搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Mie散射在线测量真空弧放电液滴方法探索

董攀 田昌 李杰 王韬 于海涛 苏明旭 何佳龙 石金水

引用本文:
Citation:

基于Mie散射在线测量真空弧放电液滴方法探索

董攀, 田昌, 李杰, 王韬, 于海涛, 苏明旭, 何佳龙, 石金水

Mie scattering based on-line measurement of droplet from vacuum arc

Dong Pan, Tian Chang, Li Jie, Wang Tao, Yu Hai-Tao, Su Ming-Xu, He Jia-Long, Shi Jin-Shui
PDF
HTML
导出引用
  • 金属液滴是真空弧放电的伴随产物, 它对理解阴极斑放电性质具有重要作用, 而且对工程应用也有重要影响. 金属液滴的测量一般采用离线的收集法, 不能获得全部空间和单次放电信息. 本文提出了一种通过Mie散射在线测量真空弧放电液滴的新方法, 并对它的可行性进行了探索研究. 首先通过仿真程序计算了钛金属液滴的散射光性质, 结果表明小直径颗粒散射光在全部角度上均有分布, 随着直径增加, 散射光越来越集中在前向, 这为不同直径液滴信号的反演提供了可能. 接着对探测器进行了分环设计, 当探测器分为35环时, 光能系数矩阵容易求解, 同时保证测量系统具有良好的分辨率. 初步实验结果表明, 钛金属液滴直径主要分布在9.8 μm附近, 验证了Mie散射测量真空弧液滴方法的有效性. 但液滴直径分布和离线测量有较大差异, 缺少小直径液滴信息, 主要原因来源于测量系统信噪比不够, 不能有效地获得小直径液滴散射信号, 还需要进一步优化.
    Metal droplet is produced accompanied with vacuum arc discharge, which is important to the research of cathode spot and the application of vacuum arc. The droplet comes from the cathode spot crater and can reflect the physical process of the cathode spot. However, it will destroy the uniformity of surface deposition in engineering and should be avoided as much as possible. The measurement of metal droplet usually adopts off-line collector, which cannot obtain the signal of the whole space and singe arc. In order to on-line measure the droplet, a new method by the Mie scattering is developed in this work, and its feasibility is investigated. The characteristic of the scattering light of titanium droplet is computed by the simulation code. The results indicate that the scattering light beams of the small droplet are distributed at all angles. With the increase of the diameter, the scattered light beams are more and more concentrated in the forward direction, which allows the inversion of the signals of the droplets with different diameters. Then the detector is designed with different annuluses. When the detector is divided into 35 annuluses, the light energy coefficient matrix is easy to solve and the measurement system has a good resolution. The experimental setup is built and the preliminary experiment is carried out. The results indicate that the diameters of titanium droplets are mainly around 9.8 μm, which verifies the effectiveness of the Mie scattering method of measuring vacuum arc droplets. However, the small droplet information is not detected, so the droplet diameter distribution is quite different from the off-line measurement. The reason is that the signal-to-noise ratio of the measurement system is poor, thereby leading the scattered signals of the small droplet to fail to be obtained effectively. The experimental setup need to be further optimized.
      通信作者: 李杰, nlijie@sina.com
    • 基金项目: 国家自然科学基金(批准号: 11735012, 11975217)资助的课题.
      Corresponding author: Li Jie, nlijie@sina.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11735012, 11975217).
    [1]

    Brown I G 1994 Rev. Sci. Instrum. 65 3061Google Scholar

    [2]

    Anders A 2008 Cathodic Arcs (New York: Springer Science+ Business Media) p7

    [3]

    Ge G W, Cheng X, Liao M F, Duan X Y, Zou J Y 2018 IEEE Trans. Plasma Sci. 46 1003Google Scholar

    [4]

    Boudot C, Kuhn M, Kauffeldt K M, Schein J 2017 Mater. Sci. Eng., C 74 508Google Scholar

    [5]

    Liu F X, Long J D, Zheng L, Dong P, Li C, Chen W 2018 Plasma Sources Sci. Technol. 27 025001Google Scholar

    [6]

    李杰, 郑乐, 董攀, 龙继东, 王韬, 刘飞翔 2022 物理学报 71 042901Google Scholar

    Li J, Zheng L, Dong P, Long J D, Wang T, Liu F X 2022 Acta Phys. Sin. 71 042901Google Scholar

    [7]

    G. A. 米夏兹著 (李国政译) 2007 真空放电物理和高功率脉冲技术 (北京: 国防工业出版社) 第202—204页

    Mesyats G A (translated by Li G Z) 2007 Vacuum discharge physics and high power pulse technology (Beijing: National Defense Industry Press) pp202–204 (in Chinese)

    [8]

    Kaufmann H T C, Cunha M D, Benilov M S, Hartmann W, Wenzel N 2017 J. Appl. Phys. 122 163303Google Scholar

    [9]

    董攀, 李杰, 郑乐, 刘飞翔, 龙继东, 石金水 2018 强激光与粒子束 30 014001

    Dong P, Li J, Zheng L, Liu F X, Long J D, Shi J S 2018 High Power Laser Part. Beam 30 014001

    [10]

    吴先映, 廖斌, 张旭, 李强, 彭建华, 张荟星, 张孝吉 2014 北京师范大学学报(自然科学版) 50 132

    Wu X Y, Liao B, Zhang X, Li Q, Peng J H, Zhang H X, Zhang X J 2014 J. Beijing Normal Univ. (Nat. Sci. Ed.) 50 132

    [11]

    Lee W Y, Jang Y J, Tokoroyama T, Murashima M, Umehara N 2020 Diamond Relat. Mater. 105 107789Google Scholar

    [12]

    Anders S, Anders A, Yu K M, Yao X Y, Brown I G 1993 IEEE Trans. Plasma Sci. 21 440Google Scholar

    [13]

    Daalder J E 1976 J. Phys. D:Appl. Phys. 9 2379Google Scholar

    [14]

    Proskurovsky D I, Popov S A, Kozyrev A V, Pryadko E L, Batrakov A V, Shishkov A N 2007 IEEE Trans. Plasma Sci. 35 980Google Scholar

    [15]

    Siemroth P, Laux M, Pursch H, Sachtleben J, Balden M, Rohde V, Neu R 2018 28 th International Symposium on Discharges and Electrical Insulation in Vacuum Greifswald, Germany, September 23–28, 2018 p325

    [16]

    Mesyats G A, Uimanov I V 2015 IEEE Trans. Plasma Sci. 43 2241Google Scholar

    [17]

    Zhang X, Wang L J, Ma J W, Wang Y, Jia S L 2019 J. Phys. D:Appl. Phys. 52 035204Google Scholar

    [18]

    Wang L J, Zhang X, Li J G, Luo M, Jia S L 2021 J. Phys. D:Appl. Phys. 54 215202Google Scholar

    [19]

    Takamune M, Sasaki S, Kondo D, Naoi J, Kumakura M, Ashida M, Moriwaki Y 2022 Appl. Phys. Express 15 012007Google Scholar

    [20]

    Monfared S K, Buttler W T, Frayer D K, Grover M, LaLone B M, Stevens G D, Stone J B, Turley W D, Schauerat M M 2015 J. Appl. Phys. 117 223105Google Scholar

    [21]

    Hudgins D, Gambino N, Rollinger B, Abhari R 2016 J. Phys. D:Appl. Phys. 49 185205Google Scholar

    [22]

    陈哲敏, 胡朋兵, 孟庆强 2015 光散射学报 27 54

    Chen Z M, Hu P B, Meng Q Q 2015 The Journal of Light Scattering 27 54

    [23]

    Zhang H, Liang Y, Chen J G, Peng H T 2021 Opt. Lasers Eng. 144 106642Google Scholar

    [24]

    蔡小舒, 苏明旭, 沈建琪著 2010 颗粒粒度测量技术及应用 (北京: 化学工业出版社) 第32页

    Cai X S, Su M X, Shen J Q 2010 Particle size Measurement Technology and Application (Beijing: Chemical Industry Press) p32

    [25]

    Johnson P, Christy R 1974 Phys. Rev. B 9 5056Google Scholar

    [26]

    Hirofumi T, Koji S, Tateki S 1998 Thin Solid Films 316 73Google Scholar

  • 图 1  Mie散射原理示意图

    Fig. 1.  Schematic diagram of Mie scattering.

    图 2  不同直径Ti液滴散射光强分布矢极图 (a) 0.1 μm; (b) 0.5 μm; (c) 1.0 μm; (d) 2.0 μm; (e) 4.0 μm; (f) 8.0 μm

    Fig. 2.  Sagittal distribution of the scattered light intensity of Ti droplet: (a) 0.1 μm; (b) 0.5 μm; (c) 1.0 μm; (d) 2.0 μm; (e) 4.0 μm; (f) 8.0 μm.

    图 3  Ti液滴相对散射光强分布曲线图

    Fig. 3.  Distribution of the relative scattered light intensity of Ti droplet.

    图 4  Mie散射法测试液滴实验布局

    Fig. 4.  The measurement layout of droplet by Mie scattering.

    图 5  Ti液滴在探测器不同环上的光能分布

    Fig. 5.  Light energy distribution of Ti droplet on different annulus of detector.

    图 6  弧流为100 A (a) 无金属Ti液滴的背景信号; (b) 有金属Ti液滴的散射信号

    Fig. 6.  When arc current is 100 A: (a) Background signal without Ti droplet; (b) scattering signal with Ti droplet.

    图 7  (a) 散射光能分布; (b) Ti液滴直径分布

    Fig. 7.  (a) Scattering light energy distribution; (b) Ti droplet diameter distribution.

    表 1  CCD光环设计尺寸

    Table 1.  Design size of CCD annulus.

    环数内环/mm外环/mm环数内环/mm外环/mm环数内环/mm外环/mm
    10.1050.117130.3730.414251.3211.468
    20.1170.13140.4140.461261.4681.631
    30.130.144150.4610.512271.6311.812
    40.1440.161160.5120.569281.8122.014
    50.1610.178170.5690.632292.0142.238
    60.1780.198180.6320.702302.2382.486
    70.1980.22190.7020.78312.4862.763
    80.220.245200.780.867322.7633.07
    90.2450.272210.8670.963333.073.411
    100.2720.302220.9631.07343.4113.79
    110.3020.336231.071.189353.794.212
    120.3360.373241.1891.321
    下载: 导出CSV

    表 2  标准颗粒粒径测量结果对比表

    Table 2.  Comparision results of standard particle between measurement and nominal diameter.

    标称粒径/μm测量粒径/μm相对误差/%
    0.70.657
    2.62.693
    5.45.756
    9.48.885
    15.015.202
    下载: 导出CSV
  • [1]

    Brown I G 1994 Rev. Sci. Instrum. 65 3061Google Scholar

    [2]

    Anders A 2008 Cathodic Arcs (New York: Springer Science+ Business Media) p7

    [3]

    Ge G W, Cheng X, Liao M F, Duan X Y, Zou J Y 2018 IEEE Trans. Plasma Sci. 46 1003Google Scholar

    [4]

    Boudot C, Kuhn M, Kauffeldt K M, Schein J 2017 Mater. Sci. Eng., C 74 508Google Scholar

    [5]

    Liu F X, Long J D, Zheng L, Dong P, Li C, Chen W 2018 Plasma Sources Sci. Technol. 27 025001Google Scholar

    [6]

    李杰, 郑乐, 董攀, 龙继东, 王韬, 刘飞翔 2022 物理学报 71 042901Google Scholar

    Li J, Zheng L, Dong P, Long J D, Wang T, Liu F X 2022 Acta Phys. Sin. 71 042901Google Scholar

    [7]

    G. A. 米夏兹著 (李国政译) 2007 真空放电物理和高功率脉冲技术 (北京: 国防工业出版社) 第202—204页

    Mesyats G A (translated by Li G Z) 2007 Vacuum discharge physics and high power pulse technology (Beijing: National Defense Industry Press) pp202–204 (in Chinese)

    [8]

    Kaufmann H T C, Cunha M D, Benilov M S, Hartmann W, Wenzel N 2017 J. Appl. Phys. 122 163303Google Scholar

    [9]

    董攀, 李杰, 郑乐, 刘飞翔, 龙继东, 石金水 2018 强激光与粒子束 30 014001

    Dong P, Li J, Zheng L, Liu F X, Long J D, Shi J S 2018 High Power Laser Part. Beam 30 014001

    [10]

    吴先映, 廖斌, 张旭, 李强, 彭建华, 张荟星, 张孝吉 2014 北京师范大学学报(自然科学版) 50 132

    Wu X Y, Liao B, Zhang X, Li Q, Peng J H, Zhang H X, Zhang X J 2014 J. Beijing Normal Univ. (Nat. Sci. Ed.) 50 132

    [11]

    Lee W Y, Jang Y J, Tokoroyama T, Murashima M, Umehara N 2020 Diamond Relat. Mater. 105 107789Google Scholar

    [12]

    Anders S, Anders A, Yu K M, Yao X Y, Brown I G 1993 IEEE Trans. Plasma Sci. 21 440Google Scholar

    [13]

    Daalder J E 1976 J. Phys. D:Appl. Phys. 9 2379Google Scholar

    [14]

    Proskurovsky D I, Popov S A, Kozyrev A V, Pryadko E L, Batrakov A V, Shishkov A N 2007 IEEE Trans. Plasma Sci. 35 980Google Scholar

    [15]

    Siemroth P, Laux M, Pursch H, Sachtleben J, Balden M, Rohde V, Neu R 2018 28 th International Symposium on Discharges and Electrical Insulation in Vacuum Greifswald, Germany, September 23–28, 2018 p325

    [16]

    Mesyats G A, Uimanov I V 2015 IEEE Trans. Plasma Sci. 43 2241Google Scholar

    [17]

    Zhang X, Wang L J, Ma J W, Wang Y, Jia S L 2019 J. Phys. D:Appl. Phys. 52 035204Google Scholar

    [18]

    Wang L J, Zhang X, Li J G, Luo M, Jia S L 2021 J. Phys. D:Appl. Phys. 54 215202Google Scholar

    [19]

    Takamune M, Sasaki S, Kondo D, Naoi J, Kumakura M, Ashida M, Moriwaki Y 2022 Appl. Phys. Express 15 012007Google Scholar

    [20]

    Monfared S K, Buttler W T, Frayer D K, Grover M, LaLone B M, Stevens G D, Stone J B, Turley W D, Schauerat M M 2015 J. Appl. Phys. 117 223105Google Scholar

    [21]

    Hudgins D, Gambino N, Rollinger B, Abhari R 2016 J. Phys. D:Appl. Phys. 49 185205Google Scholar

    [22]

    陈哲敏, 胡朋兵, 孟庆强 2015 光散射学报 27 54

    Chen Z M, Hu P B, Meng Q Q 2015 The Journal of Light Scattering 27 54

    [23]

    Zhang H, Liang Y, Chen J G, Peng H T 2021 Opt. Lasers Eng. 144 106642Google Scholar

    [24]

    蔡小舒, 苏明旭, 沈建琪著 2010 颗粒粒度测量技术及应用 (北京: 化学工业出版社) 第32页

    Cai X S, Su M X, Shen J Q 2010 Particle size Measurement Technology and Application (Beijing: Chemical Industry Press) p32

    [25]

    Johnson P, Christy R 1974 Phys. Rev. B 9 5056Google Scholar

    [26]

    Hirofumi T, Koji S, Tateki S 1998 Thin Solid Films 316 73Google Scholar

  • [1] 刘贺, 杨亚晶, 唐玉凝, 魏衍举. 声致液滴失稳动力学研究. 物理学报, 2024, 73(20): 204204. doi: 10.7498/aps.73.20240965
    [2] 彭家略, 郭浩, 尤天涯, 纪献兵, 徐进良. 液滴碰撞Janus颗粒球表面的行为特征. 物理学报, 2021, 70(4): 044701. doi: 10.7498/aps.70.20201358
    [3] 蒋伟, 江浩雨, 易晗, 樊瑞睿, 崔增琪, 孙康, 张国辉, 唐靖宇, 孙志嘉, 宁常军, 高可庆, 安琪, 白怀勇, 鲍杰, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈永浩, 陈裕凯, 陈朕, 封常青, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄翰雄, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 栾广源, 穆奇丽, 齐斌斌, 任杰, 任智洲, 阮锡超, 宋朝晖, 宋英鹏, 孙虹, 孙晓阳, 谭志新, 唐洪庆, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 王朝辉, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 于莉, 余滔, 于永积, 张林浩, 张奇玮, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, CSNS Back-n合作组 . 基于反角白光中子源次级质子的探测器标定. 物理学报, 2021, 70(8): 082901. doi: 10.7498/aps.70.20201823
    [4] 唐鹏博, 王关晴, 王路, 石中玉, 李源, 徐江荣. 单液滴正碰球面动态行为特性实验研究. 物理学报, 2020, 69(2): 024702. doi: 10.7498/aps.69.20191141
    [5] 魏衍举, 张洁, 邓胜才, 张亚杰, 杨亚晶, 刘圣华, 陈昊. 超声悬浮甲醇液滴的热诱导雾化现象. 物理学报, 2020, 69(18): 184702. doi: 10.7498/aps.69.20200562
    [6] 范增华, 荣伟彬, 刘紫潇, 高军, 田业冰. 单指式微执行器端面冷凝液滴的迁移特性. 物理学报, 2020, 69(18): 186801. doi: 10.7498/aps.69.20200463
    [7] 康健彬, 李倩, 李沫. 氮化物子带跃迁探测器材料结构对器件效率的影响. 物理学报, 2019, 68(22): 228501. doi: 10.7498/aps.68.20190722
    [8] 杨亚晶, 梅晨曦, 章旭东, 魏衍举, 刘圣华. 液滴撞击液膜的穿越模式及运动特性. 物理学报, 2019, 68(15): 156101. doi: 10.7498/aps.68.20190604
    [9] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [10] 胡海帆, 王颖, 陈杰, 赵士斌. 全三维电离粒子有源像素探测器优化仿真. 物理学报, 2014, 63(10): 100702. doi: 10.7498/aps.63.100702
    [11] 张文彬, 廖龙光, 于同旭, 纪爱玲. 溶液液滴蒸发变干的环状沉积. 物理学报, 2013, 62(19): 196102. doi: 10.7498/aps.62.196102
    [12] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [13] 张明焜, 陈硕, 尚智. 带凹槽的微通道中液滴运动数值模拟. 物理学报, 2012, 61(3): 034701. doi: 10.7498/aps.61.034701
    [14] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [15] 王光强, 王建国, 童长江, 李小泽, 王雪锋. 高功率太赫兹脉冲半导体探测器的分析与设计. 物理学报, 2011, 60(3): 030702. doi: 10.7498/aps.60.030702
    [16] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [17] 石自媛, 胡国辉, 周哲玮. 润湿性梯度驱动液滴运动的格子Boltzmann模拟. 物理学报, 2010, 59(4): 2595-2600. doi: 10.7498/aps.59.2595
    [18] 郭加宏, 戴世强, 代钦. 液滴冲击液膜过程实验研究. 物理学报, 2010, 59(4): 2601-2609. doi: 10.7498/aps.59.2601
    [19] 侯立飞, 李芳, 袁永腾, 杨国洪, 刘慎业. 化学气相沉积金刚石探测器测量软X射线能谱. 物理学报, 2010, 59(2): 1137-1142. doi: 10.7498/aps.59.1137
    [20] 刘晓东, 李曙光, 侯蓝田, 王慧田. 含金属散射体的中红外无序介质的光子定域化理论研究. 物理学报, 2002, 51(9): 2123-2127. doi: 10.7498/aps.51.2123
计量
  • 文章访问数:  3518
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-18
  • 修回日期:  2023-02-06
  • 上网日期:  2023-02-28
  • 刊出日期:  2023-04-20

/

返回文章
返回