搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光与近临界密度等离子体相互作用中的无碰撞静电冲击波产生

岳东宁 董全力 陈民 赵耀 耿盼飞 远晓辉 盛政明 张杰

引用本文:
Citation:

强激光与近临界密度等离子体相互作用中的无碰撞静电冲击波产生

岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰

Generation of collisionless electrostatic shock waves in interaction between strong intense laser and near-critical-density plasma

Yue Dong-Ning, Dong Quan-Li, Chen Min, Zhao Yao, Geng Pan-Fei, Yuan Xiao-Hui, Sheng Zheng-Ming, Zhang Jie
PDF
HTML
导出引用
  • 本文通过一维粒子模拟(particle-in-cell)方法研究了强激光与近临界密度等离子体相互作用中的弱冲击波和强冲击波产生, 并讨论了非相对论和相对论光强以及等离子体密度分布区间对无碰撞冲击波形成的影响. 非相对论的弱驱动光与等离子体相互作用产生的是弱冲击波. 由于电子加热不充分, 电子能谱呈现出双温分布. 较低温度的电子对弱冲击波的形成以及质子反射加速有重要作用. 弱冲击波加速质子的能谱呈连续分布. 在等离子体密度上升沿区间较大时, 可观察到后孤子结构向离子声波结构演化并进一步演化为弱冲击波结构的过程. 在相对论的强驱动光强下, 电子加热比较充分可达到相对论温度, 且呈现出单温分布. 进一步分析密度分布区间大小对冲击波形成的影响时发现: 1) 当等离子体密度上升沿区间较大时, 离子声波的势垒易被热电子屏蔽且离子声波结构在传输的过程中容易被后续的激光破坏而无法演化为无碰撞冲击波; 2) 当等离子密度分布区间较小时, 离子声波中加速电场的有效距离(即德拜长度)和持续时间更长, 这导致其结构在传输过程中更加稳定. 当离子声波中加速的质子与靶后鞘层场加速的质子之间的速度差满足无碰撞冲击波的离子反射条件时, 离子声波进一步演化为强的无碰撞冲击波, 同时产生了准单能的质子.
    Weak and strong collisionless electrostatic shock wave (CESW) generated in the interaction between strong intense laser and near-critical-density plasma are studied by the one-dimensional particle-in-cell simulation in this work. And the effects of the ranges of plasma density profiles, non-relativistic and relativistic laser intensities on the generation of CESWs are also investigated. The non-relativistic weakly driven laser generates the weak CESW in the interaction between the laser and near-critical-density plasma. The electron spectra show double-temperature distribution because the non-relativistic driven laser cannot heat the electrons sufficiently. The low-temperature electrons have an important influence on the generation of weak CESW, and they can also cause the protons to be accelerated and reflected from the CESWs. The spectra of the weak CESW protons show a continuously distributed profile. When the range of plasma density up-ramp is large, the process can be observed that the post-soliton structure evolves into the ion acoustic wave and further into the weak collisionless electrostatic shock wave. When the driven laser intensity is relativistic, the electrons are heated sufficiently to a single relativistic temperature. The effect of the range of plasma density profile on the generation of CESW is further analyzed and it is found that 1) when the range of plasma density up-ramp is large, the potential barrier of ion acoustic wave is shielded by the hot electrons; 2) when the range of plasma density up-ramp is small, the effective distance (i.e. the Debye length) of accelerating field is larger and the endurance time is longer than when the range of plasma density up-ramp is large. This makes the ion acoustic wave structure more stable in its forward propagation process. When the difference in velocity between the ion acoustic wave accelerating protons and the target normal sheath accelerating protons satisfies the proton reflection condition of CESW, the ion acoustic wave further evolves into the strong CESW, the monoenergetic protons generated at the same time.
      通信作者: 董全力, qldong@aphy.iphy.ac.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 12204131)、中国科学院战略性科技先导专项 (批准号: XDA25030300, XDA25010100)、山东省自然科学基金(批准号: ZR2019ZD44)和广东省基础与应用基础研究基金 (批准号: 2023A1515011695)资助的课题.
      Corresponding author: Dong Quan-Li, qldong@aphy.iphy.ac.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12204131), the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant Nos. XDA25030300, XDA25010100), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2019ZD44), and the Basic and Applied Basic Research Foundation of Guangdong, China (Grant No. 2023A1515011695).
    [1]

    Moiseev S S, Sagdeev R Z 1963 J. Nucl. Energy, Part C Plasma Phys. 5 43Google Scholar

    [2]

    Taylor R J, Baker D R, Ikezi H 1970 Phys. Rev. Lett. 24 206Google Scholar

    [3]

    Ghavamian P, Schwartz S J, Mitchell J, Masters A, Laming J M 2013 Space Sci. Rev. 178 633Google Scholar

    [4]

    Waxman E 2006 Plasma Phys. Control. Fusion 48 B137Google Scholar

    [5]

    Nishikawa K -I, Hardee P, Richardson G, Preece R, Sol H, Fishman G J 2003 Astrophys. J. 595 555Google Scholar

    [6]

    Huang J, Weng S M, Wang X, Zhong J Y, Zhu X L, Li X F, Chen M, Masakatsu M, Sheng Z M 2022 Astrophys. J. 931 36Google Scholar

    [7]

    Drake R P 2000 Phys. Plasmas 7 4690Google Scholar

    [8]

    Courtois C, Grundy R A D, Ash A D, Chambers D M, Woolsey N C, Dendy R O, McClements K G 2004 Phys. Plasmas 11 3386Google Scholar

    [9]

    Romagnani L, Bulanov S V, Borghesi M, Audebert P, Gauthier J C, Löwenbrück K, Mackinnon A J, Patel P, Pretzler G, Toncian T, Willi O 2008 Phys. Rev. Lett. 101 025004Google Scholar

    [10]

    Denavit J 1992 Phys. Rev. Lett. 69 3052Google Scholar

    [11]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002Google Scholar

    [12]

    Chen M, Sheng Z M, Dong Q L, He M Q, Li Y T, Bari M A, Zhang J 2007 Phys. Plasmas 14 053102Google Scholar

    [13]

    Liu M, Weng S M, Li Y T, Yuan D W, Chen M, Mulser P, Sheng Z M, Murakami M, Yu L L, Zheng X L, Zhang J 2016 Phys. Plasmas 23 113103Google Scholar

    [14]

    Fiuza F, Stockem A, Boella E, Fonseca R A, Silva L O, Haberberger D, Tochitsky S, Gong C, Mori W B, Joshi C 2012 Phys. Rev. Lett. 109 215001Google Scholar

    [15]

    Zhang W L, Qiao B, Huang T W, X. F. Shen, W. Y. You, X. Q. Yan, S. Z. Wu, Zhou C T, He X T 2016 Phys. Plasmas 23 073118Google Scholar

    [16]

    Zhang W L, Qiao B, Shen X F, You W Y, Huang T W, Yan X Q, Wu S Z, Zhou C T, He X T 2016 New J. Phys. 18 093029Google Scholar

    [17]

    Haberberger D, Tochitsky S, Fiuza F, Gong C, Fonseca R A, Silva L O, Mori W B, Joshi C 2012 Nat. Phys. 8 95Google Scholar

    [18]

    Zhang H, Shen B F, Wang W P, Zhai S H, Li S S, Lu X M, Li J F, Xu R J, Wang X L, Liang X Y, Leng Y X, Li R X, Xu Z Z 2017 Phys. Rev. Lett. 119 164801Google Scholar

    [19]

    Dover N P, Cook N, Tresca O, Ettlinger O, Maharjan C, Polyanskiy M N, Shkolnikov P, Pogorelsky I, Najmudin Z 2016 J. Plasma Phys. 82 415820101Google Scholar

    [20]

    Marquès J -R, Loiseau P, Bonvalet J, Tarisien M, d'Humières E, Domange J, Hannachi F, Lancia L, Larroche O, Nicolaï P, Puyuelo-Valdes P, Romagnani L, Santos J J, Tikhonchuk V 2021 Phys. Plasmas 28 023103Google Scholar

    [21]

    Puyuelo-Valdes P, Henares J L, Hannachi F, Ceccotti T, Domange J, Ehret M, d'Humieres E, Lancia L, Marquès J -R, Ribeyre X, Santos J J, Tikhonchuk V, Tarisien M 2019 Phys. Plasmas 26 123109Google Scholar

    [22]

    Helle M H, Gordon D F, Kaganovich D, Chen Y, Palastro J P, Ting A 2016 Phys. Rev. Lett. 117 165001Google Scholar

    [23]

    Deng Y, Zhang Q, Yue D, Wei W, Feng L, Cui Y, Ma Y, Lu F, Yang Y, Huang Z, Wu Y, Zhou W, Weng S, Liu F, Chen M, Yuan X, Zhang J 2022 Phys. Plasmas 29 123103Google Scholar

    [24]

    Deng Y Q, Yue D N, Luo M F, Zhao X, Li Y J, Ge X L, Liu F, Weng S M, Chen M, Yuan X H, Zhang J 2022 High Power Laser Sci. 10 e39Google Scholar

    [25]

    Naumova N M, Bulanov S V, Esirkepov T Zh, Farina D, Nishihara K, Pegoraro F, Ruhl H, Sakharov A S 2001 Phys. Rev. Lett. 87 185004Google Scholar

    [26]

    Borghesi M, Bulanov S, Campbell D H, Clarke R J, Esirkepov T Z, Galimberti M, Gizzi L A, MacKinnon A J, Naumova N M, Pegoraro F, Ruhl H, Schiavi A, Willi O 2002 Phys. Rev. Lett. 88 135002Google Scholar

    [27]

    Liu Y, Klimo O, Esirkepov T Z, Bulanov S V, Gu Y, Weber S, Korn G 2015 Phys. Plasmas 22 112302Google Scholar

    [28]

    Yue D N, Chen M, Zhao Y, Geng P F, Yuan X H, Dong Q L, Sheng Z M, Zhang J 2022 Chin. Phys. B 31 045205Google Scholar

    [29]

    Yue D N, Chen M, Geng P F, Yuan X H, Weng S M, Bulanov S S, Bulanov S V, Mima K, Sheng Z M, Zhang J 2021 Phys. Plasmas 28 042303Google Scholar

    [30]

    Yue D N, Chen M, Geng P F, Yuan X H, Sheng Z M, Zhang J, Dong Q L, Das A, Kumar G R 2021 Plasma Phys. Control. Fusion 63 075009Google Scholar

    [31]

    Yi L Q, Pusztai I, Pukhov A, Shen B F and Fülöp T 2019 J. Plasma Phys. 85 905850403Google Scholar

    [32]

    Yue D N, Chen M, Geng P F, Yuan X H, Dong Q L, Sheng Z M, Zhang J 2022 Plasma Phys. Control. Fusion 64 045025Google Scholar

    [33]

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T, Adam J C 2002 Lect. Notes Comput. Sci. 2331 342

    [34]

    Yuan D W, Li Y T, Liu M, Zhong J Y, Zhu B J, Li Y F, Wei H G, Han B, Pei X X, Zhao J R, Li F, Zhang Z, Liang G Y, Wang F L, Weng S M, Li Y J, Jiang S E, Du K, Ding Y K, Zhu B Q, Zhu J Q, Zhao G, Zhang J 2017 Sci. Rep. 7 42915Google Scholar

    [35]

    Chenais-Popovics C, Renaudin P, Rancu O, Gilleron F, Gauthier J C, Larroche O, Peyrusse O, Dirksmöller M, Sondhauss P, Missalla T, Uschmann I, Förster E, Renner O, Krousky E 1997 Phys. Plasmas 4 190Google Scholar

  • 图 1  初始激光等离子体条件设置, 驱动激光分为弱光强(a0 = 0.5)和强光强(a0 = 3.0)两种. 近临界密度分布分为10 μm和40 μm线性上升沿两种情况, 峰值密度均为1.5nc, 下降沿均为指数分布, 特征长度为8 μm

    Fig. 1.  The setup of initial laser-plasma conditions, the drive intense lasers are divided as the weak intensity and the strong intensity corresponding to the normalized amplitude as a0 = 0.5 and a0 = 3.0. The density profiles are set up as 10 μm and 40 μm linear density up-ramp respectively. The peak densities both are 1.5nc. The density down-ramps both are exponentially distributed which the characteristic scale is 8 μm.

    图 2  t = 150T0, t = 350T0, t = 500T0时刻, 弱驱动光强下, 质子密度np (a), (c) 和 纵向加速电场Ex (b), (d) 的分布 (a), (b) 第1种等离子体密度分布; (c), (d) 第2种等离子体密度分布, T0为对应波长1.0 μm的归一化激光周期

    Fig. 2.  Distributions of (a), (c) the proton density np and (b), (d) the longitudinal electric field Ex with the weak drive laser intensity at t = 150T0, t = 350T0, t = 500T0: (a), (b) plasma density profile 1; (c), (d) plasma density profile 2, T0 is the normalized laser period which is corresponding to 1.0 μm wavelength.

    图 3  (a) 图2(a)A点(蓝线)和图2(c)B点(红线)处激光电场Ez随时间的分布, (b)对应的频谱分布, ω0为入射激光角频率

    Fig. 3.  (a) Distributions of the laser electric field Ez of point A in Fig.2(a) (blue line) and point B in Fig.2(c) (red line); (b) the corresponding frequency spectrum, ω0 is the angular frequency of incident laser.

    图 4  t = 500T0时刻, 弱驱动光强下, 质子在相空间(x, px)中的分布 (a) 第1种等离子体密度分布; (b) 第2种等离子体密度分布; (c) 对应的动量px > 0的质子能谱分布

    Fig. 4.  Protons distributions in phase-space (x, px) with the weak drive laser intensity at t = 500T0: (a) Plasma density profile 1; (b) plasma density profile 2; (c) the corresponding energy spectra for protons with proton momenta px > 0 at t = 500T0.

    图 5  t = 500T0时刻, 弱驱动光强下, 电子能谱和拟合电子温度Te分布(低温TeL和高温TeH) (a) 第1种等离子体密度分布; (b) 第2种等离子体密度分布

    Fig. 5.  Distributions of the electron energy spectrum and fitted electron temperature Te (low temperature TeL and high temperature TeH) with the weak drive laser intensity at t = 500T0: (a) Plasma density profile 1, (b) plasma density profile 2.

    图 6   t = 100T0, t = 150T0, t = 200T0时刻, 强驱动光强下, 质子密度np (a), (c)和纵向加速电场Ex (b), (d)的分布 (a), (b) 第1种等离子体密度分布; (c), (d) 第2种等离子体密度分布.

    Fig. 6.  Distributions of the proton density np(a), (c) and the longitudinal electric field Ex (b), (d) with the strong drive laser intensity at t = 100T0, t = 150T0, t = 200T0: (a), (b) Plasma density profile 1; (c), (d) plasma density profile 2.

    图 7  t = 300T0, t = 350T0, t = 400T0时刻, 强驱动光强下, 质子密度np (a), (c)和纵向加速电场Ex (b), (d)的分布 (a), (b) 第1种等离子体密度分布; (c), (d) 第2种等离子体密度分布

    Fig. 7.  Distributions of the proton density np(a), (c) and the longitudinal electric field Ex(b), (d) with the strong drive laser intensity at t = 300T0, t = 350T0, t = 400T0: (a), (b) Plasma density profile 1; (c), (d) plasma density profile 2.

    图 8  t = 300T0, t = 350T0, t = 400T0时刻, 强驱动光强下, 质子在相空间(x, px)中的分布 (a) 第1种等离子体密度分布; (b) 第2种等离子体密度分布; (c) t = 400T0时刻, 对应的动量px > 0的质子能谱分布

    Fig. 8.  Protons distributions in phase-space (x, px) with the strong drive laser intensity at t = 300T0, t = 350T0 and t = 400T0: (a) Plasma density profile 1; (b) plasma density profile 2; (c) the corresponding energy spectra for protons with proton momenta px > 0 at t = 400T0.

    图 9  t = 400T0时刻, 强驱动光强下, 电子能谱和拟合电子温度Te分布 (a) 第1种等离子体密度分布; (b) 第2种等离子体密度分布

    Fig. 9.  Distributions of the electron energy spectrum and fitted electron temperature Te with the strong drive laser intensity at t = 400T0: (a) Plasma density profile 1; (b) plasma density profile 2.

  • [1]

    Moiseev S S, Sagdeev R Z 1963 J. Nucl. Energy, Part C Plasma Phys. 5 43Google Scholar

    [2]

    Taylor R J, Baker D R, Ikezi H 1970 Phys. Rev. Lett. 24 206Google Scholar

    [3]

    Ghavamian P, Schwartz S J, Mitchell J, Masters A, Laming J M 2013 Space Sci. Rev. 178 633Google Scholar

    [4]

    Waxman E 2006 Plasma Phys. Control. Fusion 48 B137Google Scholar

    [5]

    Nishikawa K -I, Hardee P, Richardson G, Preece R, Sol H, Fishman G J 2003 Astrophys. J. 595 555Google Scholar

    [6]

    Huang J, Weng S M, Wang X, Zhong J Y, Zhu X L, Li X F, Chen M, Masakatsu M, Sheng Z M 2022 Astrophys. J. 931 36Google Scholar

    [7]

    Drake R P 2000 Phys. Plasmas 7 4690Google Scholar

    [8]

    Courtois C, Grundy R A D, Ash A D, Chambers D M, Woolsey N C, Dendy R O, McClements K G 2004 Phys. Plasmas 11 3386Google Scholar

    [9]

    Romagnani L, Bulanov S V, Borghesi M, Audebert P, Gauthier J C, Löwenbrück K, Mackinnon A J, Patel P, Pretzler G, Toncian T, Willi O 2008 Phys. Rev. Lett. 101 025004Google Scholar

    [10]

    Denavit J 1992 Phys. Rev. Lett. 69 3052Google Scholar

    [11]

    Silva L O, Marti M, Davies J R, Fonseca R A, Ren C, Tsung F S, Mori W B 2004 Phys. Rev. Lett. 92 015002Google Scholar

    [12]

    Chen M, Sheng Z M, Dong Q L, He M Q, Li Y T, Bari M A, Zhang J 2007 Phys. Plasmas 14 053102Google Scholar

    [13]

    Liu M, Weng S M, Li Y T, Yuan D W, Chen M, Mulser P, Sheng Z M, Murakami M, Yu L L, Zheng X L, Zhang J 2016 Phys. Plasmas 23 113103Google Scholar

    [14]

    Fiuza F, Stockem A, Boella E, Fonseca R A, Silva L O, Haberberger D, Tochitsky S, Gong C, Mori W B, Joshi C 2012 Phys. Rev. Lett. 109 215001Google Scholar

    [15]

    Zhang W L, Qiao B, Huang T W, X. F. Shen, W. Y. You, X. Q. Yan, S. Z. Wu, Zhou C T, He X T 2016 Phys. Plasmas 23 073118Google Scholar

    [16]

    Zhang W L, Qiao B, Shen X F, You W Y, Huang T W, Yan X Q, Wu S Z, Zhou C T, He X T 2016 New J. Phys. 18 093029Google Scholar

    [17]

    Haberberger D, Tochitsky S, Fiuza F, Gong C, Fonseca R A, Silva L O, Mori W B, Joshi C 2012 Nat. Phys. 8 95Google Scholar

    [18]

    Zhang H, Shen B F, Wang W P, Zhai S H, Li S S, Lu X M, Li J F, Xu R J, Wang X L, Liang X Y, Leng Y X, Li R X, Xu Z Z 2017 Phys. Rev. Lett. 119 164801Google Scholar

    [19]

    Dover N P, Cook N, Tresca O, Ettlinger O, Maharjan C, Polyanskiy M N, Shkolnikov P, Pogorelsky I, Najmudin Z 2016 J. Plasma Phys. 82 415820101Google Scholar

    [20]

    Marquès J -R, Loiseau P, Bonvalet J, Tarisien M, d'Humières E, Domange J, Hannachi F, Lancia L, Larroche O, Nicolaï P, Puyuelo-Valdes P, Romagnani L, Santos J J, Tikhonchuk V 2021 Phys. Plasmas 28 023103Google Scholar

    [21]

    Puyuelo-Valdes P, Henares J L, Hannachi F, Ceccotti T, Domange J, Ehret M, d'Humieres E, Lancia L, Marquès J -R, Ribeyre X, Santos J J, Tikhonchuk V, Tarisien M 2019 Phys. Plasmas 26 123109Google Scholar

    [22]

    Helle M H, Gordon D F, Kaganovich D, Chen Y, Palastro J P, Ting A 2016 Phys. Rev. Lett. 117 165001Google Scholar

    [23]

    Deng Y, Zhang Q, Yue D, Wei W, Feng L, Cui Y, Ma Y, Lu F, Yang Y, Huang Z, Wu Y, Zhou W, Weng S, Liu F, Chen M, Yuan X, Zhang J 2022 Phys. Plasmas 29 123103Google Scholar

    [24]

    Deng Y Q, Yue D N, Luo M F, Zhao X, Li Y J, Ge X L, Liu F, Weng S M, Chen M, Yuan X H, Zhang J 2022 High Power Laser Sci. 10 e39Google Scholar

    [25]

    Naumova N M, Bulanov S V, Esirkepov T Zh, Farina D, Nishihara K, Pegoraro F, Ruhl H, Sakharov A S 2001 Phys. Rev. Lett. 87 185004Google Scholar

    [26]

    Borghesi M, Bulanov S, Campbell D H, Clarke R J, Esirkepov T Z, Galimberti M, Gizzi L A, MacKinnon A J, Naumova N M, Pegoraro F, Ruhl H, Schiavi A, Willi O 2002 Phys. Rev. Lett. 88 135002Google Scholar

    [27]

    Liu Y, Klimo O, Esirkepov T Z, Bulanov S V, Gu Y, Weber S, Korn G 2015 Phys. Plasmas 22 112302Google Scholar

    [28]

    Yue D N, Chen M, Zhao Y, Geng P F, Yuan X H, Dong Q L, Sheng Z M, Zhang J 2022 Chin. Phys. B 31 045205Google Scholar

    [29]

    Yue D N, Chen M, Geng P F, Yuan X H, Weng S M, Bulanov S S, Bulanov S V, Mima K, Sheng Z M, Zhang J 2021 Phys. Plasmas 28 042303Google Scholar

    [30]

    Yue D N, Chen M, Geng P F, Yuan X H, Sheng Z M, Zhang J, Dong Q L, Das A, Kumar G R 2021 Plasma Phys. Control. Fusion 63 075009Google Scholar

    [31]

    Yi L Q, Pusztai I, Pukhov A, Shen B F and Fülöp T 2019 J. Plasma Phys. 85 905850403Google Scholar

    [32]

    Yue D N, Chen M, Geng P F, Yuan X H, Dong Q L, Sheng Z M, Zhang J 2022 Plasma Phys. Control. Fusion 64 045025Google Scholar

    [33]

    Fonseca R A, Silva L O, Tsung F S, Decyk V K, Lu W, Ren C, Mori W B, Deng S, Lee S, Katsouleas T, Adam J C 2002 Lect. Notes Comput. Sci. 2331 342

    [34]

    Yuan D W, Li Y T, Liu M, Zhong J Y, Zhu B J, Li Y F, Wei H G, Han B, Pei X X, Zhao J R, Li F, Zhang Z, Liang G Y, Wang F L, Weng S M, Li Y J, Jiang S E, Du K, Ding Y K, Zhu B Q, Zhu J Q, Zhao G, Zhang J 2017 Sci. Rep. 7 42915Google Scholar

    [35]

    Chenais-Popovics C, Renaudin P, Rancu O, Gilleron F, Gauthier J C, Larroche O, Peyrusse O, Dirksmöller M, Sondhauss P, Missalla T, Uschmann I, Förster E, Renner O, Krousky E 1997 Phys. Plasmas 4 190Google Scholar

  • [1] 岳东宁, 董全力, 陈民, 赵耀, 耿盼飞, 远晓辉, 盛政明, 张杰. 强激光与亚临界密度等离子体相互作用中的近前向散射驱动光子加速机制. 物理学报, 2023, 72(12): 125201. doi: 10.7498/aps.72.20222014
    [2] 王云良, 颜学庆. 强激光与固体密度等离子体作用产生孤立阿秒脉冲的研究进展. 物理学报, 2023, 72(5): 054207. doi: 10.7498/aps.72.20222262
    [3] 赵鑫, 杨晓虎, 张国博, 马燕云, 刘彦鹏, 郁明阳. 高功率激光辐照平面靶后辐射冷却效应对等离子体成丝的影响. 物理学报, 2022, 71(23): 235202. doi: 10.7498/aps.71.20220870
    [4] 徐新荣, 仲丛林, 张铱, 刘峰, 王少义, 谭放, 张玉雪, 周维民, 乔宾. 强激光等离子体相互作用驱动高次谐波与阿秒辐射研究进展. 物理学报, 2021, 70(8): 084206. doi: 10.7498/aps.70.20210339
    [5] 姜炜曼, 李玉同, 张喆, 朱保君, 张翌航, 袁大伟, 魏会冈, 梁贵云, 韩波, 刘畅, 原晓霞, 华能, 朱宝强, 朱健强, 方志恒, 王琛, 黄秀光, 张杰. 纳秒激光等离子体相互作用过程中激光强度对微波辐射影响的研究. 物理学报, 2019, 68(12): 125201. doi: 10.7498/aps.68.20190501
    [6] 王建勇, 程雪苹, 曾莹, 张元祥, 葛宁怡. Korteweg-de Vries方程的准孤立子解及其在离子声波中的应用. 物理学报, 2018, 67(11): 110201. doi: 10.7498/aps.67.20180094
    [7] 胡广海, 金晓丽, 张乔枫, 谢锦林, 刘万东. 利用离子声波朗道阻尼测量氧化物阴极放电中的离子温度. 物理学报, 2015, 64(18): 189401. doi: 10.7498/aps.64.189401
    [8] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X辐射谱线的分离及电子温度的提取. 物理学报, 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [9] 陈根余, 邓辉, 徐建波, 李宗根, 张玲. 脉冲光纤激光修锐青铜金刚石砂轮等离子体特性研究. 物理学报, 2013, 62(14): 144204. doi: 10.7498/aps.62.144204
    [10] 段萍, 曹安宁, 沈鸿娟, 周新维, 覃海娟, 刘金远, 卿绍伟. 电子温度对霍尔推进器等离子体鞘层特性的影响. 物理学报, 2013, 62(20): 205205. doi: 10.7498/aps.62.205205
    [11] 郭福明, 宋阳, 陈基根, 曾思良, 杨玉军. 含时量子蒙特卡罗方法研究两电子原子在强激光作用下电子的动力学行为. 物理学报, 2012, 61(16): 163203. doi: 10.7498/aps.61.163203
    [12] 蒙世坚, 李正宏, 秦义, 叶繁, 徐荣昆. X射线连续谱法诊断铝丝阵Z箍缩等离子体温度. 物理学报, 2011, 60(4): 045211. doi: 10.7498/aps.60.045211
    [13] 何民卿, 董全力, 盛政明, 翁苏明, 陈民, 武慧春, 张杰. 强激光与稠密等离子体作用引起的冲击波加速离子的研究. 物理学报, 2009, 58(1): 363-372. doi: 10.7498/aps.58.363
    [14] 黄仕华, 吴锋民. 外加静电场的聚焦激光脉冲真空加速电子方案. 物理学报, 2008, 57(12): 7680-7684. doi: 10.7498/aps.57.7680
    [15] 郭庆林, 周玉龙, 张 博, 张秋琳, 张金平, 怀素芳. 减压氩气下基体对激光微等离子体电子温度的影响. 物理学报, 2007, 56(9): 5318-5322. doi: 10.7498/aps.56.5318
    [16] 陈 卓, 何 威, 蒲以康. 电子回旋共振氩等离子体中亚稳态粒子数密度及电子温度的测量. 物理学报, 2005, 54(5): 2153-2157. doi: 10.7498/aps.54.2153
    [17] 黄 松, 宁兆元, 辛 煜, 甘肇强. CF4气体ICP等离子体中的双温电子特性. 物理学报, 2004, 53(10): 3394-3397. doi: 10.7498/aps.53.3394
    [18] 杨家敏, 丁耀南, 陈 波, 郑志坚, 杨国洪, 张保汉, 王耀梅, 张文海. 等电子法测量小能量激光打靶等离子体电子温度. 物理学报, 2003, 52(2): 411-414. doi: 10.7498/aps.52.411
    [19] 郑坚, 刘万东, 俞昌旋. 离子声波对电子输运的影响. 物理学报, 2001, 50(4): 721-725. doi: 10.7498/aps.50.721
    [20] 陈波, 郑志坚, 丁永坤, 李三伟, 王耀梅. 双示踪元素X射线能谱诊断激光等离子体电子温度. 物理学报, 2001, 50(4): 711-714. doi: 10.7498/aps.50.711
计量
  • 文章访问数:  3606
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-24
  • 修回日期:  2023-03-15
  • 上网日期:  2023-03-27
  • 刊出日期:  2023-06-05

/

返回文章
返回