搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

苯乙腈的单色共振增强双光子电离光谱及其Franck-Condon模拟

王林 李淑贤 李军伟 焦月春 杨勇刚 赵建明 李昌勇

引用本文:
Citation:

苯乙腈的单色共振增强双光子电离光谱及其Franck-Condon模拟

王林, 李淑贤, 李军伟, 焦月春, 杨勇刚, 赵建明, 李昌勇

One-color resonance enhanced two-photon ionization spectroscopy of phenylacetonitrile and its Franck-Condon simulation

Wang Lin, Li Shu-Xian, Li Jun-Wei, Jiao Yue-Chun, Yang Yong-Gang, Zhao Jian-Ming, Li Chang-Yong
PDF
HTML
导出引用
  • 苯乙腈广泛应用于医药、农药、染料、光电材料和喹啉衍生物的合成, 在相关领域备受关注. 本文采用超声分子束技术获得了苯乙腈的单色共振双光子电离光谱, 确定了该分子的激发能为(37646 ± 2) cm–1. 结合密度泛函理论计算和Franck-Condon模拟, 详细分析了测量的振动频率, 给出了尽可能准确的光谱归属. 理论和实验结果都表明, 光谱的低频区域信号强、背景低、分辨率好, 而高频范围表现出相反特征. 许多谱带被确认, 大部分属于芳香环平面内的振动, 理论计算表明这与跃迁过程中芳香环的扩张有关.
    Phenylacetonitrile (PAN) is widely used in the synthesis of medicines, pesticides, dyes, optoelectronic materials and quinoline derivatives, and has attracted much attention in related fields. In this paper, we report the one-color resonance enhanced two-photon ionization spectra of PAN obtained with ultrasonic molecular beam technique for the first time. The band origin of the S1 ← S0 electronic transition is determined to be (37646 ± 2) cm–1. Density functional theory B3LYP/6-311G++(d, p) and B3LYP/aug-cc-pvtz are used to calculate the structures, energy and vibrational frequencies of the molecule. Based on these calculations Franck-Condon spectral simulations are performed. The measured vibrational frequencies are analyzed in detail. Combined with theoretical calculation, the spectral assignments are given as accurately as possible. Theoretical and experimental results are in good agreement with each other, and show that the spectrum in the low frequency region has a great signal-noise ratio and resolution, while in the high frequency region the spectrum shows opposite characteristics, revealing that the high background in high frequency region originates from dense and weak overtone and combined vibrations. Many spectral bands are found, and most of them may be assigned to the in-plane ring deformation, and theoretical calculations suggest that this is related to the expansion of the aromatic ring during the transition.
      通信作者: 李昌勇, lichyong@sxu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 61835007, 12241408, 61575115)、长江学者和创新团队发展计划(批准号: IRT_17R70)、高等学校学科创新引智基地(111计划)(批准号: D18001)和山西省“1331工程”重点学科建设计划经费资助的课题.
      Corresponding author: Li Chang-Yong, lichyong@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61835007, 12241408, 61575115), the Program for Changjiang Scholars and Innovative Research Team in University (Grant No. IRT_17R70), the 111 Project (Grant No. D18001), and the Fund for Shanxi ‘‘1331 Project” Key Subjects Construction, China.
    [1]

    王璇 2016 硕士学位论文 (北京: 中国矿业大学)

    Wang X 2016 M. S. Thesis (Beijing: China University of Mining and Technology) (in Chinese)

    [2]

    温俏冬 2015 博士学位论文 (杭州: 浙江工业大学)

    Wen Q D 2015 Ph. D. Dissertation (Hanzhou: Zhejiang University of Technology) (in Chinese)

    [3]

    Huang L C L, Lin J L, Tzeng W B 2000 Chem. Phys. 261 449Google Scholar

    [4]

    Li C Y, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506Google Scholar

    [5]

    李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 093301Google Scholar

    Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y X, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 093301Google Scholar

    [6]

    李娜, 李淑贤, 王林, 王慧慧, 杨勇刚, 赵建明, 李昌勇 2022 物理学报 71 023301Google Scholar

    Li Na, Li S X, Wang L, Wang H H, Yang Y G, Zhao J M, Li C Y 2022 Acta Phys. Sin. 71 023301Google Scholar

    [7]

    Juchnovski I N, Binev I G 1975 J. Organomet. Chem. 99 1Google Scholar

    [8]

    Croisat D, Seyden-Penne J, Strzalko T, Wartaki L, Corset J, Froment F 1992 J. Org. Chem. 57 6435Google Scholar

    [9]

    Binev I G, Tsenov J A, Velcheva E A, Juchnovski 1995 J. Mol. Struct. 344 205Google Scholar

    [10]

    Corset J, Castellà-Ventura M, Froment F, Strzalko T, Wartski L 2002 Spectrochim. Acta A 58 1971Google Scholar

    [11]

    Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301Google Scholar

    [12]

    Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301Google Scholar

    [13]

    Chen Z, Tong Q N, Zhang C C, Hu Z 2015 Chin. Phys. B 24 043303Google Scholar

    [14]

    Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 Nature 318 162Google Scholar

    [15]

    Posthumus J 2001 Molecules and Clusters in Intense Laser Fields (New York: Cabridge University Press) p84

    [16]

    姚关心, 王小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 物理学报 55 2210Google Scholar

    Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210Google Scholar

    [17]

    Sang T P, Sang K K, Kim M S 2001 J. Chem. Phys. 114 5568Google Scholar

    [18]

    Zhao Y, Jin Y H, Li C Y, Jia S T 2019 J. Mol. Spectrosc. 363 111182Google Scholar

    [19]

    Hao J, Duan C, Yang Y, Li C Y, Jia S 2020 J. Mol. Spectrosc. 369 111258Google Scholar

    [20]

    段春泱, 李娜, 赵岩, 李昌勇 2021 物理学报 70 053301Google Scholar

    Duan C Y, Li N, Zhao Y, Li C Y 2021 Acta Phys. Sin. 70 053301Google Scholar

    [21]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2019 Gaussian 16 (Wallingford CT: Gaussian Inc.)

    [22]

    Bloino J, Biczysko M, Crescenzi O, Barone V 2008 J. Chem. Phys. 128 244105Google Scholar

    [23]

    Wilson E B 1934 Phys. Rev. 45 706Google Scholar

    [24]

    Varsanyi G, Hilger A 1974 Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (New York: Wiley) p57

    [25]

    Kemp D J, Whalley L E, Gardner A M, Tuttle W D, Warner L G, Wright T G 2019 J. Chem. Phys. 150 064306Google Scholar

    [26]

    Kemp D J, Whalley L E, Tuttle W D, Gardner A M, Speake B T, Wright T G 2018 Phys. Chem. Chem. Phys. 20 12503Google Scholar

    [27]

    Helm R M, Vogel H P, Neusser H J 1997 Chem. Phys. Lett. 270 285Google Scholar

    [28]

    Peng W C, Wu P Y, Tzeng S Y, Tzeng W B 2018 Chem. Phys. Lett. 700 145Google Scholar

    [29]

    赵岩 2019 博士学位论文 (太原: 山西大学)

    Zhao Y 2019 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [30]

    Yang S C, Huang S W, Tzeng W B 2010 J. Phys. Chem. A 114 1114Google Scholar

    [31]

    Neuhauser R G, Siglow K, Neusser H J 1997 J. Chem. Phys. 106 896Google Scholar

    [32]

    Lu K T, Eiden G C, Weisshaar J C 1992 J. Phys. Chem. 96 9742Google Scholar

    [33]

    Wang J, Qiu X J, Wang Y M, Zhang S, Zhang B 2012 Chin. J. Chem. Phys. 25 526Google Scholar

  • 图 1  实验系统原理图 MCP, 微通道板; PV, 脉冲阀; HV, 脉冲高压电源; SR430, 计数器; DG645, 数字脉冲延时发生器; 2f和3f, 2倍频和3倍频; NF, 中性密度衰减片; FL, 聚焦镜

    Fig. 1.  Experimental setup. MCP, microchannel plate; PV, pulse valve; HV, high voltage pulse power supply; SR430, counter; DG645, versatile digital delay/pulse generator; 2f and 3f, doubled and tripled frequency; NF, neutral density attenuators; FL, focusing lens.

    图 2  PAN分子的稳定构型

    Fig. 2.  Stable configuration of PAN.

    图 3  (a) PAN的单色共振多光子电离光谱; (b), (c) 分别为B3LYP/aug-cc-pvtz理论和B3LYP/6-311++G(d, p)理论的Franck-Condon模拟

    Fig. 3.  (a) One-color resonance enhanced multiphoton ionization spectrum of PAN; (b), (c) Franck-Condon simulations based on theoretical calculations of B3LYP/aug-cc-pvtz and B3LYP/6-311++G(d, p), respectively.

    图 4  实验发现的激发态S1较强的振动模及其频率, 括号内数字是理论计算的频率. 实心黑色圆点代表各原子振动到达的最远点位, 空心圆圈代表C原子平衡点位, H原子用小点表示, 平衡点的N原子用粉色表示

    Fig. 4.  Strong vibration modes of the excited state S1 and their vibration frequencies found in the experiment. The numbers in parentheses are the theoretically calculated frequencies. The solid black dot represents the biggest displacement, the open circle represents the equilibrium point of the C atom. The H atom is represented by a small dot, and the N atom of the equilibrium point is represented by pink dot.

    表 1  单色REMPI测量的电子振动跃迁能、振动频率和相对强度、密度泛函理论计算的激发态振动频率、光谱归属及文献[8]报道的电子基态振动频率(单位: cm–1)

    Table 1.  Measured electronic vibration transition energies, vibration frequencies, and relative intensities by one-color REMPI, excited state vibration frequencies calculated by density functional theories, spectral assignments and the frequencies of the S0 state measured by infrared spectroscopy[8] (unit: cm–1).

    跃迁能实验 a)相对强度振动频率 b)振动频率c)模式归属d)Ire)
    376460100$ {0}_{0}^{0} $, band origin
    376904422939γ$ {{\text{CH}}_{2}}_{0}^{1} $
    3777012419125125$ {\beta {\rm{C}}{{\rm{H}}}_{2}\text{CN}}_{0}^{1}{\text{CN}}_{0}^{1} $
    379202471239249$ {\beta {\rm{C}}{{\rm{H}}}_{2}\text{CN}}_{0}^{2}{\text{CN}}_{0}^{2} $
    3797139829393392$ 6{a}_{0}^{1} $
    381114652454460$ 16{a}_{0}^{1} $
    3817552973527526$ 6{b}_{0}^{1} $
    3820756122562563β$ {\text{CN}}_{0}^{1} $
    382986525652651$ 6{b}_{0}^{1}{\beta {\rm{C}}{{\rm{H}}}_{2}\text{CN}}_{0}^{1} $
    3840275646757758$ {1}_{0}^{1} $
    384778313840836$ {1}_{0}^{1}{\gamma {\rm{C}}{{\rm{H}}}_{2}}_{0}^{2} $
    3852587911882883$ {1}_{0}^{1}{\beta {\rm{C}}{{\rm{H}}}_{2}{\rm{C}}{\rm{N}}}_{0}^{1}{1}_{0}^{1}{\gamma {\rm{C}}{{\rm{H}}}_{2}{\rm{C}}{\rm{N}}}_{0}^{1} $
    3856892266922921${\nu \text{C-CN} }_{0}^{1}$940
    3859895229947948$ 18{a}_{0}^{1} $969
    3860495830946955β$ {\text{CN}}_{0}^{1}6{a}_{0}^{1} $988
    3861797118962966$ {12}_{0}^{1} $1003
    386901044410471044$ {12}_{0}^{1}{\gamma {\rm{C}}{{\rm{H}}}_{2}}_{0}^{2} $1029
    3880011542411541156$ {13}_{0}^{1} $1076
    388121166511551170$ {11}_{0}^{2} $1157
    388561210312011215$ {12}_{0}^{1}{10 b}_{0}^{2} $1184
    388781232812331234$ {13}_{0}^{1}\text{g}{{{\rm{C}}{\rm{H}}}_{2}}_{0}^{2}{13}_{0}^{1}\text{g}{{{\rm{C}}{\rm{H}}}_{2}}_{0}^{1} $1203
    3891312671812541255${\nu \text{C-C}{\text{H} }_{2}\text{CN} }_{0}^{1}$
    3893412881712841285$ {\text{1}}_{0}^{1}6{b}_{0}^{1} $
    3896313171213151313${\nu \text{C-CN} }_{0}^{1}6{a}_{0}^{1}$
    3896913231313191321$ {1}_{0}^{1} $β$ {\text{CN}}_{0}^{1} $1336
    389981352513471353$ {1}_{0}^{1}16{b}_{0}^{2} $
    390041358913551358$ {12}_{0}^{1}6{a}_{0}^{1} $
    390651419614171418$ {18 a}_{0}^{1}6{a}_{0}^{1}\text{g}{{{\rm{C}}{\rm{H}}}_{2}}_{0}^{2} $1415
    3909614502114481447${\nu \text{C-CN} }_{0}^{1}6{b}_{0}^{1}$1454
    3910014543414531452$ 9{b}_{0}^{1}{\text{15}}_{0}^{1} $
    3910814621214661465$ 18{a}_{0}^{1}6{a}_{0}^{1}{\beta \text{C}{\text{H}}_{2}\text{CN}}_{0}^{1} $
    3912914831714741474$ {18 a}_{0}^{1}6{b}_{0}^{1} $1495
    3914615001415071504$ 8{b}_{0}^{1} $
    391541508715091511$ {18 a}_{0}^{1}\text{b}{{\rm{C}}{\rm{N}}}_{0}^{1} $
    391621516715141518$ {1}_{0}^{2} $
    391821536415361542$ 8{a}_{0}^{1}16{b}_{0}^{2} $
    392001554615471549$ {13}_{0}^{1}6{a}_{0}^{1} $1586
    392171571515461569$ {12}_{0}^{1}6{b}_{0}^{1}\text{g}{{{\rm{C}}{\rm{H}}}_{2}}_{0}^{2} $1602
    3932816822316801682$ {13}_{0}^{1}6{b}_{0}^{1} $
    3934717011117041707$ {18 a}_{0}^{1}{1}_{0}^{1} $
    393601714317161719$ {13}_{0}^{1}\text{b}{{\rm{C}}{\rm{N}}}_{0}^{1} $
    393761730517191725$ {12}_{0}^{1}{1}_{0}^{1} $
    注: a) 实验振动频率是相对PAN分子的激发能(37646 cm–1)的偏移;
    b) 理论计算的振动频率来自于B3 LYP/6-311++G(d, p)方法, 修正因子为0.9726;
    c) 理论计算的振动频率来自于B3 LYP/aug-cc-pvtz方法, 修正因子为0.9719;
    d) β, 平面内的摇摆; γ, 垂直于环平面的振动; ν, 伸缩振动;
    e) 文献[8]采用红外光谱技术测量的电子基态的振动频率.
    下载: 导出CSV

    表 2  B3LYP/6-311++G(d, p)理论计算的PAN分子电子基态S0和第一电子激发态S1的结构参数

    Table 2.  Structural parameters of the electronic ground state S0 and the first electronic excited state S1 of the PAN molecule calculated at the level of B3LYP/6-311++G(d, p).

     S1
    S0
    Δ (S1—S0)
     键长/Å (1 Å = 10–10 m)
    C1—C21.427821.399110.029
    C2—C31.423281.391480.032
    C3—C41.421891.395730.026
    C4—C51.423471.395120.028
    C5—C61.419491.391680.028
    C6—C11.428441.394470.034
    C1—C121.502371.52486–0.022
    C2—H71.083001.08578–0.003
    C3—H81.082151.08413–0.002
    C4—H91.082701.08396–0.001
    C5—H101.081631.08406–0.002
    C6—H111.082201.08399–0.002
    C12—H131.102451.095550.007
    C12—H141.102451.095550.007
    C12—C151.458681.46019–0.002
    C15—N161.153511.152800.001
     键角/(°)
    C1—C12—
    C15
    115.76127115.063860.697
    C12—C15—
    N16
    179.02074179.70812–0.687
    下载: 导出CSV
  • [1]

    王璇 2016 硕士学位论文 (北京: 中国矿业大学)

    Wang X 2016 M. S. Thesis (Beijing: China University of Mining and Technology) (in Chinese)

    [2]

    温俏冬 2015 博士学位论文 (杭州: 浙江工业大学)

    Wen Q D 2015 Ph. D. Dissertation (Hanzhou: Zhejiang University of Technology) (in Chinese)

    [3]

    Huang L C L, Lin J L, Tzeng W B 2000 Chem. Phys. 261 449Google Scholar

    [4]

    Li C Y, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506Google Scholar

    [5]

    李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 093301Google Scholar

    Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y X, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 093301Google Scholar

    [6]

    李娜, 李淑贤, 王林, 王慧慧, 杨勇刚, 赵建明, 李昌勇 2022 物理学报 71 023301Google Scholar

    Li Na, Li S X, Wang L, Wang H H, Yang Y G, Zhao J M, Li C Y 2022 Acta Phys. Sin. 71 023301Google Scholar

    [7]

    Juchnovski I N, Binev I G 1975 J. Organomet. Chem. 99 1Google Scholar

    [8]

    Croisat D, Seyden-Penne J, Strzalko T, Wartaki L, Corset J, Froment F 1992 J. Org. Chem. 57 6435Google Scholar

    [9]

    Binev I G, Tsenov J A, Velcheva E A, Juchnovski 1995 J. Mol. Struct. 344 205Google Scholar

    [10]

    Corset J, Castellà-Ventura M, Froment F, Strzalko T, Wartski L 2002 Spectrochim. Acta A 58 1971Google Scholar

    [11]

    Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301Google Scholar

    [12]

    Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301Google Scholar

    [13]

    Chen Z, Tong Q N, Zhang C C, Hu Z 2015 Chin. Phys. B 24 043303Google Scholar

    [14]

    Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 Nature 318 162Google Scholar

    [15]

    Posthumus J 2001 Molecules and Clusters in Intense Laser Fields (New York: Cabridge University Press) p84

    [16]

    姚关心, 王小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 物理学报 55 2210Google Scholar

    Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210Google Scholar

    [17]

    Sang T P, Sang K K, Kim M S 2001 J. Chem. Phys. 114 5568Google Scholar

    [18]

    Zhao Y, Jin Y H, Li C Y, Jia S T 2019 J. Mol. Spectrosc. 363 111182Google Scholar

    [19]

    Hao J, Duan C, Yang Y, Li C Y, Jia S 2020 J. Mol. Spectrosc. 369 111258Google Scholar

    [20]

    段春泱, 李娜, 赵岩, 李昌勇 2021 物理学报 70 053301Google Scholar

    Duan C Y, Li N, Zhao Y, Li C Y 2021 Acta Phys. Sin. 70 053301Google Scholar

    [21]

    Frisch M J, Trucks G W, Schlegel H B, et al. 2019 Gaussian 16 (Wallingford CT: Gaussian Inc.)

    [22]

    Bloino J, Biczysko M, Crescenzi O, Barone V 2008 J. Chem. Phys. 128 244105Google Scholar

    [23]

    Wilson E B 1934 Phys. Rev. 45 706Google Scholar

    [24]

    Varsanyi G, Hilger A 1974 Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (New York: Wiley) p57

    [25]

    Kemp D J, Whalley L E, Gardner A M, Tuttle W D, Warner L G, Wright T G 2019 J. Chem. Phys. 150 064306Google Scholar

    [26]

    Kemp D J, Whalley L E, Tuttle W D, Gardner A M, Speake B T, Wright T G 2018 Phys. Chem. Chem. Phys. 20 12503Google Scholar

    [27]

    Helm R M, Vogel H P, Neusser H J 1997 Chem. Phys. Lett. 270 285Google Scholar

    [28]

    Peng W C, Wu P Y, Tzeng S Y, Tzeng W B 2018 Chem. Phys. Lett. 700 145Google Scholar

    [29]

    赵岩 2019 博士学位论文 (太原: 山西大学)

    Zhao Y 2019 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [30]

    Yang S C, Huang S W, Tzeng W B 2010 J. Phys. Chem. A 114 1114Google Scholar

    [31]

    Neuhauser R G, Siglow K, Neusser H J 1997 J. Chem. Phys. 106 896Google Scholar

    [32]

    Lu K T, Eiden G C, Weisshaar J C 1992 J. Phys. Chem. 96 9742Google Scholar

    [33]

    Wang J, Qiu X J, Wang Y M, Zhang S, Zhang B 2012 Chin. J. Chem. Phys. 25 526Google Scholar

  • [1] 赵岩, 李娜, 党思远, 杨国全, 李昌勇. 对氯苯腈的双色共振双光子电离和质量分辨阈值电离光谱. 物理学报, 2022, 71(10): 103301. doi: 10.7498/aps.71.20220089
    [2] 李娜, 李淑贤, 王林, 王慧慧, 杨勇刚, 赵建明, 李昌勇. 邻羟基苯腈的双色共振增强多光子电离光谱及Franck-Condon模拟. 物理学报, 2022, 71(2): 023301. doi: 10.7498/aps.71.20211659
    [3] 徐又捷, 郭迎春, 王兵兵. 多原子分子简正振动频率的量化计算. 物理学报, 2022, 71(9): 093101. doi: 10.7498/aps.71.20212108
    [4] 李娜, 李昌勇. 邻羟基苯腈的双色共振增强多光子电离光谱及Franck-Condon模拟. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211659
    [5] 李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂. 对甲氧基苯甲腈的单色共振双光子电离光谱. 物理学报, 2017, 66(9): 093301. doi: 10.7498/aps.66.093301
    [6] 曹山, 黎军, 刘元琼, 王凯, 林伟, 雷海乐. 氮分子固体中配位环境对其分子振动的影响. 物理学报, 2016, 65(3): 033103. doi: 10.7498/aps.65.033103
    [7] 曹山, 刘江平, 黎军, 王凯, 林伟, 雷海乐. 近三相点氮分子固体的低温红外吸收特性研究. 物理学报, 2015, 64(7): 073301. doi: 10.7498/aps.64.073301
    [8] 张小丽, 林书玉, 付志强, 王勇. 弯曲振动薄圆盘的共振频率和等效电路参数研究. 物理学报, 2013, 62(3): 034301. doi: 10.7498/aps.62.034301
    [9] 林敏, 孟莹. 双稳系统的频率耦合与随机共振机理. 物理学报, 2010, 59(6): 3627-3632. doi: 10.7498/aps.59.3627
    [10] 朱应涛, 杨传路, 王美山, 董永绵. β-Si3N4电子结构和红外和拉曼频率的第一性原理研究. 物理学报, 2008, 57(2): 1048-1053. doi: 10.7498/aps.57.1048
    [11] 逯振平, 韩 奎, 李海鹏, 张文涛, 黄志敏, 沈晓鹏, 张兆慧, 白 磊. 4-N-甲基苯乙烯砒啶盐衍生物振动超极化率的理论研究. 物理学报, 2007, 56(10): 5843-5848. doi: 10.7498/aps.56.5843
    [12] 额尔敦朝鲁, 李树深, 肖景林. 晶格热振动对准二维强耦合极化子有效质量的影响. 物理学报, 2005, 54(9): 4285-4293. doi: 10.7498/aps.54.4285
    [13] 苏 燕, 王传奎, 王彦华, 陶丽敏. 二苯乙烯衍生物分子双光子吸收截面:官能团对称性的影响. 物理学报, 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [14] 陈红艺, 郭红莲, 倪培根, 张 琦, 程丙英, 张道中. 聚苯乙烯微粒光子晶体的反常透过特性. 物理学报, 2003, 52(9): 2155-2158. doi: 10.7498/aps.52.2155
    [15] 张中明, 熊烨. BF分子A1Π→X1Σ+带系与b3Σ+→a3Π带系的Franck-Condon因子计算. 物理学报, 1997, 46(11): 2124-2129. doi: 10.7498/aps.46.2124
    [16] 彭金生. 与双单色场作用的三能级原子的荧光光谱及双光子过程. 物理学报, 1985, 34(3): 408-413. doi: 10.7498/aps.34.408
    [17] 唐明道. 聚丙烯腈与硝酸银络合后的热处理产物的红外光谱. 物理学报, 1963, 19(12): 830-832. doi: 10.7498/aps.19.830
    [18] 徐积仁. 乙腈及其同系分子的力常数与振动频率的计算. 物理学报, 1962, 18(4): 221-223. doi: 10.7498/aps.18.221
    [19] 徐积仁, 李宜荣. 苯乙烯和聚苯乙烯的联合散射光谱研究. 物理学报, 1961, 17(12): 617-620. doi: 10.7498/aps.17.617
    [20] 张志三, 唐福海. 苯甲酸C=0键的振动频率的研究. 物理学报, 1956, 12(2): 182-184. doi: 10.7498/aps.12.182
计量
  • 文章访问数:  2886
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-24
  • 修回日期:  2023-05-05
  • 上网日期:  2023-05-06
  • 刊出日期:  2023-07-05

/

返回文章
返回