搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于色散管理的自相位调制光谱展宽滤波技术

王井上 王栋梁 常国庆

引用本文:
Citation:

基于色散管理的自相位调制光谱展宽滤波技术

王井上, 王栋梁, 常国庆

Dispersion management dual-pass self-phase modulation-enabled spectral selection

Wang Jing-Shang, Wang Dong-Liang, Chang Guo-Qing
PDF
HTML
导出引用
  • 自相位调制光谱滤波技术能够产生波长可调谐的飞秒脉冲, 有望取代传统复杂的光参量振荡器而受到关注. 然而, 光纤中的正色散会导致光谱旁瓣调制深度减小, 同时光波分裂现象阻碍了光谱的展宽. 为了解决这两个问题, 本文提出了一种基于色散管理的双通光谱滤波技术, 在脉冲演化过程中通过引入负色散来优化脉冲的前后沿形状, 并压缩脉冲宽度以提升脉冲的峰值功率, 所产生的光谱不仅旁瓣更加清晰, 而且调制深度更深. 使用2 cm LMA-8光纤, 利用该技术获得了脉冲能量为6 nJ、中心波长在920 nm的113 fs脉冲.
    Self-phase modulation-enabled spectral selection (SESS) technology can generate wavelength-tunable femtosecond pulses, and it is expected to replace traditional complex optical parametric oscillators, and thus has attracted much attention. However, the positive dispersion in the fiber leads the modulation depth of the spectral lobes to decrease, while optical wave breaking hinders the spectral broadening. In order to solve the two problems, we propose a dual-pass SESS technology based on dispersion management which optimizes the shape of the front edge and rear edge of the pulse prior to the second pass by introducing negative dispersion, and compresses the pulse width for increasing the peak power of the pulse. The resulting spectrum features broader spectrum with a deeper modulation depth. By numerical simulation, we find that adjusting the value of the second-order dispersion compensated after the single pass, a broader spectral lobe can be obtained than both the single-pass case and the double-pass case without dispersion compensation. To verify our numerical simulation, we conduct experiments by using a 2-cm-long LMA-8 fiber for spectral broadening and several chirped mirrors to provide negative dispersion, which controls the nonlinear evolution of the pulse in the second pass of the LMA-8 fiber. We study the spectral output corresponding to different amounts of dispersion compensation and find that an optimal dispersion value is required to produce a clear and broader spectral lobe. We also investigate the effect of input pulse energy on spectral broadening under the same dispersion compensation conditions. With 15-nJ input pulse energy and –420 fs2 dispersion compensation, the resulting SESS source delivers 6 nJ, 113-fs pulses with the peak wavelength at 920 nm.
      通信作者: 常国庆, guoqing.chang@iphy.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFB3602602)和国家自然科学基金(批准号: 62175255, 62227822)资助的课题.
      Corresponding author: Chang Guo-Qing, guoqing.chang@iphy.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3602602) and the National Natural Science Foundation of China (Grant Nos. 62175255, 62227822).
    [1]

    Stolen R H, Lin C 1978 Phys. Rev. A 17 1448Google Scholar

    [2]

    Nakatsuka H, Grischkowsky D, Balant A C 1981 Phys. Rev. Lett. 47 910Google Scholar

    [3]

    Tomlinson W J, Stolen R H, Shank C V 1984 J. Opt. Soc. Am. B: Opt. Phys. 1 139Google Scholar

    [4]

    Mollenauer L F, Stolen R H, Gordon J P, Tomlinson W J 1983 Opt. Lett. 8 289Google Scholar

    [5]

    Her T H, Raybon G, Headley C 2004 IEEE Photonics Technol. Lett. 16 200Google Scholar

    [6]

    Lehneis R, Steinmetz A, Limpert J, Tünnermann A 2014 Opt. Lett. 39 5806Google Scholar

    [7]

    Fu W, Wright L G, Wise F W 2017 Optica 4 831Google Scholar

    [8]

    Buldt J, Müller M, Klas R, Eidam T, Limpert J, Tünnermann A 2017 Opt. Lett. 42 3761Google Scholar

    [9]

    Närhi M, Fedotov A, Aksenova K, Fiebrandt J, Schönau T, Gerecke M, Gumenyuk R 2021 Opt. Express 29 15699Google Scholar

    [10]

    Finot C, Fatome J 2010 Opt. Express 18 18697Google Scholar

    [11]

    Lin C H, Gustafson T K 1972 IEEE J. Quantum Electron. 8 429Google Scholar

    [12]

    Baudin K, Audo F, Finot C 2018 Microwave. Opt. Technol. Lett. 60 882Google Scholar

    [13]

    Liu Y, Tu H, Boppart S A 2012 Opt. Lett. 37 2172Google Scholar

    [14]

    Heidt A M, Hartung A, Bosman G W, Krok P, Rohwer E G, Schwoerer H, Bartelt H 2011 Opt. Express 19 3775Google Scholar

    [15]

    Hooper L E, Mosley P J, Muir A C, Wadsworth W J, Knight J C 2011 Opt. Express 19 4902Google Scholar

    [16]

    Liu W, Li C, Zhang Z, Kärtner F X, Chang G 2016 Opt. Express 24 15328Google Scholar

    [17]

    Chung H Y, Liu W, Cao Q, Song L, Kärtner F X, Chang G 2018 Opt. Express 26 3684Google Scholar

    [18]

    Hua Y, Zhou G, Liu W, Xin M, Kärtner F X, Chang G 2020 Opt. Lett. 45 3410Google Scholar

    [19]

    Chung H Y, Liu W, Cao Q, Kärtner F X, Chang G 2017 Opt. Express 25 15760Google Scholar

    [20]

    Chung H Y, Greinert R, Kärtner F X, Chang G 2019 Biomed. Opt. Express 10 514Google Scholar

    [21]

    Chung H Y, Liu W, Cao Q, Greinert R, Kartner F X, Chang G 2018 IEEE J. Sel. Top. Quantum Electron. 25 6800708Google Scholar

    [22]

    Cheng Q d, Chung H Y, Schubert R, et al. 2020 Commun. Biol. 3 569Google Scholar

    [23]

    Zhou G, Cao Q, Kärtner F X, Chang G 2018 Opt. Lett. 43 2953Google Scholar

    [24]

    Wang J, Chen R, Chang G 2022 Opt. Express 30 33664Google Scholar

    [25]

    刘伟, 李中超, 陈润植, 常国庆 2023 中国激光 50 0208001Google Scholar

    Liu W, Li Z C, Chen R Z, Chang G Q 2023 Chin. J. Lasers 50 0208001Google Scholar

    [26]

    Liu W, Chia S H, Chung H Y, Greinert R, Kärtner F X, Chang G 2017 Opt. Express 25 6822Google Scholar

    [27]

    Zhang Y, Wang J, Teng H, Fang S, Wang J, Chang G, Wei Z 2021 Opt. Lett. 46 3115Google Scholar

    [28]

    Rothhardt J, Hädrich S, Klenke A, et al. 2014 Opt. Lett. 39 5224Google Scholar

    [29]

    Nagy T, Hädrich S, Simon P, et al. 2019 Optica 6 1423Google Scholar

    [30]

    Jenkins G W, Feng C, Bromage J 2022 Opt. Lett. 47 1450Google Scholar

    [31]

    Kaumanns M, Pervak V, Kormin D, Leshchenko V, Kessel A, Ueffing M, Chen Y, Nubbemeyer T 2018 Opt. Lett. 43 5877Google Scholar

    [32]

    Heyl C M, Seidel M, Escoto E, Schönberg A, Carlström S, Arisholm G, Lang T, Hartl I 2022 Conference on Lasers and Electro-Optics(CLEO) San Jose, California, May 15–20, 2022 pSF4E.6

    [33]

    Omar A, Ahmed S, Hoffmann M, Saraceno C J 2021 Conference on Lasers Electro-Optics(CLEO) San Jose, California, May 9–14, 2021 pSTh2I.4

    [34]

    Barbiero G, Wang H, Brons J, Chen B H, Pervak V, Fattahi H 2020 J. Phys. B: At. Mol. Opt. Phys. 53 125601Google Scholar

    [35]

    Balla P, Tünnermann H, Salman S H, Fan M, Mecejus M, Hartl I, Heyl C M 2022 Conference on Lasers Electro-Optics(CLEO) San Jose, California, May 15–20, 2022 pSM3O.1

  • 图 1  (a)单通SESS与(b)色散管理双通SESS装置示意图(PBS, 偏振光束分束器; Lens, 光学透镜; HWP, 半波片; QWP, 1/4波片; CM, 啁啾镜; M, 反射镜)

    Fig. 1.  Schematic diagram of single-pass SESS (a) and dual-pass SESS (b) devices (PBS, polarizing beam splitter; Lens, optical lens; HWP, half-wave plate; QWP, quarter-wave plate; CM, chirped mirror; M, Mirror).

    图 2  15 nJ, 100 fs脉冲在不同情况下的光谱演化曲线 (a) 情况1), 单通4 cm光纤; (b) 情况2), 通过2 cm光纤后假定脉冲能量损耗50%后, 第二次经过2 cm光纤; (c) 情况3), 通过2 cm光纤后假定脉冲能量损耗50%以及补偿–300 fs2色散后, 第二次经过2 cm光纤; (d), (e), (f) 分别对应图(a)、图(b)和图(c)最后2 cm光纤的脉冲演化图. 光纤β2 =10 fs2/mm

    Fig. 2.  Spectral evolution curves of 15 nJ, 100 fs pulses under different conditions: (a) Situation 1), single-pass 4 cm fiber; (b) situation 2): after passing through 2 cm fiber, assuming that the pulse energy loss is 50%, the second time passes through 2 cm fiber; (c) situation 3), passing 2 cm after the optical fiber, it is assumed that the pulse energy loss is 50% and after the –300 fs2 dispersion is compensated, it passes through the 2 cm optical fiber for the second time; (d), (e), (f) correspond to the pulse evolution diagrams of the last 2 cm fiber of panels (a), (b) and (c), respectively. Fiber β2 =10 fs2/mm.

    图 3  15 nJ, 100 fs输入脉冲在光纤末端产生的输出光谱. 其中红线、蓝线和黑线分别对应单通4 cm光纤; 通过2 cm光纤后假定脉冲能量损耗50%后, 第二次经过2 cm光纤; 通过2 cm光纤后假定脉冲能量损耗50%以及补偿–300 fs2色散后, 第二次经过2 cm光纤

    Fig. 3.  15 nJ, 100 fs input pulse produces output spectra at the end of the fiber. The red line, blue line, and black line represent respectively single-pass 4 cm fiber; after passing through 2 cm fiber and assuming 50% pulse energy loss, the second pass through 2 cm fiber; after passing through 2 cm fiber assuming 50% pulse energy loss and compensating for –300 fs2 dispersion, the second pass through 2 cm fiber.

    图 4  LMA-8 光纤色散曲线(蓝线), 插图为光纤横截面

    Fig. 4.  Dispersion curve (blue line) of LMA-8 fiber. Inset: fiber cross section.

    图 5  20 nJ, 100 fs输入脉冲在双通2 cm LMA-8光纤后产生的输出光谱与单通补偿色散后的脉冲 (a), (c), (e), (g) 补偿0, –150, –300和–450 fs2色散后输出光谱; (b), (d), (f), (h) 单通补偿相应色散后的脉冲

    Fig. 5.  Output spectra generated after double-pass 2 cm LMA-8 fiber and single-pass pulse after dispersion compensation for 20 nJ, 100 fs input pulse: (a), (c), (e), (g) Output spectra after compensation of 0, –150, –300 and –450 fs2 dispersion; (b), (d), (f), (h) pulses after single-pass compensation of corresponding dispersion.

    图 6  基于色散管理的双通SESS实验装置图(其中PBS, 偏振光束分束器; HWP, 半波片; QWP, 1/4波片; CM, 啁啾镜; LD, 泵浦源; DM, 双色镜; Filter, 滤光片; 其余未说明器件均为平面反射镜)

    Fig. 6.  Dual-pass SESS experimental setup (PBS, polarizing beam splitter; HWP, half-wave plate; QWP, quarter-wave plate; CM, chirped mirror; LD, laser diode; DM, dichroic mirror; Filter, optical filter; other unspecified devices are plane reflectors).

    图 7  耦合进LMA-8光纤前的(a)光谱与(b)脉冲自相关曲线

    Fig. 7.  (a) Spectrum and (b) pulse autocorrelation curve before coupling into LMA-8 fiber.

    图 8  100 fs输入脉冲在2 cm LMA-8光纤补偿不同色散量后双通产生的光谱(此时固定输出脉冲能量15 nJ) (a), (b), (c), (d) 补偿色散量依次为0, –180, –420和–540 fs2

    Fig. 8.  Spectra generated by double pass of 100 fs input pulse in 2 cm LMA-8 fiber after compensating for different dispersion (the output pulse energy is fixed at 15 nJ): (a), (b), (c), (d) The corresponding compensation dispersion is 0, –180, –420 and –540 fs2, respectively.

    图 9  输入脉冲宽度为100 fs、后置补偿–420 fs2时, 不同输出脉冲能量下的输出光谱 (a) 5 nJ; (b) 10 nJ; (c) 15 nJ; (d) 20 nJ

    Fig. 9.  When the input pulse width is 100 fs and the post compensation is –420 fs2, the output spectra under different pulse energies: (a) 5 nJ; (b) 10 nJ; (c) 15 nJ; (d) 20 nJ.

    图 10  100 fs输入脉冲双通2 cm LMA-8光纤后输出脉冲能量为15 nJ时, 利用光学滤波器滤出的最左侧光谱旁瓣和所对应的时域脉冲 (a) 滤出的光谱旁瓣; (b) 光谱旁瓣对应的脉冲自相关曲线(蓝色)以及变换极限脉冲的自相关曲线(红色)

    Fig. 10.  When the 100 fs input pulse double passes 2 cm LMA-8 fiber with the fixed output pulse energy of 15 nJ, the leftmost spectral sidelobe and the corresponding time domain pulse filtered out by the optical filter: (a) The filtered spectral sidelobe; (b) the pulse autocorrelation curve (blue) corresponding to the spectral sidelobe and the autocorrelation curve (red) of the transform-limited pulse.

  • [1]

    Stolen R H, Lin C 1978 Phys. Rev. A 17 1448Google Scholar

    [2]

    Nakatsuka H, Grischkowsky D, Balant A C 1981 Phys. Rev. Lett. 47 910Google Scholar

    [3]

    Tomlinson W J, Stolen R H, Shank C V 1984 J. Opt. Soc. Am. B: Opt. Phys. 1 139Google Scholar

    [4]

    Mollenauer L F, Stolen R H, Gordon J P, Tomlinson W J 1983 Opt. Lett. 8 289Google Scholar

    [5]

    Her T H, Raybon G, Headley C 2004 IEEE Photonics Technol. Lett. 16 200Google Scholar

    [6]

    Lehneis R, Steinmetz A, Limpert J, Tünnermann A 2014 Opt. Lett. 39 5806Google Scholar

    [7]

    Fu W, Wright L G, Wise F W 2017 Optica 4 831Google Scholar

    [8]

    Buldt J, Müller M, Klas R, Eidam T, Limpert J, Tünnermann A 2017 Opt. Lett. 42 3761Google Scholar

    [9]

    Närhi M, Fedotov A, Aksenova K, Fiebrandt J, Schönau T, Gerecke M, Gumenyuk R 2021 Opt. Express 29 15699Google Scholar

    [10]

    Finot C, Fatome J 2010 Opt. Express 18 18697Google Scholar

    [11]

    Lin C H, Gustafson T K 1972 IEEE J. Quantum Electron. 8 429Google Scholar

    [12]

    Baudin K, Audo F, Finot C 2018 Microwave. Opt. Technol. Lett. 60 882Google Scholar

    [13]

    Liu Y, Tu H, Boppart S A 2012 Opt. Lett. 37 2172Google Scholar

    [14]

    Heidt A M, Hartung A, Bosman G W, Krok P, Rohwer E G, Schwoerer H, Bartelt H 2011 Opt. Express 19 3775Google Scholar

    [15]

    Hooper L E, Mosley P J, Muir A C, Wadsworth W J, Knight J C 2011 Opt. Express 19 4902Google Scholar

    [16]

    Liu W, Li C, Zhang Z, Kärtner F X, Chang G 2016 Opt. Express 24 15328Google Scholar

    [17]

    Chung H Y, Liu W, Cao Q, Song L, Kärtner F X, Chang G 2018 Opt. Express 26 3684Google Scholar

    [18]

    Hua Y, Zhou G, Liu W, Xin M, Kärtner F X, Chang G 2020 Opt. Lett. 45 3410Google Scholar

    [19]

    Chung H Y, Liu W, Cao Q, Kärtner F X, Chang G 2017 Opt. Express 25 15760Google Scholar

    [20]

    Chung H Y, Greinert R, Kärtner F X, Chang G 2019 Biomed. Opt. Express 10 514Google Scholar

    [21]

    Chung H Y, Liu W, Cao Q, Greinert R, Kartner F X, Chang G 2018 IEEE J. Sel. Top. Quantum Electron. 25 6800708Google Scholar

    [22]

    Cheng Q d, Chung H Y, Schubert R, et al. 2020 Commun. Biol. 3 569Google Scholar

    [23]

    Zhou G, Cao Q, Kärtner F X, Chang G 2018 Opt. Lett. 43 2953Google Scholar

    [24]

    Wang J, Chen R, Chang G 2022 Opt. Express 30 33664Google Scholar

    [25]

    刘伟, 李中超, 陈润植, 常国庆 2023 中国激光 50 0208001Google Scholar

    Liu W, Li Z C, Chen R Z, Chang G Q 2023 Chin. J. Lasers 50 0208001Google Scholar

    [26]

    Liu W, Chia S H, Chung H Y, Greinert R, Kärtner F X, Chang G 2017 Opt. Express 25 6822Google Scholar

    [27]

    Zhang Y, Wang J, Teng H, Fang S, Wang J, Chang G, Wei Z 2021 Opt. Lett. 46 3115Google Scholar

    [28]

    Rothhardt J, Hädrich S, Klenke A, et al. 2014 Opt. Lett. 39 5224Google Scholar

    [29]

    Nagy T, Hädrich S, Simon P, et al. 2019 Optica 6 1423Google Scholar

    [30]

    Jenkins G W, Feng C, Bromage J 2022 Opt. Lett. 47 1450Google Scholar

    [31]

    Kaumanns M, Pervak V, Kormin D, Leshchenko V, Kessel A, Ueffing M, Chen Y, Nubbemeyer T 2018 Opt. Lett. 43 5877Google Scholar

    [32]

    Heyl C M, Seidel M, Escoto E, Schönberg A, Carlström S, Arisholm G, Lang T, Hartl I 2022 Conference on Lasers and Electro-Optics(CLEO) San Jose, California, May 15–20, 2022 pSF4E.6

    [33]

    Omar A, Ahmed S, Hoffmann M, Saraceno C J 2021 Conference on Lasers Electro-Optics(CLEO) San Jose, California, May 9–14, 2021 pSTh2I.4

    [34]

    Barbiero G, Wang H, Brons J, Chen B H, Pervak V, Fattahi H 2020 J. Phys. B: At. Mol. Opt. Phys. 53 125601Google Scholar

    [35]

    Balla P, Tünnermann H, Salman S H, Fan M, Mecejus M, Hartl I, Heyl C M 2022 Conference on Lasers Electro-Optics(CLEO) San Jose, California, May 15–20, 2022 pSM3O.1

  • [1] 李聘滨, 滕浩, 田文龙, 黄振文, 朱江峰, 钟诗阳, 运晨霞, 刘文军, 魏志义. 基于平凹多通腔的非线性脉冲压缩技术. 物理学报, 2024, 73(12): 124206. doi: 10.7498/aps.73.20240110
    [2] 王栋梁, 史卓, 王井上, 吴洪悦, 张晓辉, 常国庆. 1 MHz, 273 W掺镱棒状光纤啁啾脉冲放大系统. 物理学报, 2024, 73(13): 134204. doi: 10.7498/aps.73.20240300
    [3] 王晓英, 邢宇婷, 陈润植, 贾雪琦, 吴继华, 江进, 李连勇, 常国庆. 基于自相位调制光谱选择驱动的无标记自发荧光多倍频显微镜系统. 物理学报, 2022, 71(10): 104204. doi: 10.7498/aps.71.20212282
    [4] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生. 物理学报, 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [5] 盛泉, 王盟, 史朝督, 田浩, 张钧翔, 刘俊杰, 史伟, 姚建铨. 基于锯齿波脉冲抑制自相位调制的高功率窄线宽单频脉冲光纤激光放大器. 物理学报, 2021, 70(21): 214202. doi: 10.7498/aps.70.20210496
    [6] 崔岸婧, 李道京, 周凯, 王宇, 洪峻. 阵列结构下的低频信号合成方法研究. 物理学报, 2020, 69(19): 194101. doi: 10.7498/aps.69.20200501
    [7] 程梦尧, 王兆华, 何会军, 王羡之, 朱江峰, 魏志义. 高效率三倍频产生355 nm皮秒激光的实验研究. 物理学报, 2019, 68(12): 124205. doi: 10.7498/aps.68.20190513
    [8] 孙天娇, 钱轩, 尚雅轩, 刘剑, 王开友, 姬扬. 相干彩虹的形成机制. 物理学报, 2018, 67(18): 184204. doi: 10.7498/aps.67.20180888
    [9] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [10] 江俊峰, 黄灿, 刘琨, 张永宁, 王双, 张学智, 马喆, 陈文杰, 于哲, 刘铁根. 用于CARS激发源的全光纤飞秒脉冲谱压缩. 物理学报, 2017, 66(20): 204207. doi: 10.7498/aps.66.204207
    [11] 洪伟毅. 强时间非局域系统中自相位调制诱导的“脉冲镜像”啁啾. 物理学报, 2015, 64(2): 024214. doi: 10.7498/aps.64.024214
    [12] 石俊凯, 柴路, 赵晓薇, 李江, 刘博文, 胡明列, 栗岩锋, 王清月. 光子晶体光纤飞秒激光非线性放大系统的耦合动力学过程研究. 物理学报, 2015, 64(9): 094203. doi: 10.7498/aps.64.094203
    [13] 韩庆生, 乔耀军, 李蔚. 基于全光时域分数阶傅里叶变换的光脉冲最小损伤传输新方法. 物理学报, 2011, 60(1): 014219. doi: 10.7498/aps.60.014219
    [14] 马文文, 李曙光, 尹国冰, 冯荣普, 付博. 反常色散锥形微结构光纤中高效率脉冲压缩研究. 物理学报, 2010, 59(7): 4720-4725. doi: 10.7498/aps.59.4720
    [15] 任常愚, 孙秀冬, 裴延波. 向列相液晶中弱光引致各向异性衍射图样的研究. 物理学报, 2009, 58(1): 298-303. doi: 10.7498/aps.58.298.1
    [16] 方晓惠, 胡明列, 刘博文, 栗岩锋, 柴路, 王清月, 童维军, 罗杰. 光子晶体光纤纤芯整形获得中空模式输出. 物理学报, 2009, 58(9): 6330-6334. doi: 10.7498/aps.58.6330
    [17] 陈泳竹, 李玉忠, 徐文成. 色散平坦渐减光纤产生平坦超宽超连续谱的特性研究. 物理学报, 2008, 57(12): 7693-7698. doi: 10.7498/aps.57.7693
    [18] 夏 舸, 黄德修, 元秀华. 正常色散平坦光纤中皮秒抽运脉冲超连续谱的形成研究. 物理学报, 2007, 56(4): 2212-2217. doi: 10.7498/aps.56.2212
    [19] 步 扬, 王向朝. 基于频域相位共轭技术的交叉相位调制所致失真的复原. 物理学报, 2005, 54(10): 4747-4753. doi: 10.7498/aps.54.4747
    [20] 吴国华, 郭 弘, 刘明伟, 邓冬梅, 刘时雄. 尾波场与相对论效应对激光脉冲自相位调制及频移影响的比较研究. 物理学报, 2005, 54(7): 3213-3220. doi: 10.7498/aps.54.3213
计量
  • 文章访问数:  3784
  • PDF下载量:  102
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-17
  • 修回日期:  2023-02-27
  • 上网日期:  2023-05-08
  • 刊出日期:  2023-05-05

/

返回文章
返回