搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Peltier系数的稳态法和瞬态法测量

陈树权 王剑 杨振 朱璨 罗丰 祝鑫强 徐峰 王嘉赋 张艳 刘虹霞 孙志刚

引用本文:
Citation:

Peltier系数的稳态法和瞬态法测量

陈树权, 王剑, 杨振, 朱璨, 罗丰, 祝鑫强, 徐峰, 王嘉赋, 张艳, 刘虹霞, 孙志刚

Peltier coefficient measured by steady-state method and transient-state method

Chen Shu-Quan, Wang Jian, Yang Zhen, Zhu Can, Luo Feng, Zhu Xin-Qiang, Xu Feng, Wang Jia-Fu, Zhang Yan, Liu Hong-Xia, Sun Zhi-Gang
PDF
HTML
导出引用
  • 在热电效应的研究中, Kelvin关系建立了Seebeck系数与Peltier系数之间的桥梁, 它将热电材料的制冷与发电性能纳入了统一的评价体系, 并且大大地简化了热电性能测量的过程. 然而非线性Peltier效应的理论研究以及部分实验研究表明, Seebeck系数与Peltier系数之间不一定满足Kelvin关系. Peltier系数的精确测量是验证Kelvin关系以及研究非线性Peltier效应的基础, 但目前其实验研究较少. 本文基于低温电输运测试平台搭建一种采用悬臂梁结构的Peltier系数测量装置. 通过测量通电后Bi2Te3块体样品表面沿热流方向相邻两点的温差, 得到通电前后的稳态温差以及通电过程中温差随时间的瞬态变化的曲线, 利用稳态法和瞬态法分别得到Peltier系数. 通过测量, 不仅仅可以得到材料的Peltier系数, 还能得到测量接触点的界面电阻等信息. 研究表明, 在各温度下, 稳态法和瞬态法测量的Peltier系数是可以相互印证的, 验证了本实验中测量装置和方法的可靠性. 碲化铋样品Peltier系数的测量值与Kelvin关系式计算的理论值随温度的变化趋势是一致的, 测量值比理论值约大 20%.
    In the study of the physical effects of thermoelectric conversion, the Kelvin relationship is a bridge between the Seebeck coefficient and the Peltier coefficient, which brings the cooling and power generation performance of thermoelectric material into a unified evaluation system and dramatically simplifies the measurement process. However, some theoretical studies have shown that the Kelvin relationship is not satisfied under nonlinear conditions. Meanwhile, the measurement results of some experiments do not conform with this relationship. There have been few studies on accurately measuring the Peltier coefficient that is the basis of validating the Kelvin relation and studying the nonlinear thermoelectric effect. Based on this, a kind of Peltier coefficient measuring device with a cantilever beam structure is proposed in this work. We measure the difference between steady-state temperature and transient-state temperature on the sample surface and obtain the Peltier coefficients by the steady-state method and the transient-state method, respectively. By this measurement, we can obtain not only the Peltier coefficient of the material at low temperatures but also the interface resistance of the material. The Peltier coefficients measured by the steady-state method and the transient-state method are consistent with each other at various temperatures. Both of the variation trends with temperature are consistent with the temperature-dependent theoretical values calculated from the Kelvin relation. Our measured values are about 20% larger than the theoretical values.
      通信作者: 王嘉赋, jasper@whut.edu.cn ; 孙志刚, sun_zg@whut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12174297, 12204342)和国家重点研究发展计划(批准号: 2018YFE0111500)资助的课题.
      Corresponding author: Wang Jia-Fu, jasper@whut.edu.cn ; Sun Zhi-Gang, sun_zg@whut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174297, 12204342) and the National Key Research and Development Program of China (Grant No. 2018YFE0111500).
    [1]

    Mao J, Liu Z H, Zhou J W, Zhu H T, Zhang Q, Chen G, Ren Z F 2018 Adv. Phys. 67 69Google Scholar

    [2]

    Ambrosi R M, Kramer D P, Watkinson E J, Mesalam R, Barco A 2021 Nucl. Technol. 207 773Google Scholar

    [3]

    Siddique A R M, Mahmud S, Heyst B V 2017 Renewable Sustainable Energy Rev. 73 730Google Scholar

    [4]

    Meng F, Chen L, Xie Z, Ge Y 2017 Therm. Sci. Eng. Prog. 4 106Google Scholar

    [5]

    Cao Q, Luan W, Wang T 2018 Appl. Therm. Eng. 130 1472Google Scholar

    [6]

    Hao M R, Yang Y, Zhang S, Shen W Z, Schneider H, Liu H C 2014 Laser Photonics Rev. 8 297Google Scholar

    [7]

    Jaziri N, Boughamoura A, Muller J, Mezghani B, Tounsi F, Ismail M 2020 Energy Rep. 6 264Google Scholar

    [8]

    Saber H H, AlShehri S A, Maref W 2019 Energy Convers. Manage. 191 174Google Scholar

    [9]

    Choi H S, Yun S, Whang K I 2007 Appl. Therm. Eng. 27 2841Google Scholar

    [10]

    Thomson W 1857 Earth Environ. Sci. Trans. R. Soc. Edinburgh 21 123Google Scholar

    [11]

    Callen H B 1948 Phys. Rev. 73 1349Google Scholar

    [12]

    Onsager L 1931 Phys. Rev. 38 2265Google Scholar

    [13]

    Ioffe A F 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited) pp18–21

    [14]

    Heikes R R, Ure R W 1961 Thermoelectricity: Science and Engineering (New York-London: Interscience Publishers)

    [15]

    Harman T C, Honig J M 1967 Thermoelectric and Thermomagnetic Effects and Applications (New York: MCGRAW-HILL)

    [16]

    Rowe D M 2018 Thermoelectrics Handbook: Macro to Nano (Boca Raton, Florida: CRC Press)

    [17]

    Lee S, von Allmen P 2006 Appl. Phys. Lett. 88 022107Google Scholar

    [18]

    杨振, 朱璨, 柯亚娇, 何雄, 罗丰, 王剑, 王嘉赋, 孙志刚 2021 物理学报 70 108402Google Scholar

    Yang Z, Zhu C, Ke Y J, He X, Luo F, Jianl W, Wang J F, Sun Z G 2021 Acta Phys. Sin. 70 108402Google Scholar

    [19]

    Zebarjadi M, Esfarjani K, Shakouri A 2007 Appl. Phys. Lett. 91 122104Google Scholar

    [20]

    Sanchez D, Lopez R 2013 Phys. Rev. Lett. 110 026804Google Scholar

    [21]

    Kulik I O 1994 J. Phys. Condens. Matter 6 9737Google Scholar

    [22]

    Bogachek E N, Scherbakov A G, Landman U 1998 Solid State Commun. 108 851Google Scholar

    [23]

    Garrido J, Casanovas A 2014 J. Appl. Phys. 115 123517Google Scholar

    [24]

    Straube H, Wagner J M, Breitenstein O 2009 Appl. Phys. Lett. 95 052107Google Scholar

    [25]

    Ma J, Sinha S 2012 J. Appl. Phys. 112 073719Google Scholar

    [26]

    Jin W L, Liu L Y, Yang T, Shen H G, Zhu J, Xu W, Li S Z, Li Q, Chi L F, Di C A, Zhu D D 2018 Nat. Commun. 9 3586Google Scholar

    [27]

    Koyano M, Akashi N 2009 J. Electron. Mater. 38 1037Google Scholar

    [28]

    Caswell A E 1911 Phys. Rev. (Series I) 33 379Google Scholar

    [29]

    Garrido J, Casanovas A 2012 J. Electron. Mater. 41 1990Google Scholar

    [30]

    Weber L, Gmelin E 1991 Appl. Phys. A 53 136Google Scholar

    [31]

    Fukushima A, Kubota H, Yamamoto A, Suzuki Y, Yuasa S 2006 J. Appl. Phys. 99 08H706Google Scholar

    [32]

    Breitenstein O, Warta W, Langenkamp M 2010 Lock-in Thermography: Basics and Use for Evaluating Electronic Devices and Materials (Vol. 10) (Berlin: Springer)

    [33]

    Verma R, Behera U, Kasthurirengan S, Shivaprakash N, Udgata S, Gangradey R 2017 IOP Conf. Ser.: Mater. Sci. Eng. 171 012098Google Scholar

    [34]

    Thomson W 1857 Proc. R. Soc. Edinb. Sect. A 3 91Google Scholar

    [35]

    Bhatt R, Bohra A K, Bhattacharya S, Basu R, Ahmad S, Singh A, Muthe K P, Gadkari S C 2017 AIP Conf Proc. 1832 060021Google Scholar

    [36]

    Borup K A, de Boor J, Wang H, Drymiotis F, Gascoin F, Shi X, Chen L D, Fedorov M I, Muller E, Iversena B B, Snyder G J 2015 Energy Environ. Sci. 8 423Google Scholar

    [37]

    Zhang C, de la Mata M, Li Z, et al. 2016 Nano Energy 30 630Google Scholar

    [38]

    Yang Z, He B, He X, Luo F, Wang J, Zhu C, Liu H, Sun Z 2022 Energy Convers. Manage. 267 115871Google Scholar

    [39]

    Arisaka T, Otsuka M, Hasegawa Y 2019 Rev. Sci. Instrum. 90 046104Google Scholar

  • 图 1  (a) 测量装置示意图; 通入(b)正向电流和(c)反向电流后, 系统达到稳态时的热量平衡示意图

    Fig. 1.  (a) Schematic diagram of the measuring device. Schematic diagrams of the heat balance when the system reaches a steady state after passing (b) forward and (c) reverse current.

    图 2  低温下环氧树脂的热导率

    Fig. 2.  Thermal conductivity κ of the epoxy resin.

    图 3  (a) 用于计算树脂厚度对温差影响的数模, 参数配置与正文中一致(图中温差ΔT为TC1点与TC2点的温度差, h为树脂层的厚度); (b)树脂层厚度对瞬态温差的影响

    Fig. 3.  (a) Mathematical model for calculating the influence of resin thickness on temperature difference. The parameter configuration of the model is consistent with the body. ΔT is the temperature difference between TC1 and TC2, and h is the thickness of the resin layer. (b) The influence of resin layer thickness on transient temperature difference

    图 4  (a) 用于瞬态法计算的COMSOL数学模型; 通电(b) 0 和(c) 180 s时, 样品表面的温度分布; (d) 探针1, 2之间的温差随时间变化的曲线图

    Fig. 4.  (a) COMSOL mathematical model for transient calculation. The temperature distribution on the surface of the sample at (b) 0 and (c) 180 s. (d) The curve of transient temperature difference between probe 1 and probe 2.

    图 5  (a) 300 K时不同热源参数UB时的总体方差L; (b) +100 mA电流和最优UB值(–58.6 mV)下瞬态温差测量值(meas.)与模拟值(cal.)随时间的变化

    Fig. 5.  (a) Plot of variance on the coefficient of the boundary heat source at 300 K; (b) the change curve of the transient temperature difference between measured value (meas.) and simulated value (cal.) with time under the condition of +100 mA current and optimum UB (–58.6 mV).

    图 6  样品的(a) Seebeck系数α、(b)热导率κ、(c)电导率σ和(d) Thomson系数β在100—300 K随温度变化的趋势图

    Fig. 6.  (a) Seebeck coefficient, (b) thermal conductivity, (c) conductivity and (d) Thomson coefficient as a function of temperature for our sample under 100–300 K.

    图 7  (a) 300, (b) 260, (c) 220, (d) 180, (e) 140和(f) 100 K时, 对样品分别通入±100 mA和±50 mA电流后, 瞬态温差的测量结果和相应的拟合结果, 其中meas.为测量的数据曲线, cal.为拟合的数据曲线

    Fig. 7.  At (a) 300, (b) 260, (c) 220, (d) 180, (e) 140 and (f) 100 K, the measured transient temperature difference of the sample and its fitting results after ±100 mA and ±50 mA current are applied to the sample respectively. Where meas. is the measured curve, cal. is the fitted curve.

    图 8  通入±100 mA和±50 mA电流时, 采用瞬态法(a)拟合的最优界面热源参数UB; (b)测量的Peltier系数Π与相对误差P, 对比了稳态法±100 mA 测量的Peltier系数Π和Peltier系数线性理论值; (c) 界面电阻RB与温度T的关系曲线; (d) 通入±100 mA电流时, B端面Joule热与发热量的比值QJQB与温度T的关系曲线

    Fig. 8.  (a) Optimal interfacial heat source coefficient UB fitted by the transient method when ±100 mA and ±50 mA currents are applied; (b) the measured Peltier coefficients Π and their errors P. The measured Peltier coefficients Π, and the linear theoretical values of Peltier coefficients for the steady-state method ±100 mA are also compared; (c) the relationship between the interface resistance RB and the temperature T; (d) plot of the ratio of Joule heat to heat generation QJ/QB at B-end versus temperature when ±100 mA current is applied.

    图 9  五次重复测量的稳态温差和原始测量结果, 其中meas.0是原始测量结果

    Fig. 9.  Five times repeated measurements of the steady state temperature difference and the original measurements, which meas.0 is the original measurements.

    表 1  Peltier系数测量方法及其结果

    Table 1.  Measurement methods of the Peltier coefficient and their results.

    测量方法研究对象测量温度T/KPeltier系数
    测量值Π/mV线性理论值αT/mV相对误差P
    直接法外部热源补偿Cu/Bi[28]29116.1160.6%
    测量热流碲化铋热电模组[29]300124.0±0.7126–1.6%
    镍铝/镍铬[23]31027.2±1.312.6115.8%
    锁相热成像(LIT)N型多晶硅[24]298–72±10–43[25]67.4%
    P型多晶硅[24]298346±10360[30]–3.9%
    含镍有机薄膜[26]298–21.6–23.5–8.1%
    间接法测量电阻金属薄膜界面[31]29527.0
    测量电压(Bi, Sb)2Te3[27]3003155–43.6%
    下载: 导出CSV

    表 2  样品在不同温度下的Joule热与Fourier热(测量电流I = 100 mA)

    Table 2.  Sample’s Joule and Fourier heat at various temperatures with the measured current I = 100 mA.

    测量温度
    T/K
    Joule热
    QJ/(10–4 W)
    Fourier热
    QF/(10–3 W)
    QJ/QF
    /%
    1000.3571.332.69
    1400.5102.242.28
    1800.7563.272.31
    2201.074.592.34
    2601.486.002.47
    3001.887.332.56
    下载: 导出CSV

    表 3  不同温度、不同电流下测得的稳态温差与相应的稳态法Peltier系数和界面电阻

    Table 3.  Measured steady-state temperature difference and its Peltier coefficient and interface resistance of steady-state method at different temperatures and currents.

    测试温度T/K不同测试电流I 时的稳态温差∆Tstd./KPeltier系数Πstd./mV界面电阻RB/mΩ
    –100 mA+100 mA–50 mA+50 mA±100 mA±50 mA±100 mA±50 mA
    1000.47–0.340.21–0.19–11.38–11.2316.4913.78
    1400.92–0.650.42–0.36–19.10–19.0228.7127.24
    1801.56–1.140.73–0.62–28.15–28.1038.8339.78
    2202.39–1.771.11–0.96–39.85–39.6649.8951.37
    2603.35–2.551.57–1.38–52.69–52.6358.7956.42
    3004.17–3.291.95–1.77–65.29–65.2261.0346.41
    下载: 导出CSV

    表 4  不同温度、不同电流下测得的热源参数与相应的瞬态法Peltier系数和界面电阻

    Table 4.  Measured heat source parameters and its Peltier coefficient and interface resistance of transient method at different temperatures and currents.

    测试温度T/K不同测试电流I 时的热源参数UB/mVPeltier系数Πtrans./mV界面电阻RB/mΩ
    –100 mA+100 mA–50 mA+50 mA±100 mA±50 mA±100 mA±50 mA
    100–12.41–9.29–11.36–10.06–10.85–10.7115.6013.00
    140–20.32–15.09–18.87–16.39–17.71–17.6326.1524.80
    180–30.82–23.45–28.98–25.19–27.14–27.0936.8537.90
    220–42.99–33.52–40.5–35.63–38.26–38.0747.3548.70
    260–59.00–47.11–55.85–50.1–53.06–52.9859.4557.50
    300–70.06–58.61–66.49–62.18–64.34–64.3457.2543.10
    下载: 导出CSV

    表 5  稳态法Peltier系数的重复测量

    Table 5.  Repeated measurements of the Peltier coefficients measured by the steady-state method.

    组别稳态法Peltier系数Πstd./mV
    100 K140 K180 K220 K260 K300 K
    meas.0 (50 mA)–11.38–19.10–28.15–39.85–52.69–65.29
    meas.0 (100 mA)–11.23–19.02–28.10–39.66–52.63–65.22
    meas.1 (50 mA)–11.06–17.49–27.89–39.21–55.62–62.88
    meas.1 (100 mA)–11.15–18.18–26.51–37.07–56.12–65.64
    meas.2 (50 mA)–11.09–17.96–26.98–37.49–53.61–64.66
    meas.2 (100 mA)–10.69–17.44–28.07–38.63–54.89–65.96
    meas.3 (50 mA)–10.88–18.11–27.60–38.35–54.90–65.92
    meas.3 (100 mA)–10.93–17.83–27.88–38.96–52.15–66.28
    meas.4 (50 mA)–10.93–18.55–27.27–38.75–54.13–65.75
    meas.4 (100 mA)–10.99–18.07–28.45–38.31–54.30–63.10
    meas.5 (50 mA)–11.00–18.17–26.65–37.45–54.26–66.52
    meas.5 (100 mA)–11.00–18.28–27.99–39.46–55.16–62.71
    平均值/mV–10.96–18.00–27.53–38.42–54.41–65.01
    标准差/mV0.120.310.590.731.041.36
    平均相对误差/%1.232.202.001.951.801.69
    下载: 导出CSV
  • [1]

    Mao J, Liu Z H, Zhou J W, Zhu H T, Zhang Q, Chen G, Ren Z F 2018 Adv. Phys. 67 69Google Scholar

    [2]

    Ambrosi R M, Kramer D P, Watkinson E J, Mesalam R, Barco A 2021 Nucl. Technol. 207 773Google Scholar

    [3]

    Siddique A R M, Mahmud S, Heyst B V 2017 Renewable Sustainable Energy Rev. 73 730Google Scholar

    [4]

    Meng F, Chen L, Xie Z, Ge Y 2017 Therm. Sci. Eng. Prog. 4 106Google Scholar

    [5]

    Cao Q, Luan W, Wang T 2018 Appl. Therm. Eng. 130 1472Google Scholar

    [6]

    Hao M R, Yang Y, Zhang S, Shen W Z, Schneider H, Liu H C 2014 Laser Photonics Rev. 8 297Google Scholar

    [7]

    Jaziri N, Boughamoura A, Muller J, Mezghani B, Tounsi F, Ismail M 2020 Energy Rep. 6 264Google Scholar

    [8]

    Saber H H, AlShehri S A, Maref W 2019 Energy Convers. Manage. 191 174Google Scholar

    [9]

    Choi H S, Yun S, Whang K I 2007 Appl. Therm. Eng. 27 2841Google Scholar

    [10]

    Thomson W 1857 Earth Environ. Sci. Trans. R. Soc. Edinburgh 21 123Google Scholar

    [11]

    Callen H B 1948 Phys. Rev. 73 1349Google Scholar

    [12]

    Onsager L 1931 Phys. Rev. 38 2265Google Scholar

    [13]

    Ioffe A F 1957 Semiconductor Thermoelements and Thermoelectric Cooling (London: Infosearch Limited) pp18–21

    [14]

    Heikes R R, Ure R W 1961 Thermoelectricity: Science and Engineering (New York-London: Interscience Publishers)

    [15]

    Harman T C, Honig J M 1967 Thermoelectric and Thermomagnetic Effects and Applications (New York: MCGRAW-HILL)

    [16]

    Rowe D M 2018 Thermoelectrics Handbook: Macro to Nano (Boca Raton, Florida: CRC Press)

    [17]

    Lee S, von Allmen P 2006 Appl. Phys. Lett. 88 022107Google Scholar

    [18]

    杨振, 朱璨, 柯亚娇, 何雄, 罗丰, 王剑, 王嘉赋, 孙志刚 2021 物理学报 70 108402Google Scholar

    Yang Z, Zhu C, Ke Y J, He X, Luo F, Jianl W, Wang J F, Sun Z G 2021 Acta Phys. Sin. 70 108402Google Scholar

    [19]

    Zebarjadi M, Esfarjani K, Shakouri A 2007 Appl. Phys. Lett. 91 122104Google Scholar

    [20]

    Sanchez D, Lopez R 2013 Phys. Rev. Lett. 110 026804Google Scholar

    [21]

    Kulik I O 1994 J. Phys. Condens. Matter 6 9737Google Scholar

    [22]

    Bogachek E N, Scherbakov A G, Landman U 1998 Solid State Commun. 108 851Google Scholar

    [23]

    Garrido J, Casanovas A 2014 J. Appl. Phys. 115 123517Google Scholar

    [24]

    Straube H, Wagner J M, Breitenstein O 2009 Appl. Phys. Lett. 95 052107Google Scholar

    [25]

    Ma J, Sinha S 2012 J. Appl. Phys. 112 073719Google Scholar

    [26]

    Jin W L, Liu L Y, Yang T, Shen H G, Zhu J, Xu W, Li S Z, Li Q, Chi L F, Di C A, Zhu D D 2018 Nat. Commun. 9 3586Google Scholar

    [27]

    Koyano M, Akashi N 2009 J. Electron. Mater. 38 1037Google Scholar

    [28]

    Caswell A E 1911 Phys. Rev. (Series I) 33 379Google Scholar

    [29]

    Garrido J, Casanovas A 2012 J. Electron. Mater. 41 1990Google Scholar

    [30]

    Weber L, Gmelin E 1991 Appl. Phys. A 53 136Google Scholar

    [31]

    Fukushima A, Kubota H, Yamamoto A, Suzuki Y, Yuasa S 2006 J. Appl. Phys. 99 08H706Google Scholar

    [32]

    Breitenstein O, Warta W, Langenkamp M 2010 Lock-in Thermography: Basics and Use for Evaluating Electronic Devices and Materials (Vol. 10) (Berlin: Springer)

    [33]

    Verma R, Behera U, Kasthurirengan S, Shivaprakash N, Udgata S, Gangradey R 2017 IOP Conf. Ser.: Mater. Sci. Eng. 171 012098Google Scholar

    [34]

    Thomson W 1857 Proc. R. Soc. Edinb. Sect. A 3 91Google Scholar

    [35]

    Bhatt R, Bohra A K, Bhattacharya S, Basu R, Ahmad S, Singh A, Muthe K P, Gadkari S C 2017 AIP Conf Proc. 1832 060021Google Scholar

    [36]

    Borup K A, de Boor J, Wang H, Drymiotis F, Gascoin F, Shi X, Chen L D, Fedorov M I, Muller E, Iversena B B, Snyder G J 2015 Energy Environ. Sci. 8 423Google Scholar

    [37]

    Zhang C, de la Mata M, Li Z, et al. 2016 Nano Energy 30 630Google Scholar

    [38]

    Yang Z, He B, He X, Luo F, Wang J, Zhu C, Liu H, Sun Z 2022 Energy Convers. Manage. 267 115871Google Scholar

    [39]

    Arisaka T, Otsuka M, Hasegawa Y 2019 Rev. Sci. Instrum. 90 046104Google Scholar

  • [1] 琚安安, 郭红霞, 张凤祁, 刘晔, 钟向丽, 欧阳晓平, 丁李利, 卢超, 张鸿, 冯亚辉. N阱电阻的单粒子效应仿真. 物理学报, 2023, 72(2): 026102. doi: 10.7498/aps.72.20220125
    [2] 杨振, 朱璨, 柯亚娇, 何雄, 罗丰, 王剑, 王嘉赋, 孙志刚. Peltier效应: 从线性到非线性. 物理学报, 2021, 70(10): 108402. doi: 10.7498/aps.70.20201826
    [3] 聂伟, 阚瑞峰, 许振宇, 姚路, 夏晖晖, 彭于权, 张步强, 何亚柏. 基于TDLAS技术的水汽低温吸收光谱参数测量. 物理学报, 2017, 66(20): 204204. doi: 10.7498/aps.66.204204
    [4] 曹江伟, 王锐, 王颖, 白建民, 魏福林. 隧穿磁电阻效应磁场传感器中低频噪声的测量与研究. 物理学报, 2016, 65(5): 057501. doi: 10.7498/aps.65.057501
    [5] 何永周. 大块永磁铁低温剩磁测量技术研究. 物理学报, 2013, 62(21): 217502. doi: 10.7498/aps.62.217502
    [6] 吴美玲, 石大为, 阚芝兰, 王瑞龙, 丁益民, 肖海波, 杨昌平. La0.5Ca0.5MnO3内禀与界面电脉冲诱导电阻转变效应的比较. 物理学报, 2013, 62(20): 207302. doi: 10.7498/aps.62.207302
    [7] 王爱迪, 刘紫玉, 张培健, 孟洋, 李栋, 赵宏武. Au/SrTiO3/Au界面电阻翻转效应的低频噪声分析. 物理学报, 2013, 62(19): 197201. doi: 10.7498/aps.62.197201
    [8] 许涌, 蔡建旺. 几种元素的界面插层对Ta/NiFe/Ta的各向异性磁电阻效应的影响. 物理学报, 2011, 60(11): 117308. doi: 10.7498/aps.60.117308
    [9] 王立锋, 滕爱萍, 叶文华, 范征锋, 陶烨晟, 林传栋, 李英骏. 超声速流体Kelvin-Helmholtz不稳定性速度梯度效应研究. 物理学报, 2009, 58(12): 8426-8431. doi: 10.7498/aps.58.8426
    [10] 陈顺生, 杨昌平, 邓 恒, 孙志刚. Nd0.7Sr0.3MnO3中显微结构相关电致电阻效应. 物理学报, 2008, 57(6): 3798-3802. doi: 10.7498/aps.57.3798
    [11] 都有为, 王志明, 倪刚, 邢定钰, 徐庆宇. 高度取向石墨的巨磁电阻效应. 物理学报, 2004, 53(4): 1191-1194. doi: 10.7498/aps.53.1191
    [12] 席力, 葛世慧, 杨啸林, 李成贤. 多晶La0.7Sr0.3MnO3的低温输运性质和磁电阻效应. 物理学报, 2004, 53(1): 260-264. doi: 10.7498/aps.53.260
    [13] 梁冰青, 王荫君, 陈 熹. Ag2+δTe薄膜的低温纵向磁电阻效应. 物理学报, 1999, 48(13): 35-39. doi: 10.7498/aps.48.35
    [14] 喻道奇, 潘国强, 赵勇, 孙式方, 陈祖耀, 张其瑞. 颗粒超导体Ba2YCu3O7-δ的低温电阻特征. 物理学报, 1988, 37(6): 1048-1052. doi: 10.7498/aps.37.1048
    [15] 沈保根, 詹文山, 赵见高, 陈庆华, 陈金昌. 非晶态FeZrB合金的电阻率与温度的关系. 物理学报, 1988, 37(5): 809-813. doi: 10.7498/aps.37.809
    [16] 陈金昌, 詹文山, 沈保根, 赵见高, 乐观. 非晶态(Fe1-xWx)84.5B15.5合金的低温电阻率反常. 物理学报, 1986, 35(1): 25-32. doi: 10.7498/aps.35.25
    [17] 詹文山, 沈保根, 赵见高, 陈金昌. Fe基非晶态合金的低温电阻研究. 物理学报, 1986, 35(5): 583-589. doi: 10.7498/aps.35.583
    [18] 曹忠胜, 刘福绥, 赵忠贤. 金属玻璃低温电阻的准粒子无序构形激发模型. 物理学报, 1985, 34(5): 694-699. doi: 10.7498/aps.34.694
    [19] 雷啸霖. A-15化合物低温电阻率反常行为的探讨. 物理学报, 1981, 30(5): 686-689. doi: 10.7498/aps.30.686
    [20] 冯锡淇, 骆宾章, 唐福娣, 张雁行, 洪福根, 谭浩然. 用范德保法测量碳化硅的电阻率和霍耳效应. 物理学报, 1966, 22(9): 967-975. doi: 10.7498/aps.22.967
计量
  • 文章访问数:  4320
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-24
  • 修回日期:  2023-01-05
  • 上网日期:  2023-01-18
  • 刊出日期:  2023-03-20

/

返回文章
返回