-
苯乙腈广泛应用于医药、农药、染料、光电材料和喹啉衍生物的合成, 在相关领域备受关注. 本文采用超声分子束技术获得了苯乙腈的单色共振双光子电离光谱, 确定了该分子的激发能为(37646 ± 2) cm–1. 结合密度泛函理论计算和Franck-Condon模拟, 详细分析了测量的振动频率, 给出了尽可能准确的光谱归属. 理论和实验结果都表明, 光谱的低频区域信号强、背景低、分辨率好, 而高频范围表现出相反特征. 许多谱带被确认, 大部分属于芳香环平面内的振动, 理论计算表明这与跃迁过程中芳香环的扩张有关.
-
关键词:
- 苯乙腈 /
- 单色共振增强双光子电离光谱 /
- Franck-Condon模拟 /
- 振动频率
Phenylacetonitrile (PAN) is widely used in the synthesis of medicines, pesticides, dyes, optoelectronic materials and quinoline derivatives, and has attracted much attention in related fields. In this paper, we report the one-color resonance enhanced two-photon ionization spectra of PAN obtained with ultrasonic molecular beam technique for the first time. The band origin of the S1 ← S0 electronic transition is determined to be (37646 ± 2) cm–1. Density functional theory B3LYP/6-311G++(d, p) and B3LYP/aug-cc-pvtz are used to calculate the structures, energy and vibrational frequencies of the molecule. Based on these calculations Franck-Condon spectral simulations are performed. The measured vibrational frequencies are analyzed in detail. Combined with theoretical calculation, the spectral assignments are given as accurately as possible. Theoretical and experimental results are in good agreement with each other, and show that the spectrum in the low frequency region has a great signal-noise ratio and resolution, while in the high frequency region the spectrum shows opposite characteristics, revealing that the high background in high frequency region originates from dense and weak overtone and combined vibrations. Many spectral bands are found, and most of them may be assigned to the in-plane ring deformation, and theoretical calculations suggest that this is related to the expansion of the aromatic ring during the transition.-
Keywords:
- phenylacetonitrile /
- one-color resonance enhanced two-photon ionization spectroscopy /
- Franck-Condon simulation /
- vibrational frequency
[1] Wang X 2016 M. S. Thesis (Beijing: China University of Mining and Technology) (in Chinese)
[2] Wen Q D 2015 Ph. D. Dissertation (Hanzhou: Zhejiang University of Technology) (in Chinese)
[3] Huang L C L, Lin J L, Tzeng W B 2000 Chem. Phys. 261 449Google Scholar
[4] Li C Y, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506Google Scholar
[5] 李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 093301Google Scholar
Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y X, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 093301Google Scholar
[6] 李娜, 李淑贤, 王林, 王慧慧, 杨勇刚, 赵建明, 李昌勇 2022 物理学报 71 023301Google Scholar
Li Na, Li S X, Wang L, Wang H H, Yang Y G, Zhao J M, Li C Y 2022 Acta Phys. Sin. 71 023301Google Scholar
[7] Juchnovski I N, Binev I G 1975 J. Organomet. Chem. 99 1Google Scholar
[8] Croisat D, Seyden-Penne J, Strzalko T, Wartaki L, Corset J, Froment F 1992 J. Org. Chem. 57 6435Google Scholar
[9] Binev I G, Tsenov J A, Velcheva E A, Juchnovski 1995 J. Mol. Struct. 344 205Google Scholar
[10] Corset J, Castellà-Ventura M, Froment F, Strzalko T, Wartski L 2002 Spectrochim. Acta A 58 1971Google Scholar
[11] Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301Google Scholar
[12] Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301Google Scholar
[13] Chen Z, Tong Q N, Zhang C C, Hu Z 2015 Chin. Phys. B 24 043303Google Scholar
[14] Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 Nature 318 162Google Scholar
[15] Posthumus J 2001 Molecules and Clusters in Intense Laser Fields (New York: Cabridge University Press) p84
[16] 姚关心, 王小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 物理学报 55 2210Google Scholar
Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210Google Scholar
[17] Sang T P, Sang K K, Kim M S 2001 J. Chem. Phys. 114 5568Google Scholar
[18] Zhao Y, Jin Y H, Li C Y, Jia S T 2019 J. Mol. Spectrosc. 363 111182Google Scholar
[19] Hao J, Duan C, Yang Y, Li C Y, Jia S 2020 J. Mol. Spectrosc. 369 111258Google Scholar
[20] 段春泱, 李娜, 赵岩, 李昌勇 2021 物理学报 70 053301Google Scholar
Duan C Y, Li N, Zhao Y, Li C Y 2021 Acta Phys. Sin. 70 053301Google Scholar
[21] Frisch M J, Trucks G W, Schlegel H B, et al. 2019 Gaussian 16 (Wallingford CT: Gaussian Inc.)
[22] Bloino J, Biczysko M, Crescenzi O, Barone V 2008 J. Chem. Phys. 128 244105Google Scholar
[23] Wilson E B 1934 Phys. Rev. 45 706Google Scholar
[24] Varsanyi G, Hilger A 1974 Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (New York: Wiley) p57
[25] Kemp D J, Whalley L E, Gardner A M, Tuttle W D, Warner L G, Wright T G 2019 J. Chem. Phys. 150 064306Google Scholar
[26] Kemp D J, Whalley L E, Tuttle W D, Gardner A M, Speake B T, Wright T G 2018 Phys. Chem. Chem. Phys. 20 12503Google Scholar
[27] Helm R M, Vogel H P, Neusser H J 1997 Chem. Phys. Lett. 270 285Google Scholar
[28] Peng W C, Wu P Y, Tzeng S Y, Tzeng W B 2018 Chem. Phys. Lett. 700 145Google Scholar
[29] Zhao Y 2019 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[30] Yang S C, Huang S W, Tzeng W B 2010 J. Phys. Chem. A 114 1114Google Scholar
[31] Neuhauser R G, Siglow K, Neusser H J 1997 J. Chem. Phys. 106 896Google Scholar
[32] Lu K T, Eiden G C, Weisshaar J C 1992 J. Phys. Chem. 96 9742Google Scholar
[33] Wang J, Qiu X J, Wang Y M, Zhang S, Zhang B 2012 Chin. J. Chem. Phys. 25 526Google Scholar
-
图 1 实验系统原理图 MCP, 微通道板; PV, 脉冲阀; HV, 脉冲高压电源; SR430, 计数器; DG645, 数字脉冲延时发生器; 2f和3f, 2倍频和3倍频; NF, 中性密度衰减片; FL, 聚焦镜
Fig. 1. Experimental setup. MCP, microchannel plate; PV, pulse valve; HV, high voltage pulse power supply; SR430, counter; DG645, versatile digital delay/pulse generator; 2f and 3f, doubled and tripled frequency; NF, neutral density attenuators; FL, focusing lens.
图 3 (a) PAN的单色共振多光子电离光谱; (b), (c) 分别为B3LYP/aug-cc-pvtz理论和B3LYP/6-311++G(d, p)理论的Franck-Condon模拟
Fig. 3. (a) One-color resonance enhanced multiphoton ionization spectrum of PAN; (b), (c) Franck-Condon simulations based on theoretical calculations of B3LYP/aug-cc-pvtz and B3LYP/6-311++G(d, p), respectively.
图 4 实验发现的激发态S1较强的振动模及其频率, 括号内数字是理论计算的频率. 实心黑色圆点代表各原子振动到达的最远点位, 空心圆圈代表C原子平衡点位, H原子用小点表示, 平衡点的N原子用粉色表示
Fig. 4. Strong vibration modes of the excited state S1 and their vibration frequencies found in the experiment. The numbers in parentheses are the theoretically calculated frequencies. The solid black dot represents the biggest displacement, the open circle represents the equilibrium point of the C atom. The H atom is represented by a small dot, and the N atom of the equilibrium point is represented by pink dot.
表 1 单色REMPI测量的电子振动跃迁能、振动频率和相对强度、密度泛函理论计算的激发态振动频率、光谱归属及文献[8]报道的电子基态振动频率(单位: cm–1)
Table 1. Measured electronic vibration transition energies, vibration frequencies, and relative intensities by one-color REMPI, excited state vibration frequencies calculated by density functional theories, spectral assignments and the frequencies of the S0 state measured by infrared spectroscopy[8] (unit: cm–1).
跃迁能 实验 a) 相对强度 振动频率 b) 振动频率c) 模式归属d) Ire) 37646 0 100 — — $ {0}_{0}^{0} $, band origin — 37690 44 2 29 39 γ$ {{\text{CH}}_{2}}_{0}^{1} $ — 37770 124 19 125 125 $ {\beta {\rm{C}}{{\rm{H}}}_{2}\text{CN}}_{0}^{1}{\text{CN}}_{0}^{1} $ — 37920 247 1 239 249 $ {\beta {\rm{C}}{{\rm{H}}}_{2}\text{CN}}_{0}^{2}{\text{CN}}_{0}^{2} $ — 37971 398 29 393 392 $ 6{a}_{0}^{1} $ — 38111 465 2 454 460 $ 16{a}_{0}^{1} $ — 38175 529 73 527 526 $ 6{b}_{0}^{1} $ — 38207 561 22 562 563 β$ {\text{CN}}_{0}^{1} $ — 38298 652 5 652 651 $ 6{b}_{0}^{1}{\beta {\rm{C}}{{\rm{H}}}_{2}\text{CN}}_{0}^{1} $ — 38402 756 46 757 758 $ {1}_{0}^{1} $ — 38477 831 3 840 836 $ {1}_{0}^{1}{\gamma {\rm{C}}{{\rm{H}}}_{2}}_{0}^{2} $ — 38525 879 11 882 883 $ {1}_{0}^{1}{\beta {\rm{C}}{{\rm{H}}}_{2}{\rm{C}}{\rm{N}}}_{0}^{1}{1}_{0}^{1}{\gamma {\rm{C}}{{\rm{H}}}_{2}{\rm{C}}{\rm{N}}}_{0}^{1} $ — 38568 922 66 922 921 ${\nu \text{C-CN} }_{0}^{1}$ 940 38598 952 29 947 948 $ 18{a}_{0}^{1} $ 969 38604 958 30 946 955 β$ {\text{CN}}_{0}^{1}6{a}_{0}^{1} $ 988 38617 971 18 962 966 $ {12}_{0}^{1} $ 1003 38690 1044 4 1047 1044 $ {12}_{0}^{1}{\gamma {\rm{C}}{{\rm{H}}}_{2}}_{0}^{2} $ 1029 38800 1154 24 1154 1156 $ {13}_{0}^{1} $ 1076 38812 1166 5 1155 1170 $ {11}_{0}^{2} $ 1157 38856 1210 3 1201 1215 $ {12}_{0}^{1}{10 b}_{0}^{2} $ 1184 38878 1232 8 1233 1234 $ {13}_{0}^{1}\text{g}{{{\rm{C}}{\rm{H}}}_{2}}_{0}^{2}{13}_{0}^{1}\text{g}{{{\rm{C}}{\rm{H}}}_{2}}_{0}^{1} $ 1203 38913 1267 18 1254 1255 ${\nu \text{C-C}{\text{H} }_{2}\text{CN} }_{0}^{1}$ — 38934 1288 17 1284 1285 $ {\text{1}}_{0}^{1}6{b}_{0}^{1} $ — 38963 1317 12 1315 1313 ${\nu \text{C-CN} }_{0}^{1}6{a}_{0}^{1}$ — 38969 1323 13 1319 1321 $ {1}_{0}^{1} $β$ {\text{CN}}_{0}^{1} $ 1336 38998 1352 5 1347 1353 $ {1}_{0}^{1}16{b}_{0}^{2} $ — 39004 1358 9 1355 1358 $ {12}_{0}^{1}6{a}_{0}^{1} $ — 39065 1419 6 1417 1418 $ {18 a}_{0}^{1}6{a}_{0}^{1}\text{g}{{{\rm{C}}{\rm{H}}}_{2}}_{0}^{2} $ 1415 39096 1450 21 1448 1447 ${\nu \text{C-CN} }_{0}^{1}6{b}_{0}^{1}$ 1454 39100 1454 34 1453 1452 $ 9{b}_{0}^{1}{\text{15}}_{0}^{1} $ — 39108 1462 12 1466 1465 $ 18{a}_{0}^{1}6{a}_{0}^{1}{\beta \text{C}{\text{H}}_{2}\text{CN}}_{0}^{1} $ — 39129 1483 17 1474 1474 $ {18 a}_{0}^{1}6{b}_{0}^{1} $ 1495 39146 1500 14 1507 1504 $ 8{b}_{0}^{1} $ — 39154 1508 7 1509 1511 $ {18 a}_{0}^{1}\text{b}{{\rm{C}}{\rm{N}}}_{0}^{1} $ — 39162 1516 7 1514 1518 $ {1}_{0}^{2} $ — 39182 1536 4 1536 1542 $ 8{a}_{0}^{1}16{b}_{0}^{2} $ — 39200 1554 6 1547 1549 $ {13}_{0}^{1}6{a}_{0}^{1} $ 1586 39217 1571 5 1546 1569 $ {12}_{0}^{1}6{b}_{0}^{1}\text{g}{{{\rm{C}}{\rm{H}}}_{2}}_{0}^{2} $ 1602 39328 1682 23 1680 1682 $ {13}_{0}^{1}6{b}_{0}^{1} $ — 39347 1701 11 1704 1707 $ {18 a}_{0}^{1}{1}_{0}^{1} $ — 39360 1714 3 1716 1719 $ {13}_{0}^{1}\text{b}{{\rm{C}}{\rm{N}}}_{0}^{1} $ — 39376 1730 5 1719 1725 $ {12}_{0}^{1}{1}_{0}^{1} $ — 注: a) 实验振动频率是相对PAN分子的激发能(37646 cm–1)的偏移;
b) 理论计算的振动频率来自于B3 LYP/6-311++G(d, p)方法, 修正因子为0.9726;
c) 理论计算的振动频率来自于B3 LYP/aug-cc-pvtz方法, 修正因子为0.9719;
d) β, 平面内的摇摆; γ, 垂直于环平面的振动; ν, 伸缩振动;
e) 文献[8]采用红外光谱技术测量的电子基态的振动频率.表 2 B3LYP/6-311++G(d, p)理论计算的PAN分子电子基态S0和第一电子激发态S1的结构参数
Table 2. Structural parameters of the electronic ground state S0 and the first electronic excited state S1 of the PAN molecule calculated at the level of B3LYP/6-311++G(d, p).
S1 S0 Δ (S1—S0) 键长/Å (1 Å = 10–10 m) C1—C2 1.42782 1.39911 0.029 C2—C3 1.42328 1.39148 0.032 C3—C4 1.42189 1.39573 0.026 C4—C5 1.42347 1.39512 0.028 C5—C6 1.41949 1.39168 0.028 C6—C1 1.42844 1.39447 0.034 C1—C12 1.50237 1.52486 –0.022 C2—H7 1.08300 1.08578 –0.003 C3—H8 1.08215 1.08413 –0.002 C4—H9 1.08270 1.08396 –0.001 C5—H10 1.08163 1.08406 –0.002 C6—H11 1.08220 1.08399 –0.002 C12—H13 1.10245 1.09555 0.007 C12—H14 1.10245 1.09555 0.007 C12—C15 1.45868 1.46019 –0.002 C15—N16 1.15351 1.15280 0.001 键角/(°) C1—C12—
C15115.76127 115.06386 0.697 C12—C15—
N16179.02074 179.70812 –0.687 -
[1] Wang X 2016 M. S. Thesis (Beijing: China University of Mining and Technology) (in Chinese)
[2] Wen Q D 2015 Ph. D. Dissertation (Hanzhou: Zhejiang University of Technology) (in Chinese)
[3] Huang L C L, Lin J L, Tzeng W B 2000 Chem. Phys. 261 449Google Scholar
[4] Li C Y, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506Google Scholar
[5] 李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 093301Google Scholar
Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y X, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 093301Google Scholar
[6] 李娜, 李淑贤, 王林, 王慧慧, 杨勇刚, 赵建明, 李昌勇 2022 物理学报 71 023301Google Scholar
Li Na, Li S X, Wang L, Wang H H, Yang Y G, Zhao J M, Li C Y 2022 Acta Phys. Sin. 71 023301Google Scholar
[7] Juchnovski I N, Binev I G 1975 J. Organomet. Chem. 99 1Google Scholar
[8] Croisat D, Seyden-Penne J, Strzalko T, Wartaki L, Corset J, Froment F 1992 J. Org. Chem. 57 6435Google Scholar
[9] Binev I G, Tsenov J A, Velcheva E A, Juchnovski 1995 J. Mol. Struct. 344 205Google Scholar
[10] Corset J, Castellà-Ventura M, Froment F, Strzalko T, Wartski L 2002 Spectrochim. Acta A 58 1971Google Scholar
[11] Liu H, Li M, Xie X G, Wu C, Deng Y K, Wu C Y, Gong Q H, Liu Y Q 2015 Chin. Phys. Lett. 32 063301Google Scholar
[12] Zhang J F, Lu H, Zuo W L, Xu H F, Jin M X, Ding D J 2015 Chin. Phys. B 24 113301Google Scholar
[13] Chen Z, Tong Q N, Zhang C C, Hu Z 2015 Chin. Phys. B 24 043303Google Scholar
[14] Kroto H W, Heath J R, O’Brien S C, Curl R F, Smalley R E 1985 Nature 318 162Google Scholar
[15] Posthumus J 2001 Molecules and Clusters in Intense Laser Fields (New York: Cabridge University Press) p84
[16] 姚关心, 王小丽, 杜传梅, 李慧敏, 张先燚, 郑贤锋, 季学韩, 崔执凤 2006 物理学报 55 2210Google Scholar
Yao G X, Wang X L, Du C M, Li H M, Zhang X Y, Zheng X F, Ji X H, Cui Z F 2006 Acta Phys. Sin. 55 2210Google Scholar
[17] Sang T P, Sang K K, Kim M S 2001 J. Chem. Phys. 114 5568Google Scholar
[18] Zhao Y, Jin Y H, Li C Y, Jia S T 2019 J. Mol. Spectrosc. 363 111182Google Scholar
[19] Hao J, Duan C, Yang Y, Li C Y, Jia S 2020 J. Mol. Spectrosc. 369 111258Google Scholar
[20] 段春泱, 李娜, 赵岩, 李昌勇 2021 物理学报 70 053301Google Scholar
Duan C Y, Li N, Zhao Y, Li C Y 2021 Acta Phys. Sin. 70 053301Google Scholar
[21] Frisch M J, Trucks G W, Schlegel H B, et al. 2019 Gaussian 16 (Wallingford CT: Gaussian Inc.)
[22] Bloino J, Biczysko M, Crescenzi O, Barone V 2008 J. Chem. Phys. 128 244105Google Scholar
[23] Wilson E B 1934 Phys. Rev. 45 706Google Scholar
[24] Varsanyi G, Hilger A 1974 Assignments of Vibrational Spectra of Seven Hundred Benzene Derivatives (New York: Wiley) p57
[25] Kemp D J, Whalley L E, Gardner A M, Tuttle W D, Warner L G, Wright T G 2019 J. Chem. Phys. 150 064306Google Scholar
[26] Kemp D J, Whalley L E, Tuttle W D, Gardner A M, Speake B T, Wright T G 2018 Phys. Chem. Chem. Phys. 20 12503Google Scholar
[27] Helm R M, Vogel H P, Neusser H J 1997 Chem. Phys. Lett. 270 285Google Scholar
[28] Peng W C, Wu P Y, Tzeng S Y, Tzeng W B 2018 Chem. Phys. Lett. 700 145Google Scholar
[29] Zhao Y 2019 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)
[30] Yang S C, Huang S W, Tzeng W B 2010 J. Phys. Chem. A 114 1114Google Scholar
[31] Neuhauser R G, Siglow K, Neusser H J 1997 J. Chem. Phys. 106 896Google Scholar
[32] Lu K T, Eiden G C, Weisshaar J C 1992 J. Phys. Chem. 96 9742Google Scholar
[33] Wang J, Qiu X J, Wang Y M, Zhang S, Zhang B 2012 Chin. J. Chem. Phys. 25 526Google Scholar
计量
- 文章访问数: 2579
- PDF下载量: 53
- 被引次数: 0