为${\tilde {\boldsymbol{\rho}} _W}$的“X”态在振幅阻尼信道下的演化曲线; 黑色实线表示两“X”态在相位阻尼信道下的演化曲线

    Fig. 4.  ${F_{\min }}$ versus time $\varGamma t$. The blue dotted line represents the evolution curve of the “X” state with the density matrix ${{\boldsymbol{\rho}} _{\rm{W}}}$ under the amplitude damping channel; the red dotted line represents the evolution curve of the “X” state with density matrix ${\tilde{\boldsymbol{\rho}} _{\rm{W}}}$ under the amplitude damping channel; the black solid line represents the evolution curve of two “X” states in a phase damped channel.

  • [1]

    Einstein A, Podolsky B, Rosen N 1935 Phys. Rev. Lett. 47 777

    [2]

    Horodecki R 2021 arXiv: 2103.07712 v2 [quant-ph]

    [3]

    Kaur E, Horodecki K, Das S 2022 Phys. Rev. Appl. 18 054033Google Scholar

    [4]

    Kahanamoku-Meyer G D, Choi S, Vazirani U V, Yao N Y 2022 Nat. Phys. 18 918Google Scholar

    [5]

    Portmann C, Renner R 2022 Rev. Mod. Phys. 94 025008Google Scholar

    [6]

    Bell J S 1964 Physics 1 195Google Scholar

    [7]

    Clauser J F, Horne M A, Shimony A, Holt R A 1969 Phys. Rev. Lett. 23 880Google Scholar

    [8]

    Shaukat MI 2022 Eur. Phys. J. Plus 137 205

    [9]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Information (Cambridge: Cambridge University Press) pp380–386

    [10]

    Yu T, Eberly J 2007 Quantum Inf. Comput. 7 459

    [11]

    Quesada N, Al-Qasimi A, James D F 2012 J. Mod. Opt. 59 1322Google Scholar

    [12]

    Guo Y N, Wang X, Chen X J 2022 Quantum Inf. Process. 21 149Google Scholar

    [13]

    Kelleher C, Holweck F, Lévay P, Saniga M 2021 Results Phys. 22 103859Google Scholar

    [14]

    Namitha C, Satyanarayana S 2018 J. Phys. B: At. Mol. Opt. Phys. 51 045506Google Scholar

    [15]

    Zhao F, Wang D, Ye L 2022 Int. J. Theor. Phys. 61 1Google Scholar

    [16]

    曾柏云, 辜鹏宇, 胡强, 贾欣燕, 樊代和 2022 物理学报 71 170302Google Scholar

    Zeng B Y, Gu P Y, Hu Q, Jia X Y, Fan D H 2022 Acta Phys. Sin. 71 170302Google Scholar

    [17]

    胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和 2022 物理学报 71 070301Google Scholar

    Hu Q, Zeng B Y, Gu P Y, Jia X Y, Fan D H 2022 Acta Phys. Sin. 71 070301Google Scholar

    [18]

    Zhang Y S, Huang Y F, Li C F, Guo G C 2002 Phys. Rev. A 66 062315Google Scholar

    [19]

    Seiler J, Strohm T, Schleich W P 2021 Phys. Rev. A 104 032218Google Scholar

    [20]

    Yu T, Eberly J 2004 Phys. Rev. Lett. 93 140404Google Scholar

    [21]

    Li W, He Z, Wang Q 2017 Int. J. Theor. Phys. 56 2813Google Scholar

    [22]

    Mishra S, Thapliyal K, Pathak A 2022 Quantum Inf. Process. 21 70Google Scholar

  • [1] 蒋世民, 贾欣燕, 樊代和. 非马尔科夫环境中Werner态的量子非局域关联检验研究. 物理学报, 2024, 73(16): 160301. doi: 10.7498/aps.73.20240450
    [2] 曾柏云, 辜鹏宇, 胡强, 贾欣燕, 樊代和. 基于CHSH不等式几何解释的“X”态量子非局域关联检验. 物理学报, 2022, 71(17): 170302. doi: 10.7498/aps.71.20220445
    [3] 胡强, 曾柏云, 辜鹏宇, 贾欣燕, 樊代和. 退相干条件下两比特纠缠态的量子非局域关联检验. 物理学报, 2022, 71(7): 070301. doi: 10.7498/aps.71.20211453
    [4] 刘晋, 缪波, 贾欣燕, 樊代和. 基于Hardy-type佯谬的混合态高概率量子非局域关联检验. 物理学报, 2019, 68(23): 230302. doi: 10.7498/aps.68.20191125
    [5] 李金晴, 罗云荣, 海文华. 囚禁单离子的量子阻尼运动. 物理学报, 2017, 66(23): 233701. doi: 10.7498/aps.66.233701
    [6] 杜春阳, 郁殿龙, 刘江伟, 温激鸿. X形超阻尼局域共振声子晶体梁弯曲振动带隙特性. 物理学报, 2017, 66(14): 140701. doi: 10.7498/aps.66.140701
    [7] 叶世强, 陈小余. 基于量子相干性的四体贝尔不等式构建. 物理学报, 2017, 66(20): 200301. doi: 10.7498/aps.66.200301
    [8] 黄江. 弱测量对四个量子比特量子态的保护. 物理学报, 2017, 66(1): 010301. doi: 10.7498/aps.66.010301
    [9] 杨光, 廉保旺, 聂敏. 振幅阻尼信道量子隐形传态保真度恢复机理. 物理学报, 2015, 64(1): 010303. doi: 10.7498/aps.64.010303
    [10] 王斌, 薛建议, 贺好艳, 朱德兰. 基于线性矩阵不等式的一类新羽翼倍增混沌分析与控制. 物理学报, 2014, 63(21): 210502. doi: 10.7498/aps.63.210502
    [11] 樊开明, 张国锋. 阻尼Jaynes-Cummings模型中两原子的量子关联动力学. 物理学报, 2013, 62(13): 130301. doi: 10.7498/aps.62.130301
    [12] 赵加强, 曹连振, 逯怀新, 王晓芹. 三比特类GHZ态的Bell型不等式和非定域性. 物理学报, 2013, 62(12): 120301. doi: 10.7498/aps.62.120301
    [13] 赵加强, 曹连振, 王晓芹, 逯怀新. 三光子GHZ态中不同Bell型不等式的实验研究. 物理学报, 2012, 61(17): 170301. doi: 10.7498/aps.61.170301
    [14] 刘其功, 计新. 相位阻尼通道下初始纠缠对纠缠演化的影响. 物理学报, 2012, 61(23): 230303. doi: 10.7498/aps.61.230303
    [15] 赵加强, 逯怀新. 原子偶极压缩的相干控制和Cauchy-Schwarz不等式的破坏. 物理学报, 2010, 59(11): 7875-7879. doi: 10.7498/aps.59.7875
    [16] 王相綦, 冯德仁, 尚 雷, 裴元吉, 何 宁, 赵 涛. 磁矩进动阻尼引起相位滞后的实验测量和理论分析. 物理学报, 2004, 53(12): 4319-4324. doi: 10.7498/aps.53.4319
    [17] 龙超云, 刘波. 轻阻尼RLC量子化回路的双波描述. 物理学报, 2001, 50(6): 1011-1014. doi: 10.7498/aps.50.1011
    [18] 陈莺飞, S.ZAREMBINSKI. 阻尼型高温直流超导量子干涉器磁强计的设计. 物理学报, 1998, 47(8): 1369-1377. doi: 10.7498/aps.47.1369
    [19] 朱如曾. 关于阻尼振子的量子化处理问题. 物理学报, 1981, 30(10): 1410-1414. doi: 10.7498/aps.30.1410
    [20] 彭桓武. 阻尼谐振子的量子力学处理. 物理学报, 1980, 29(8): 1084-1089. doi: 10.7498/aps.29.1084
计量
  • 文章访问数:  3485
  • PDF下载量:  61
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-20
  • 修回日期:  2022-12-07
  • 上网日期:  2022-12-26
  • 刊出日期:  2023-03-05

/

返回文章
返回