搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重离子碰撞中的矢量介子自旋排列

盛欣力 梁作堂 王群

引用本文:
Citation:

重离子碰撞中的矢量介子自旋排列

盛欣力, 梁作堂, 王群

Global spin alignment of vector mesons in heavy ion collisions

Sheng Xin-Li, Liang Zuo-Tang, Wang Qun
PDF
HTML
导出引用
  • 在非对心相对论重离子碰撞中, 参与反应的系统具有巨大的轨道角动量, 从而使产生的夸克胶子等离子体具有极强涡旋场, 并通过自旋-轨道相互作用导致部分子的自旋极化, 经过强子化导致重子的自旋极化以及矢量介子的自旋排列等可观测效应. 矢量介子的自旋排列是指其自旋密度矩阵的00元素$\rho_{00}$偏离 1/3. 在矢量介子衰变到两个赝标介子的过程中, 衰变产物的极角分布只与$\rho_{00}$有关, 以此可以对自旋排列进行测量. 理论研究表明, 重离子碰撞过程中, 重子的自旋极化反映了夸克自旋极化的时空平均效应, 而矢量介子自旋排列则反映了夸克反夸克自旋极化的局域相空间关联. 本文回顾了相对论重离子碰撞中矢量介子自旋排列的相关理论工作. 重点以非相对论夸克融合模型为例, 明确地计入夸克极化的相空间依赖性, 展示了矢量介子自旋排列与夸克反夸克自旋极化特别是它们之间相空间关联的关系. 本文还讨论了涡旋、电磁场、有效ϕ介子场以及它们的局域涨落对ϕ介子自旋排列的贡献, 结果显示强作用场的时空关联效应是导致ϕ介子自旋排列的主要因素. 矢量介子自旋排列为探索强相互作用物质和强相互作用场的性质提供了新途径.
    In non-central relativistic heavy-ion collisions, the large initial orbital angular momentum results in strong vorticity fields in the quark-gluon plasma, which polarize partons through the spin-orbit coupling. The global polarization of quark matter will be converted to the global polarization of baryons and the global spin alignment of vector mesons. The spin alignment refers to the $\rho_{00}$ element of the spin density matrix for vector mesons. When a vector meson decays to two pseudoscalar mesons, the polar angle distribution for the decay product depends on $\rho_{00}$, through which the spin alignment can be measured. Theoretical studies show that the global spin polarization of baryons reflects the space-time average of the quark polarization, while the spin alignment of vector mesons reflects the local phase space correlation between the polarization of quark and antiquark. In this article, we review recent theoretical works about the spin alignment of vector mesons. We consider a non-relativistic quark coalescence model in spin and phase space. Within this model, the spin alignment of the vector meson can be described through the phase space correlation of quark's and antiquark's polarization. The contributions to the spin alignment of ϕ mesons from vorticity fields, electromagnetic fields, and effective ϕ meson fields are discussed. The spin alignment of vector mesons opens a new window for the properties of strong interaction fields in heavy-ion collisions.
      通信作者: 盛欣力, sheng@fi.infn.it
    • 基金项目: 国家自然科学基金(批准号: 12135011, 11890713)资助的课题
      Corresponding author: Sheng Xin-Li, sheng@fi.infn.it
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12135011, 11890713)
    [1]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301Google Scholar

    [2]

    Becattini F, Piccinini F, Rizzo J 2008 Phys. Rev. C 77 024906Google Scholar

    [3]

    Betz B, Gyulassy M, Torrieri G 2007 Phys. Rev. C 76 044901

    [4]

    Gao J H, Chen S W, Deng W T, Liang Z T, Wang Q, Wang X N 2008 Phys. Rev. C 77 044902Google Scholar

    [5]

    Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904Google Scholar

    [6]

    Wang Q 2017 Nucl. Phys. A 967 225Google Scholar

    [7]

    Gao J H, Liang Z T, Wang Q, Wang X N 2021 Lect. Notes Phys. 987 195

    [8]

    Huang X G, Liao J, Wang Q, Xia X L 2021 Lect. Notes Phys. 987 281

    [9]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Technol. 31 90Google Scholar

    [10]

    高建华, 黄旭光, 梁作堂, 王群, 王新年 2023 物理学报 72 072501

    Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta. Phys. Sin. 72 072501

    [11]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [12]

    Yang Y G, Fang R H, Wang Q, Wang X N 2018 Phys. Rev. C 97 034917Google Scholar

    [13]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Nature 548 62Google Scholar

    [14]

    Adam J, Adamczyk L, Adams J R, et al. 2018 Phys. Rev. C 98 014910Google Scholar

    [15]

    Adam J, Adamczyk L, Adams J R, et al. 2021 Phys. Rev. Lett. 126 162301Google Scholar

    [16]

    Abou Yassine R, Adamczewski-Musch J, Asal C, et al. 2022 Phys. Lett. B 835 137506Google Scholar

    [17]

    Acharya S, Adamova D, Adler A, et al. 2020 Phys. Rev. Lett. 125 012301Google Scholar

    [18]

    Abdallah M S, Aboona B E, Adam J, et al. 2022 Nature 614 355

    [19]

    Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005Google Scholar

    [20]

    Sheng X L, Wang Q, Wang X N 2020 Phys. Rev. D 102 056013Google Scholar

    [21]

    Xia X L, Li H, Huang X G, Huang H Z 2021 Phys. Lett. B 817 136325Google Scholar

    [22]

    Gao J H 2021 Phys. Rev. D 104 076016Google Scholar

    [23]

    Mueller B, Yang D L 2022 Phys. Rev. D 105 1

    [24]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 e-Print: 2205.15689

    [25]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 e-Print: 2206.05868

    [26]

    Li F, Liu Y F S 2022 e-Print: 2206.11890

    [27]

    Wanger D, Weickgenannt N, Speranza E 2022 e-Print: 2207.01111

    [28]

    孙旭, 周晨升, 陈金辉, 陈振宇, 马余刚, 唐爱洪, 徐庆华 2023 物理学报 72 072401

    Sun X, Zhou C S, Chen J H, Chen Z Y, Ma Y G, Tang A H, Xu Q H 2023 Acta. Phys. Sin. 72 072401

    [29]

    寿齐烨, 赵杰, 徐浩洁, 李威, 王钢, 唐爱洪, 王福强 2023 物理学报 Accepted

    Shou Q Y, Zhao J, Xu H J, Li W, Wang G, Tang A H, Wang F Q 2023 Acta. Phys. Sin. Accepted

    [30]

    侯德富, 黄梅, 马国亮 2023 物理学报 Accepted

    Hou D F, Huang M, Ma G L 2023 Acta. Phys. Sin. Accepted

    [31]

    高建华, 盛欣力, 王群, 庄鹏飞 2023 物理学报 Accepted

    Gao J H, Sheng X L, Wang Q, Zhuang P F 2023 Acta. Phys. Sin. Accepted

    [32]

    黄旭光, 浦实 2023 物理学报 72 071202

    Huang X G, Pu S 2023 Acta. Phys. Sin. 72 071202

    [33]

    Bacchetta A, Mulders P J 2000 Phys. Rev. D 62 114004Google Scholar

    [34]

    Faccioli P, Lourenco C, Seixas J, Wohri H K 2010 Eur. Phys. J. C 69 657Google Scholar

    [35]

    Li Z, Zha W, Tang Z 2022 Phys. Rev. C 106 064908Google Scholar

  • [1]

    Liang Z T, Wang X N 2005 Phys. Rev. Lett. 94 102301Google Scholar

    [2]

    Becattini F, Piccinini F, Rizzo J 2008 Phys. Rev. C 77 024906Google Scholar

    [3]

    Betz B, Gyulassy M, Torrieri G 2007 Phys. Rev. C 76 044901

    [4]

    Gao J H, Chen S W, Deng W T, Liang Z T, Wang Q, Wang X N 2008 Phys. Rev. C 77 044902Google Scholar

    [5]

    Zhang J J, Fang R H, Wang Q, Wang X N 2019 Phys. Rev. C 100 064904Google Scholar

    [6]

    Wang Q 2017 Nucl. Phys. A 967 225Google Scholar

    [7]

    Gao J H, Liang Z T, Wang Q, Wang X N 2021 Lect. Notes Phys. 987 195

    [8]

    Huang X G, Liao J, Wang Q, Xia X L 2021 Lect. Notes Phys. 987 281

    [9]

    Gao J H, Ma G L, Pu S, Wang Q 2020 Nucl. Sci. Technol. 31 90Google Scholar

    [10]

    高建华, 黄旭光, 梁作堂, 王群, 王新年 2023 物理学报 72 072501

    Gao J H, Huang X G, Liang Z T, Wang Q, Wang X N 2023 Acta. Phys. Sin. 72 072501

    [11]

    Liang Z T, Wang X N 2005 Phys. Lett. B 629 20Google Scholar

    [12]

    Yang Y G, Fang R H, Wang Q, Wang X N 2018 Phys. Rev. C 97 034917Google Scholar

    [13]

    Adamczyk L, Adkins J K, Agakishiev G, et al. 2017 Nature 548 62Google Scholar

    [14]

    Adam J, Adamczyk L, Adams J R, et al. 2018 Phys. Rev. C 98 014910Google Scholar

    [15]

    Adam J, Adamczyk L, Adams J R, et al. 2021 Phys. Rev. Lett. 126 162301Google Scholar

    [16]

    Abou Yassine R, Adamczewski-Musch J, Asal C, et al. 2022 Phys. Lett. B 835 137506Google Scholar

    [17]

    Acharya S, Adamova D, Adler A, et al. 2020 Phys. Rev. Lett. 125 012301Google Scholar

    [18]

    Abdallah M S, Aboona B E, Adam J, et al. 2022 Nature 614 355

    [19]

    Sheng X L, Oliva L, Wang Q 2020 Phys. Rev. D 101 096005Google Scholar

    [20]

    Sheng X L, Wang Q, Wang X N 2020 Phys. Rev. D 102 056013Google Scholar

    [21]

    Xia X L, Li H, Huang X G, Huang H Z 2021 Phys. Lett. B 817 136325Google Scholar

    [22]

    Gao J H 2021 Phys. Rev. D 104 076016Google Scholar

    [23]

    Mueller B, Yang D L 2022 Phys. Rev. D 105 1

    [24]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 e-Print: 2205.15689

    [25]

    Sheng X L, Oliva L, Liang Z T, Wang Q, Wang X N 2022 e-Print: 2206.05868

    [26]

    Li F, Liu Y F S 2022 e-Print: 2206.11890

    [27]

    Wanger D, Weickgenannt N, Speranza E 2022 e-Print: 2207.01111

    [28]

    孙旭, 周晨升, 陈金辉, 陈振宇, 马余刚, 唐爱洪, 徐庆华 2023 物理学报 72 072401

    Sun X, Zhou C S, Chen J H, Chen Z Y, Ma Y G, Tang A H, Xu Q H 2023 Acta. Phys. Sin. 72 072401

    [29]

    寿齐烨, 赵杰, 徐浩洁, 李威, 王钢, 唐爱洪, 王福强 2023 物理学报 Accepted

    Shou Q Y, Zhao J, Xu H J, Li W, Wang G, Tang A H, Wang F Q 2023 Acta. Phys. Sin. Accepted

    [30]

    侯德富, 黄梅, 马国亮 2023 物理学报 Accepted

    Hou D F, Huang M, Ma G L 2023 Acta. Phys. Sin. Accepted

    [31]

    高建华, 盛欣力, 王群, 庄鹏飞 2023 物理学报 Accepted

    Gao J H, Sheng X L, Wang Q, Zhuang P F 2023 Acta. Phys. Sin. Accepted

    [32]

    黄旭光, 浦实 2023 物理学报 72 071202

    Huang X G, Pu S 2023 Acta. Phys. Sin. 72 071202

    [33]

    Bacchetta A, Mulders P J 2000 Phys. Rev. D 62 114004Google Scholar

    [34]

    Faccioli P, Lourenco C, Seixas J, Wohri H K 2010 Eur. Phys. J. C 69 657Google Scholar

    [35]

    Li Z, Zha W, Tang Z 2022 Phys. Rev. C 106 064908Google Scholar

  • [1] 薛文明, 李金, 何朝宇, 欧阳滔, 罗朝波, 唐超, 钟建新. H-Pb-Cl中可调控的巨型Rashba自旋劈裂和量子自旋霍尔效应. 物理学报, 2023, 72(5): 057101. doi: 10.7498/aps.72.20221493
    [2] 孙旭, 周晨升, 陈金辉, 陈震宇, 马余刚, 唐爱洪, 徐庆华. 重离子碰撞中QCD物质整体极化的实验测量. 物理学报, 2023, 72(7): 072401. doi: 10.7498/aps.72.20222452
    [3] 阮丽娟, 许长补, 杨驰. 夸克物质中的超子整体极化与矢量介子自旋排列. 物理学报, 2023, 72(11): 112401. doi: 10.7498/aps.72.20230496
    [4] 王志梅, 王虹, 薛乃涛, 成高艳. 自旋轨道耦合量子点系统中的量子相干. 物理学报, 2022, 71(7): 078502. doi: 10.7498/aps.71.20212111
    [5] 李家锐, 王梓安, 徐彤彤, 张莲莲, 公卫江. 一维${\cal {PT}}$对称非厄米自旋轨道耦合Su-Schrieffer-Heeger模型的拓扑性质. 物理学报, 2022, 71(17): 177302. doi: 10.7498/aps.71.20220796
    [6] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性. 物理学报, 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [7] 薛海斌, 段志磊, 陈彬, 陈建宾, 邢丽丽. 自旋轨道耦合Su-Schrieffer-Heeger原子链系统的电子输运特性. 物理学报, 2021, 70(8): 087301. doi: 10.7498/aps.70.20201742
    [8] 施婷婷, 汪六九, 王璟琨, 张威. 自旋轨道耦合量子气体中的一些新进展. 物理学报, 2020, 69(1): 016701. doi: 10.7498/aps.69.20191241
    [9] 李志强, 王月明. 一维谐振子束缚的自旋轨道耦合玻色气体. 物理学报, 2019, 68(17): 173201. doi: 10.7498/aps.68.20190143
    [10] 梁滔, 李铭. 自旋轨道耦合系统中的整数量子霍尔效应. 物理学报, 2019, 68(11): 117101. doi: 10.7498/aps.68.20190037
    [11] 杨圆, 陈帅, 李小兵. Rashba自旋轨道耦合下square-octagon晶格的拓扑相变. 物理学报, 2018, 67(23): 237101. doi: 10.7498/aps.67.20180624
    [12] 刘胜利, 厉建峥, 程杰, 王海云, 李永涛, 张红光, 李兴鳌. 强自旋轨道耦合化合物Sr2-xLaxIrO4的掺杂和拉曼谱学. 物理学报, 2015, 64(20): 207103. doi: 10.7498/aps.64.207103
    [13] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质. 物理学报, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [14] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构. 物理学报, 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [15] 龚士静, 段纯刚. 金属表面Rashba自旋轨道耦合作用研究进展. 物理学报, 2015, 64(18): 187103. doi: 10.7498/aps.64.187103
    [16] 张磊, 李辉武, 胡梁宾. 二维自旋轨道耦合电子气中持续自旋螺旋态的稳定性的研究. 物理学报, 2012, 61(17): 177203. doi: 10.7498/aps.61.177203
    [17] 杨杰, 董全力, 江兆潭, 张杰. 自旋轨道耦合作用对碳纳米管电子能带结构的影响. 物理学报, 2011, 60(7): 075202. doi: 10.7498/aps.60.075202
    [18] 余志强, 谢泉, 肖清泉. 狭义相对论下电子自旋轨道耦合对X射线光谱的影响. 物理学报, 2010, 59(2): 925-931. doi: 10.7498/aps.59.925
    [19] 卞宝安, 周宏余, 张丰收. 核物质对称能和重离子碰撞中径向流阈能的同位旋效应. 物理学报, 2007, 56(3): 1334-1338. doi: 10.7498/aps.56.1334
    [20] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响. 物理学报, 2002, 51(7): 1639-1644. doi: 10.7498/aps.51.1639
计量
  • 文章访问数:  4161
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-14
  • 修回日期:  2023-02-13
  • 上网日期:  2023-02-17
  • 刊出日期:  2023-04-05

/

返回文章
返回