搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属纳米颗粒双圆环阵列的表面格点共振效应

叶高杰 殷澄 黎思瑜 俞强 王贤平 吴坚

引用本文:
Citation:

金属纳米颗粒双圆环阵列的表面格点共振效应

叶高杰, 殷澄, 黎思瑜, 俞强, 王贤平, 吴坚

Surface lattice resonance effect of double-ring array of metallic nano-particles

Ye Gao-Jie, Yin Cheng, Li Si-Yu, Yu Qiang, Wang Xian-Ping, Wu Jian
PDF
HTML
导出引用
  • 由金属纳米粒子构成的周期性规则阵列, 可以通过粒子间的耦合来激发表面格点共振效应, 从而极大压缩单粒子的局域表面等离子体共振效应的线宽. 本文将该表面格点共振效应从二维周期性结构推广到轴对称的圆环结构中, 提出了双圆环金属纳米粒子阵列结构的电磁响应模型. 在此基础上, 得到了双圆环阵列发生表面格点共振效应的条件, 并发现当阵列结构参数满足特定条件时, 该阵列的所有偶极子分量会发生集体共振效应, 从而获得极高的近场增强因子.
    Surface lattice resonances due to regular periodic array of metallic nanoparticles can be attributed to the mutual coupling between the localized surface plasmon resonances of different nanoparticles. A comparison of resonant effect between the single particle and the array shows that the resonance line width can be significantly reduced. In this paper, we extend the coupled dipole approximation to solving the electromagnetic characteristics of the particle ring structures with rotational symmetry, and propose an analytical model for the double ring array of metallic nano-particles. Furthermore, we derive the general resonant condition of the double ring array and investigate some concrete cases in detail. It shows that the full resonance of the whole array depends crucially on the structural parameters, whose enhancement factor can be extremely high. But a slight change in the structural parameter willlead the enhancement factor to decrease sharply. We also find that the radiation field of the full resonance effect will be independent of the external field, which provides us a simple approach to producing a localized optical field with complex space distribution. This proposed structure can possess potential applications in various fields such as metasurface, optoelectronics, optical manipulation, communication, and biosensing.
      通信作者: 殷澄, yinch@hhu.edu.cn ; 俞强, qyu2015@sinano.ac.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: B220202018)、常州市科技计划(批准号: CJ20210130)和冶金工业过程系统科学湖北省重点实验室(武汉科技大学)开放基金(批准号: Y202208)资助的课题.
      Corresponding author: Yin Cheng, yinch@hhu.edu.cn ; Yu Qiang, qyu2015@sinano.ac.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. B220202018), the Science and Technology Project of Changzhou, China (Grant No. CJ20210130), the Hubei Province Key Laboratory of Systems Science in Metallurgical Process, Wuhan University of Science and Technology, China (Grant No. Y202208).
    [1]

    Wang Q, Ren Z H, Zhao W M, Wang L, Yan X, Zhu A S, Qiu F M, Zhang K K 2022 Nanoscale 14 564Google Scholar

    [2]

    Philip A, Kumar A R 2022 Coord. Chem. Rev. 458 214424Google Scholar

    [3]

    Dong L, Zhang C Y, Yan L, Zhang B B, Chen H, Mi X H, Fu Z K, Zhang Z L, Zheng H R 2021 Chin. Phys. B 30 077301Google Scholar

    [4]

    Wu Y, Niu J, Danesh M, Liu J, Chen Y, Ke L, Qiu C, Yang H 2016 Appl. Phys. Lett. 109 041106Google Scholar

    [5]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685Google Scholar

    [6]

    Kravets V G, Kabashin A V, Barnes W L, Grigorenko A N 2018 Chem. Rev. 118 5912Google Scholar

    [7]

    Wang F, Shen Y R 2006 Phys. Rev. Lett. 97 206806Google Scholar

    [8]

    Wang L, Wang Q, Wang T Q, Zhao W M, Yin X Y, Jiang J X, Zhang S S 2022 Nanoscale 14 6144Google Scholar

    [9]

    Huang X, Zhang B, Yu B, Zhang H, Shao G 2022 Nano Technol. 33 225206

    [10]

    Hua Y, Fumani A K, Odom T W 2019 ACS Photonics 6 322Google Scholar

    [11]

    Kataja M, Hakala T, Julku A, Huttunen M, van Dijken S, Törmä P 2015 Nat. Commun. 6 7072Google Scholar

    [12]

    Bauer C, Kobiela G, Giessen H 2011 Phys. Rev. B 84 193104Google Scholar

    [13]

    Utikal T, Zentgraf T, Paul T, Rockstuhl C, Lederer F, Lippitz M, Giessen H 2011 Phys. Rev. Lett. 106 133901Google Scholar

    [14]

    Thackray B D, Thomas P A, Auton G H, Rodriguez F J, Marshall O P, Kravets V G, Grigorenko A N 2015 Nano Lett. 15 3519Google Scholar

    [15]

    殷澄, 许田, 陈秉岩, 韩庆邦 2015 物理学报 64 164202Google Scholar

    Yin C, Xu T, Chen B Y, Han Q B 2015 Acta Phys. Sin. 64 164202Google Scholar

    [16]

    殷澄, 陆成杰, 笪婧, 张瑞耕, 阚雪芬, 韩庆邦, 许田 2021 物理学报 70 024201Google Scholar

    Yin C, Lu C J, Da J, Zhang R G, Kan X F, Han Q B, Xu T 2021 Acta Phys. Sin. 70 024201Google Scholar

    [17]

    Alexander M 2009 JOSA B 26 517Google Scholar

    [18]

    Humphrey A D, Barnes W L 2014 Phys. Rev. B 90 075404Google Scholar

    [19]

    Cai W, Shalaev V 2010 Optical Metamaterials (New York: Springer) p22

    [20]

    Martin S 2017 Chiral Nanophotonics (Switzerland: Springer) p43

  • 图 1  (a) 金属纳米粒子的双圆环阵列示意图; (b) 阵列结构参数图; (c) 激发场参数图

    Fig. 1.  (a) Schematic diagram of the double ring array of metallic nanoparticles; (b) structure diagram and the parameter definitions; (c) definition of the excitation field.

    图 2  4种特殊的双圆环金属纳米粒子阵列结构

    Fig. 2.  Four special arrangement of the double ring array of metallic particles.

    图 3  (a) 由单圆环粒子阵列构造双圆环粒子阵列; (b) 双圆环阵列的归一化增强因子随结构参数$ {{\Delta \theta } \mathord{\left/ {\vphantom {{\Delta \theta } \theta }} \right. } \theta } $$ {{\Delta r} \mathord{\left/ {\vphantom {{\Delta r} r}} \right. } r} $的变化, 图中展现出两种共振结构(用红色虚线标出)随着$ {{\Delta \theta } \mathord{\left/ {\vphantom {{\Delta \theta } \theta }} \right. } \theta } $变化而逐渐简并的情形. 在仿真中, 金属纳米粒子使用的是半径为40 nm的银球, 激发波长为650 nm, 其他参数为N = 12和r = 200 nm

    Fig. 3.  (a) Transform to double ring structure from single ring array by varying two parameters $ \Delta \theta /\theta $ and $ {{\Delta r} \mathord{\left/ {\vphantom {{\Delta r} r}} \right. } r} $; (b) normalized enhancement factor ($\beta $) as a function of the two parameters. Two resonant structures are displayed via red dashed arrows, which gradually degenerate as the $ \Delta \theta /\theta $ turns large. In the calculation, the metallic particles are silver sphere of 40 nm in radius, and the incident wavelength is 650 nm, other parameters are N = 12 and r = 200 nm.

    图 4  双圆环粒子阵列(图2(c)结构)的增强因子$\beta $随结构参数r1/r2和粒子数N的改变

    Fig. 4.  Enhancement factor $\beta $ of the double ring array as shown in Fig. 2(c) as a function of the structural parameter r1/r2 and the particle number N of a single ring.

    图 5  4种基于图2(c)结构的双圆环阵列的增强因子$\beta $随结构参数r1/r2和激发波长$ \lambda $的变化情况

    Fig. 5.  Enhancement factor $\beta $ of the four different double ring array based on the model shown in Fig. 2(c) as a function of the structural parameter r1/r2 and the incident wavelength $ \lambda $.

    图 6  两种双圆环粒子阵列结构的局域场分布 (a), (c) xz平面上的场分布, 最大传输距离为150 nm; (b), (f) 距离阵列40 nm处xy平面上的场分布; (c), (g) 距离阵列80 nm处xy平面上的场分布; (d), (h) 距离阵列120 nm处xy平面上的场分布. 仿真区域的边长为600 nm, 蓝色箭头标识了横向能流的方向

    Fig. 6.  Radiation field of two double ring array: (a), (c) Field distribution on the xz plane, where the largest propagation distance is 150 nm; (b), (f) field distribution plot the transverse distribution on the xy plane of 40 nm away from the array; (c), (g) field distribution on the xy plane at 80 nm from the array; (d), (h) field distribution on the xy plane at 120 nm distance from the array. The simulation area is a square of 600 nm wide, and the blue arrows show the transversal energy flux.

    图 7  双圆环粒子阵列的共振效应 (a) 完全共振结构与作为对比的部分共振结构参数; (b) 完全共振结构的增强因子; (c) 在不同激发外场下, 两种共振结构在不同传输距离处的局域场分布与横向能流分布

    Fig. 7.  Resonant characteristics of the double ring particle array: (a) Structural parameters of the full resonant and partial resonant array; (b) enhancement factor of the full resonant structure; (c) radiation field of the two structures at different propagation distance under different excitation.

  • [1]

    Wang Q, Ren Z H, Zhao W M, Wang L, Yan X, Zhu A S, Qiu F M, Zhang K K 2022 Nanoscale 14 564Google Scholar

    [2]

    Philip A, Kumar A R 2022 Coord. Chem. Rev. 458 214424Google Scholar

    [3]

    Dong L, Zhang C Y, Yan L, Zhang B B, Chen H, Mi X H, Fu Z K, Zhang Z L, Zheng H R 2021 Chin. Phys. B 30 077301Google Scholar

    [4]

    Wu Y, Niu J, Danesh M, Liu J, Chen Y, Ke L, Qiu C, Yang H 2016 Appl. Phys. Lett. 109 041106Google Scholar

    [5]

    Hutter E, Fendler J H 2004 Adv. Mater. 16 1685Google Scholar

    [6]

    Kravets V G, Kabashin A V, Barnes W L, Grigorenko A N 2018 Chem. Rev. 118 5912Google Scholar

    [7]

    Wang F, Shen Y R 2006 Phys. Rev. Lett. 97 206806Google Scholar

    [8]

    Wang L, Wang Q, Wang T Q, Zhao W M, Yin X Y, Jiang J X, Zhang S S 2022 Nanoscale 14 6144Google Scholar

    [9]

    Huang X, Zhang B, Yu B, Zhang H, Shao G 2022 Nano Technol. 33 225206

    [10]

    Hua Y, Fumani A K, Odom T W 2019 ACS Photonics 6 322Google Scholar

    [11]

    Kataja M, Hakala T, Julku A, Huttunen M, van Dijken S, Törmä P 2015 Nat. Commun. 6 7072Google Scholar

    [12]

    Bauer C, Kobiela G, Giessen H 2011 Phys. Rev. B 84 193104Google Scholar

    [13]

    Utikal T, Zentgraf T, Paul T, Rockstuhl C, Lederer F, Lippitz M, Giessen H 2011 Phys. Rev. Lett. 106 133901Google Scholar

    [14]

    Thackray B D, Thomas P A, Auton G H, Rodriguez F J, Marshall O P, Kravets V G, Grigorenko A N 2015 Nano Lett. 15 3519Google Scholar

    [15]

    殷澄, 许田, 陈秉岩, 韩庆邦 2015 物理学报 64 164202Google Scholar

    Yin C, Xu T, Chen B Y, Han Q B 2015 Acta Phys. Sin. 64 164202Google Scholar

    [16]

    殷澄, 陆成杰, 笪婧, 张瑞耕, 阚雪芬, 韩庆邦, 许田 2021 物理学报 70 024201Google Scholar

    Yin C, Lu C J, Da J, Zhang R G, Kan X F, Han Q B, Xu T 2021 Acta Phys. Sin. 70 024201Google Scholar

    [17]

    Alexander M 2009 JOSA B 26 517Google Scholar

    [18]

    Humphrey A D, Barnes W L 2014 Phys. Rev. B 90 075404Google Scholar

    [19]

    Cai W, Shalaev V 2010 Optical Metamaterials (New York: Springer) p22

    [20]

    Martin S 2017 Chiral Nanophotonics (Switzerland: Springer) p43

  • [1] 李凯, 孙捷, 杜在发, 钱峰松, 唐鹏昊, 梅宇, 徐晨, 严群, 柳鸣, 李龙飞, 郭伟玲. 带有垂直石墨烯的金属热电堆红外探测器. 物理学报, 2023, 72(3): 038101. doi: 10.7498/aps.72.20221564
    [2] 井建迎, 刘琨, 吴张羿, 刘玥萌, 江俊峰, 徐天华, 晏伟铖, 熊艺扬, 战晓寒, 肖璐, 刘津畅, 刘铁根. 基于紫磷增敏的即插即用式双通道光纤表面等离激元共振折射率计. 物理学报, 2023, 72(21): 214206. doi: 10.7498/aps.72.20231110
    [3] 李健康, 李睿. 利用数值模拟研究表面增强相干反斯托克斯拉曼散射增强基底. 物理学报, 2021, 70(10): 104207. doi: 10.7498/aps.70.20201773
    [4] 梁玲玲, 赵艳, 冯超. 铝基银纳米阵列制备及其紫外-可见-近红外光吸收特性. 物理学报, 2020, 69(6): 065201. doi: 10.7498/aps.69.20191522
    [5] 朱旭鹏, 石惠民, 张轼, 陈智全, 郑梦洁, 王雅思, 薛书文, 张军, 段辉高. 表面等离激元耦合体系及其光谱增强应用. 物理学报, 2019, 68(14): 147304. doi: 10.7498/aps.68.20190782
    [6] 冯仕靓, 王靖宇, 陈舒, 孟令雁, 沈少鑫, 杨志林. 表面等离激元“热点”的可控激发及近场增强光谱学. 物理学报, 2019, 68(14): 147801. doi: 10.7498/aps.68.20190305
    [7] 万婷, 罗朝明, 闵力, 陈敏, 肖磊. 基于合金介电常数的可控特性增强光子自旋霍尔效应. 物理学报, 2018, 67(6): 064201. doi: 10.7498/aps.67.20171824
    [8] 蒋行, 周玉荣, 刘丰珍, 周玉琴. 后退火处理对铟锡氧化物表面等离激元共振特性的影响. 物理学报, 2018, 67(17): 177802. doi: 10.7498/aps.67.20180435
    [9] 贾博仑, 邓玲玲, 陈若曦, 张雅男, 房旭民. 利用Ag@SiO2纳米粒子等离子体共振增强发光二极管辐射功率的数值研究. 物理学报, 2017, 66(23): 237801. doi: 10.7498/aps.66.237801
    [10] 黄运欢, 李璞. 金纳米棒复合体的消光特性. 物理学报, 2015, 64(20): 207301. doi: 10.7498/aps.64.207301
    [11] 高静, 常凯楠, 王鹿霞. 光激发作用下分子与多金属纳米粒子间的电荷转移研究. 物理学报, 2015, 64(14): 147303. doi: 10.7498/aps.64.147303
    [12] 王鹿霞, 常凯楠. 异质结电荷转移的密度矩阵理论近似研究. 物理学报, 2014, 63(13): 137302. doi: 10.7498/aps.63.137302
    [13] 孙雪菲, 王鹿霞. 分子激发中的表面等离激元增强效应. 物理学报, 2014, 63(9): 097301. doi: 10.7498/aps.63.097301
    [14] 王玥, 刘丽炜, 胡思怡, 李其扬, 孙振皓, 苗馨卉, 杨小川, 张喜和. 基于COMSOL Multiphysics对Cu2S量子点的表面等离激元共振模拟研究. 物理学报, 2013, 62(19): 197803. doi: 10.7498/aps.62.197803
    [15] 谭姿, 王鹿霞. 异质结线性吸收谱中的等离激元效应. 物理学报, 2013, 62(23): 237303. doi: 10.7498/aps.62.237303
    [16] 戴隆贵, 禤铭东, 丁芃, 贾海强, 周均铭, 陈弘. 一种简单高效的制备硅纳米孔阵结构的方法. 物理学报, 2013, 62(15): 156104. doi: 10.7498/aps.62.156104
    [17] 丛超, 吴大建, 刘晓峻, 李勃. 金银三层纳米管局域表面等离激元共振特性研究. 物理学报, 2012, 61(3): 037301. doi: 10.7498/aps.61.037301
    [18] 杨振岭, 刘玉强, 杨延强. 银纳米颗粒对四苯基卟啉Q带荧光寿命的延长. 物理学报, 2012, 61(3): 037805. doi: 10.7498/aps.61.037805
    [19] 丛超, 吴大建, 刘晓峻. 椭圆截面金纳米管的局域表面等离激元共振特性研究. 物理学报, 2011, 60(4): 046102. doi: 10.7498/aps.60.046102
    [20] 李会峰, 高祥熙, 黄运华, 王建, 张跃, 赵婧. 掺铟氧化锌纳米阵列的制备、结构及性质研究. 物理学报, 2009, 58(4): 2702-2706. doi: 10.7498/aps.58.2702
计量
  • 文章访问数:  3653
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-14
  • 修回日期:  2023-03-08
  • 上网日期:  2023-03-23
  • 刊出日期:  2023-05-20

/

返回文章
返回