-
非晶合金动态弛豫、变形和微观结构非均匀性之间的关联是非晶态物理领域重要研究内容之一. 本文选取玻璃形成能力优良, 热稳定性好的Zr48(Cu5/6Ag1/6)44Al8块体非晶合金作为研究载体, 借助于动态力学分析及应力松弛实验探究了温度和结构弛豫对非晶合金动态弛豫和变形行为的影响. 研究结果表明非晶合金动态弛豫行为对温度极其敏感, 随温度升高表现为等构型、老化、玻璃转变和晶化4个阶段. 基于玻璃转变温度之下等温测试, 结构弛豫行为导致非平衡高能量状态非晶合金向低能量状态迁移, 内耗随时间演化规律可用Kohlrausch-Williams-Watts (KWW)扩展指数方程描述. 此外, 基于KWW方程和激活能谱等方法分析了模型合金应力松弛过程中非均匀结构激活, 该过程涉及弹性变形向非弹性变形的转变. 由于非晶合金存在微观尺度的结构非均匀性与能量起伏, 变形单元的激活并非为单一特征时间, 而是服从一定分布. 通过考虑对数时间尺度和变形单元激活的特征时间分布分别为对称Gauss分布和非对称Gumbel分布, 可重构应力松弛响应的非均匀激活过程.The relationship among dynamic relaxation, deformation and microstructural heterogeneity of amorphous alloy is one of the important research contents in the field of amorphous physics. In this paper, we utilize Zr48(Cu5/6Ag1/6)44Al8 bulk amorphous alloy with excellent glass forming capability and good thermal stability as a research carrier, and investigate the effects of temperature and structural relaxation on dynamic relaxation and deformation behavior through dynamic mechanical analysis and stress relaxation experiments. The results show that the dynamic relaxation spectrum of the model alloy is sensitive to temperature, showing four stages as the temperature increases, namely, iso configuration, aging, glass transition and crystallization. Based on the isothermal measurement of dynamic mechanical parameters under the glass transition temperature, the structural relaxation causes the amorphous alloy to migrate from the non-equilibrium high energy state to the low energy state, and the evolution of internal friction with aging time can be described by Kohlrausch-Williams-Watts (KWW) stretched exponential function. In addition, based on the KWW equation and activation energy spectrum, the activation of heterogeneous structure in the stress relaxation process of model alloy is analyzed, which involves the transformation from elastic deformation to nonelastic deformation. Owing to the microstructural heterogeneity and energy fluctuations in amorphous alloys, the activation of deformation units is not a single characteristic time, but follows a certain distribution. By considering that the characteristic time distribution of activation of deformation units is symmetric Gauss distribution or asymmetric Gumbel distribution on a logarithmic time scale, the heterogeneous activation process in stress relaxation response can be reconstructed.
[1] Suryanarayana C, Inoue A 2017 Bulk Metallic Glasses (Boca Raton: CRC Press) pp465–503
[2] 汪卫华 2013 物理学进展 33 177
Wang W H 2013 Prog. Phys. 33 177
[3] Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar
[4] Inoue A, Takeuchi A 2011 Acta Mater. 59 2243Google Scholar
[5] Khmich A, Hassani A, Sbiaai K, Hasnaoui A 2021 Int. J. Mech. Sci. 204 106546Google Scholar
[6] 曹庆平, 吕林波, 王晓东, 蒋建中 2021 金属学报 57 473Google Scholar
Cao Q P, Lü L B, Wang X D, Z J J 2021 Acta. Metall. Sin. 57 473Google Scholar
[7] 李宁, 黄信 2021 金属学报 57 529Google Scholar
Li N, Huang X 2021 Acta. Metall. Sin. 57 529Google Scholar
[8] 毕甲紫, 刘晓斌, 李然, 张涛 2021 金属学报 57 559Google Scholar
Bi J Z, Liu X B, Li R, Z T 2021 Acta. Metall. Sin. 57 559Google Scholar
[9] Sun Q, Hu L, Zhou C, Zheng H, Yue Y 2015 J. Chem. Phys. 143 164504Google Scholar
[10] Qiao J C, Pelletier J M 2014 J. Mater. Sci. Technol. 30 523Google Scholar
[11] Qiao J C, Wang Q, Crespo D, Yang Y, Pelletier J M 2017 Chin. Phys. B 26 16402Google Scholar
[12] Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar
[13] Hao Q, Lyu G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2022 Int. J. Plast. 154 103288Google Scholar
[14] Zhang L T, Duan Y J, Crespo D, Pineda E, Wang Y J, Pelletier J M, Qiao J C 2021 Sci. China-Phys. Mech. Astron. 64 296111Google Scholar
[15] Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402Google Scholar
[16] Wang Q, Pelletier J M, Blandin J J, Suéry M 2005 J. Non-Cryst. Solids. 351 2224Google Scholar
[17] Perez J 1998 Physics and Mechanics of Amorphous Polymers (London: Routledge) p5
[18] Qiao J C, Pelletier J M, Yao Y 2019 Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 743 185Google Scholar
[19] Harmon J S, Demetriou M D, Johnson W L, Samwer K 2007 Phys. Rev. Lett. 99 135502Google Scholar
[20] Wang W H. 2019 Prog. Mater. Sci. 106 100561Google Scholar
[21] 乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117Google Scholar
Qiao J C, Zhang L T, Tong Y, Lyu G J, Hao Q, T K 2022 Adv. Mech. 52 117Google Scholar
[22] Zhu F, Hirata A, Liu P, Song S, Tian Y, Han J, Fujita T, Chen M 2017 Phys. Rev. Lett. 119 215501Google Scholar
[23] Kubin P L 1974 Philos. Mag. 30 705Google Scholar
[24] Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903Google Scholar
[25] Argon A S, Kuo H Y 1979 Mater. Sci. Eng. 39 101Google Scholar
[26] Ruta B, Pineda E, Evenson Z 2017 J. Phys. Condens. Matter 29 503002Google Scholar
[27] Duan Y J, Zhang L T, Qiao J C, Wang, Yun Jiang, Yang Y, Wada T, Kato H, Pelletier J M, Pineda E, Crespo D 2022 Phys. Rev. Lett. 129 175501Google Scholar
[28] Ferry J D 1980 Viscoelastics Properties of Polymers (New York: Wiley) pp183–200
[29] Rinaldi R, Gaertner R, Chazeau L, Gauthier C 2011 Int. Non-Linear Mech. 46 496Google Scholar
-
-
[1] Suryanarayana C, Inoue A 2017 Bulk Metallic Glasses (Boca Raton: CRC Press) pp465–503
[2] 汪卫华 2013 物理学进展 33 177
Wang W H 2013 Prog. Phys. 33 177
[3] Wang W H 2012 Prog. Mater. Sci. 57 487Google Scholar
[4] Inoue A, Takeuchi A 2011 Acta Mater. 59 2243Google Scholar
[5] Khmich A, Hassani A, Sbiaai K, Hasnaoui A 2021 Int. J. Mech. Sci. 204 106546Google Scholar
[6] 曹庆平, 吕林波, 王晓东, 蒋建中 2021 金属学报 57 473Google Scholar
Cao Q P, Lü L B, Wang X D, Z J J 2021 Acta. Metall. Sin. 57 473Google Scholar
[7] 李宁, 黄信 2021 金属学报 57 529Google Scholar
Li N, Huang X 2021 Acta. Metall. Sin. 57 529Google Scholar
[8] 毕甲紫, 刘晓斌, 李然, 张涛 2021 金属学报 57 559Google Scholar
Bi J Z, Liu X B, Li R, Z T 2021 Acta. Metall. Sin. 57 559Google Scholar
[9] Sun Q, Hu L, Zhou C, Zheng H, Yue Y 2015 J. Chem. Phys. 143 164504Google Scholar
[10] Qiao J C, Pelletier J M 2014 J. Mater. Sci. Technol. 30 523Google Scholar
[11] Qiao J C, Wang Q, Crespo D, Yang Y, Pelletier J M 2017 Chin. Phys. B 26 16402Google Scholar
[12] Schuh C A, Hufnagel T C, Ramamurty U 2007 Acta Mater. 55 4067Google Scholar
[13] Hao Q, Lyu G J, Pineda E, Pelletier J M, Wang Y J, Yang Y, Qiao J C 2022 Int. J. Plast. 154 103288Google Scholar
[14] Zhang L T, Duan Y J, Crespo D, Pineda E, Wang Y J, Pelletier J M, Qiao J C 2021 Sci. China-Phys. Mech. Astron. 64 296111Google Scholar
[15] Zhang L T, Wang Y J, Pineda E, Yang Y, Qiao J C 2022 Int. J. Plast. 157 103402Google Scholar
[16] Wang Q, Pelletier J M, Blandin J J, Suéry M 2005 J. Non-Cryst. Solids. 351 2224Google Scholar
[17] Perez J 1998 Physics and Mechanics of Amorphous Polymers (London: Routledge) p5
[18] Qiao J C, Pelletier J M, Yao Y 2019 Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 743 185Google Scholar
[19] Harmon J S, Demetriou M D, Johnson W L, Samwer K 2007 Phys. Rev. Lett. 99 135502Google Scholar
[20] Wang W H. 2019 Prog. Mater. Sci. 106 100561Google Scholar
[21] 乔吉超, 张浪渟, 童钰, 吕国建, 郝奇, 陶凯 2022 力学进展 52 117Google Scholar
Qiao J C, Zhang L T, Tong Y, Lyu G J, Hao Q, T K 2022 Adv. Mech. 52 117Google Scholar
[22] Zhu F, Hirata A, Liu P, Song S, Tian Y, Han J, Fujita T, Chen M 2017 Phys. Rev. Lett. 119 215501Google Scholar
[23] Kubin P L 1974 Philos. Mag. 30 705Google Scholar
[24] Jiao W, Wen P, Peng H L, Bai H Y, Sun B A, Wang W H 2013 Appl. Phys. Lett. 102 101903Google Scholar
[25] Argon A S, Kuo H Y 1979 Mater. Sci. Eng. 39 101Google Scholar
[26] Ruta B, Pineda E, Evenson Z 2017 J. Phys. Condens. Matter 29 503002Google Scholar
[27] Duan Y J, Zhang L T, Qiao J C, Wang, Yun Jiang, Yang Y, Wada T, Kato H, Pelletier J M, Pineda E, Crespo D 2022 Phys. Rev. Lett. 129 175501Google Scholar
[28] Ferry J D 1980 Viscoelastics Properties of Polymers (New York: Wiley) pp183–200
[29] Rinaldi R, Gaertner R, Chazeau L, Gauthier C 2011 Int. Non-Linear Mech. 46 496Google Scholar
计量
- 文章访问数: 3562
- PDF下载量: 103
- 被引次数: 0