搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ITER 第一类边界局域模对排布位错偏滤器靶板钨/铜瓦片腐蚀程度的数值模拟

黄艳 孙继忠 桑超峰 王德真

引用本文:
Citation:

ITER 第一类边界局域模对排布位错偏滤器靶板钨/铜瓦片腐蚀程度的数值模拟

黄艳, 孙继忠, 桑超峰, 王德真

Numerical simulation of erosion of misaligned W/Cu monoblocks caused by ITER-like type-Iedge localized modes

Huang Yan, Sun Ji-Zhong, Sang Chao-Feng, Wang De-Zhen
PDF
HTML
导出引用
  • 偏滤器靶板钨/铜瓦片在高热流作用下的热表现是未来托卡马克ITER最受关注的问题之一. 由于安装精度等因素, 钨/铜瓦片会出现排布位错从而产生凸出棱边, 凸出棱边处能流密度极大, 严重侵蚀靶板. 建立了二维对流传热的自洽模型, 包括热辐射、汽化和熔化效应, 同时, 耦合冷却水状态变化, 研究类ITER第一类边界局域模热流对出现排布位错的偏滤器靶板钨/铜瓦片的腐蚀程度, 比较直角、斜边瓦片的热性能. 为了研究瓦片缝隙、排布误差对等离子体行为和能流密度分布的影响, 利用二维边缘等离子体动理学程序计算不同排布误差下两种形状瓦片表面的能流密度分布, 并作为热传导模型的输入参数. 研究结果表明: 瓦片缝隙附近等离子体行为会受排布误差影响, 不同排布误差下的直角、斜边瓦片边缘处能流密度分布不同, 对两种形状瓦片的热表现影响极大, 排布误差越大, 两种形状瓦片的热腐蚀程度越大; 相对于直角瓦片, 斜边瓦片在边界局域模热流作用下的热腐蚀程度较小, 且有较好的对抗排布位错的能力.
    The thermal performance of the divertor W/Cu monoblock tiles under the ITER-like transient events has been one of the main concerns for ITER plasma facing components. Owing to the assembly tolerances during installation, the leading edge caused by misalignment between toroidal neighboring tiles will receive the extremely high cumulative heat flux and be damaged. In this work, we develop a two-dimensional heat conductivity model, including evaporation, radiation, melting process, and coupling cooling water condition, to investigate the thermal erosion of two shapes of tiles of W/Cu monoblock (unshaped and beveled tiles) with misalignment in a range from 0 to 0.3 mm, within the allowable maximum misalignment for ITER. To reflect the geometrical effects of castellated divertor tiles on the properties of its adjacent plasma, the energy flux density distribution arriving at the castellated divertor tile surface is evaluated first by using a two-dimension-in-space and three-dimension-in-velocity particle-in-cell plus Monte Carlo collisions code, and the obtained energy flux distribution is then used as input for the heat conduction model. The simulation results show that the maximum temperature of the unshaped tile with no misalignment is lower than that of the beveled tile under the steady-state inter-ELM heat flux, which increases more quickly than that of the beveled tile with misalignment increasing and will be larger than that of the beveled tile when misalignment is not less than 0.105 mm. Two shapes of the divertor tiles would melt and vaporize under typical heat flux density of a transient event of type-I edge localized modes (ELMs) for ITER, deposition energy of 1 MJ·m–2 in a duration of 600 μs. The highest temperature, the maximum melting thickness, the maximum vaporization thickness of the unshaped tile with no misalignment are higher than those of the beveled tile except the melting volume ratio. The thermal erosion of the unshaped tile increases more remarkably than that of the beveled tile with misalignment increasing, and the melting volume ratio of the unshaped tile will exceed that of the beveled tile at a misalignment of 0.17 mm. In comparison with the unshaped tile, the beveled tile is more resistant to such a high heat flux of an ELM and misalignment.
      通信作者: 孙继忠, jsun@dlut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12275040)资助的课题.
      Corresponding author: Sun Ji-Zhong, jsun@dlut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12275040).
    [1]

    Federici G, Skinner C H, Brooks J N, Coad J P, Grisolia C, Haasz A A, Hassanein A, Philipps V, Pitcher C S, Roth J, Wampler W R, Whyte D G 2001 Nucl. Fusion 41 1967Google Scholar

    [2]

    Bolt H, Barabash V, Krauss W, Linke J, Neu R, Suzuki S, Yoshida N, ASDEX Upgrade Team 2004 J. Nucl. Mater. 329–333 66Google Scholar

    [3]

    Pitts R A, Bonnin X, Escourbiac F, Frerichs H, Gunn J P, Hirai T, Kukushkin A S, Kaveeva E, Miller M A, Moulton D, Rozhansk V Y, Senichenkov I, Sytova E, Schmitz O, Stangeby P C, De Temmerman G, Veselova I, Wiesen S 2019 Nucl. Mater. Energy 20 100696Google Scholar

    [4]

    Wang B G, Zhu D Z, Ding R, Chen J L 2017 Plasma Sci. Technol. 19 025603Google Scholar

    [5]

    Hirai T, Escourbiac F, Carpentier-Chouchana S, Fedosov A, Ferrand L, Jokinen T, Komarov V, Kukushkin A, Merola M, Mitteau R, Pitts R A, Shu W, Sugihara M, Riccardi B, Suzuki S, Villari R 2013 Fusion Eng. Des. 88 1798Google Scholar

    [6]

    Missirlian M, Firdaouss M, Richou M, Languille P, Lecocq S, Lipa M 2013 Fusion Eng. Des. 88 1793Google Scholar

    [7]

    Li C J, Zhu D Z, Ding R, Wang B G, Chen J L, Gao B F, Le Y 2020 Nucl. Mater. Energy 25 100847Google Scholar

    [8]

    Perkins F W, Post D E, Uckan N A, et al. 1999 Nucl. Fusion 39 2137Google Scholar

    [9]

    Loarte A, Saibene G, Sartori R, Riccardo V, Andrew P, Paley J, Fundamenski W, Eich T, Herrmann A, Pautasso G, Kirk A, Counsell G, Federici G, Strohmayer G, Whyte D, Leonard A, Pitts R A, Landman I, Bazylev B, Pestchanyi S 2007 Phys. Scr. T128 222Google Scholar

    [10]

    Bazylev B, Janeschitz G, Landman I S, Loarte A, Pestchanyi S E 2007 J. Nucl. Mater. 363–365 1011Google Scholar

    [11]

    Bazylev B, Janeschitz G, Landman I S, Pestchanyi S E 2005 Fusion Eng. Des. 75–79 407Google Scholar

    [12]

    Coenen J W, Bazylev B, Brezinsek S, Philipps V, Hirai T, Kreter A, Linke J, Sergienko G, Pospieszczyk A, Tanabe T, Ueda Y, Samm U, The TEXTOR-Team 2011 J. Nucl. Mater. 415 S78Google Scholar

    [13]

    Chen X H, Ding F, Mao H M, Luo G N, Hu Z H, Xu F, Niu G J 2016 Fusion Eng. Des.108 98Google Scholar

    [14]

    El-Din El-Morshedy S 2021 Nucl. Mater. Energy 28 101035Google Scholar

    [15]

    Raffray A R, Federici G J 1997 Nucl. Mater. 244 85Google Scholar

    [16]

    Federici G, Loarte A, Strohmayer G 2003 Plasma Phys. Control. Fusion 45 1523Google Scholar

    [17]

    Dejarnac R, Gunn J P 2007 J. Nucl. Mater. 363–365 560Google Scholar

    [18]

    Gunn J P, Carpentier S C, Dejarnac R, Escourbiac F, Hirai T, Komm M, Kukushkin A, Panayotis S, Pitts R A 2016 Nucl. Mater. Energ. 12 75Google Scholar

    [19]

    Gunn J P, Carpentier-Chouchana S, Escourbiac F, Hirai T, Panayotis S, Pitts R A, Corre Y, Dejarnac R, Firdaouss M, Kočan M, Komm M, Kukushkin A, Languille P, Missirlian M, Zhao W, Zhong G 2017 Nucl. Fusion 57 046025Google Scholar

    [20]

    Komm M, Ratynskaia S, Tolias P, Cavalier J, Dejarnac R, Gunn J P, Podolnik A 2017 Plasma Phys. Control. Fusion 59 094002Google Scholar

    [21]

    Sang C F, Sun J Z, Wang D Z 2011 J. Nucl. Mater. 415 S204Google Scholar

    [22]

    Hu W P, Sang C F, Sun Z Y, Wang D Z 2017 Fusion Eng. Des. 116 5Google Scholar

    [23]

    黄艳, 孙继忠, 桑超峰, 丁芳, 王德真 2014 物理学报 63 035204Google Scholar

    Huang Y, Sun J Z, Sang C F, Ding F, Wang D Z 2014 Acta Phys. Sin. 63 035204Google Scholar

    [24]

    Huang Y, Sun J Z, Hu W P, Sang C F, Wang D Z 2016 Fusion Eng. Des. 102 28Google Scholar

    [25]

    Birdsall C K, Langdon A B 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill) pp1–479

    [26]

    Verboncoeur J P 2005 Plasma Phys. Control. Fusion 47 A231Google Scholar

    [27]

    Carslaw H W, Jaeger J C 1959 Conduction of Heat in Solids (Oxford: Clarendon) p2

    [28]

    Behrisch R 2010 J. Surf. Invest-X-Ray 4 549Google Scholar

    [29]

    Dittus F W, Boelter L M K 1985 Int. Commun. Heat Mass Transfer 12 3Google Scholar

    [30]

    Sieder E N, Tate G E 1936 Ind. Eng. Chem. 28 1429Google Scholar

    [31]

    Collier J G, Thome J R 1994 Convective Boiling and Condensation (3rd Ed.) (New York: Clarendon Press) pp109–111

    [32]

    Chen J C 1966 Ind. Eng. Chem. Process Des. Dev. 5 322Google Scholar

    [33]

    Robinson K, Hawley J G, Campbell N A F 2003 Proc. Inst. Mech. Eng. D 217 877Google Scholar

    [34]

    Kukushkin A S, Pacher H D, Kotov V, Reiter D, Coster D, Pacher G W 2007 Nucl. Fusion 47 698Google Scholar

    [35]

    Aymar R, Barabaschi P, Shimomura Y 2002 Plasma Phys. Control. Fusion 44 519Google Scholar

    [36]

    Roth J, Tsitrone E, Loarte A, Loarer Th, Counsell G, Neu R, Philipps V, Brezinsek S, Lehnen M, Coad P, Grisolia Ch, Schmid K, Krieger K, Kallenbach A, Lipschultz B, Doerner R, Causey R, Alimov V, Shu W, Ogorodnikova O, Kirschner A, Federici G, Kukushkin A, EFDA PWI Task Force, ITER PWI Team, Fusion for Energy, ITPA SOL/DIV 2009 J. Nucl. Mater. 390–391 1Google Scholar

    [37]

    Dejarnac R, Komm M, Gunn J P, Panek R 2009 J. Nucl. Mater. 390–391 818Google Scholar

    [38]

    Miloshevsky G V, Hassanein A 2010 Nucl. Fusion 50 115005Google Scholar

    [39]

    Loarte A 2003 Plasma Phys. Control. Fusion 45 1549Google Scholar

    [40]

    Escourbiac F, Durocher A, Fedosov A, Hirai T, Pitts R A, Gavila P, Riccardi B, Kuznetcov V, Volodin A, Komarov A 2019 Fusion Eng. Des. 146 2036Google Scholar

  • 图 1  排布位错瓦片结构示意图 (a)直角瓦片; (b)斜边瓦片

    Fig. 1.  Schematic diagram of misalignment tile structure: (a) Unshaped tile; (b) beveled tile.

    图 2  (a)双倒角瓦片钨材料和铜中间层最高温度模拟结果与现有工作[7]的对比, 排布误差为2.5 mm, 表面热负荷为1.5 MW·m–2; (b)四分之一双倒角瓦片结构图

    Fig. 2.  (a) Temporal evolution of the highest temperature of W armor and Cu heat sink materials of dual chamfer tile for misalignment of a 2.5 mm and perpendicular heat flux of 1.5 MW·m–2. Here the calculated results are represented by the dash lines, and those represented by the solid lines are taken from the work by Li et al.[7]; (b) schematic diagram of quarter dual chamfer tile.

    图 3  偏滤器瓦片表面能流密度分布 (a) δ = 0的直角瓦片; (b) δ = 0.3 mm的直角瓦片; (c) δ = 0的斜边瓦片; (d) δ = 0.3 mm的斜边瓦片; 坐标系原点取在瓦片中心, 距离值表示沿着瓦片表面距离瓦片中心的距离, 向右为正, 向左为负

    Fig. 3.  Energy fluxes received by divertor tile: (a) Unshaped tile for δ = 0; (b) unshaped tile for δ = 0.3 mm; (c) beveled tile for δ = 0; (d) beveled tile for δ = 0.3 mm. Origin of coordinate frame is set at tile center, absolute coordinate value is distance along surface away from center; sign ‘+’ denotes direction to right, and sign ‘–’ to left.

    图 4  能流密度随时间变化关系曲线, ELMs能流密度峰值为 3333 MW·m–2, 间隙间能流密度为10 MW·m–2

    Fig. 4.  Temporal evolution of energy flux of an ELM with peak heat flux of 3333 MW·m–2 plus an inter-ELM steady-state heat flux of 10 MW·m–2.

    图 5  排布误差为0的直角瓦片位置1和位置2处温度随时间的变化

    Fig. 5.  Temporal evolution of temperatures in areas near location 1 and 2 of unshaped tile with no misalignment.

    图 6  (a) t = 0.37 ms时, 排布误差为0的直角瓦片的温度分布; (b) t = 0.29 ms时, 排布误差为0.3 mm的直角瓦片的温度分布, 图中实线为T = 3683 K等温线

    Fig. 6.  Temperature distribution of unshaped tile with (a) no misalignment at t = 0.37 ms and (b) misalignment of 0.3 mm at t = 0.29 ms. Solid line represents an isotherm of 3683 K.

    图 7  直角瓦片最高温度随排布误差的变化

    Fig. 7.  Highest temperature of unshaped tile versus misalignment.

    图 8  排布误差为0的斜边瓦片位置3和位置4处温度随时间的变化

    Fig. 8.  Temporal evolution of temperatures in location 3 and 4 of beveled tile with no misalignment.

    图 9  (a) t = 0.38 ms时, 排布误差为0的斜边瓦片的温度分布; (b) t = 0.38 ms时, 排布误差为0.3 mm的斜边瓦片的温度分布; 图中洋红色实线为T = 3683 K等温线

    Fig. 9.  Temperature distribution of beveled tile with (a) no misalignment at t = 0.38 ms and (b) misalignment of 0.3 mm at t = 0.38 ms. Solid line represents an isotherm of 3683 K.

    图 10  斜边瓦片最高温度随排布误差的变化

    Fig. 10.  Highest temperature of beveled tile versus misalignment.

    图 11  排布误差为0和0.3 mm直角、斜边瓦片熔化体积比随时间的变化

    Fig. 11.  Melting volume ratios of unshaped and beveled tiles with misalignment of 0 and 0.3 mm versus time.

    图 12  直角和斜边瓦片最大熔化体积比随排布误差的变化

    Fig. 12.  Maximum melting volume ratios of unshaped and beveled tiles versus misalignment.

    图 13  排布误差为0直角和斜边瓦片汽化体积比随时间的变化

    Fig. 13.  Vaporization volume ratios of unshaped and beveled tiles with no misalignment versus time.

    图 14  直角和斜边瓦片最大汽化体积比随排布误差的变化

    Fig. 14.  Maximum vaporization volume ratios of unshaped and beveled tiles versus misalignment.

    图 15  直角、斜边瓦片最高温度随排布误差的变化, 其中入射能流密度为10和20 MW·m–2

    Fig. 15.  Highest temperatures of unshaped and beveled tiles versus misalignment, where the incident heat is 10 and 20 MW·m–2

    图 16  直角、斜边瓦片最高温度随能流密度的变化

    Fig. 16.  Highest temperatures of unshaped and beveled tiles versus heat flux.

  • [1]

    Federici G, Skinner C H, Brooks J N, Coad J P, Grisolia C, Haasz A A, Hassanein A, Philipps V, Pitcher C S, Roth J, Wampler W R, Whyte D G 2001 Nucl. Fusion 41 1967Google Scholar

    [2]

    Bolt H, Barabash V, Krauss W, Linke J, Neu R, Suzuki S, Yoshida N, ASDEX Upgrade Team 2004 J. Nucl. Mater. 329–333 66Google Scholar

    [3]

    Pitts R A, Bonnin X, Escourbiac F, Frerichs H, Gunn J P, Hirai T, Kukushkin A S, Kaveeva E, Miller M A, Moulton D, Rozhansk V Y, Senichenkov I, Sytova E, Schmitz O, Stangeby P C, De Temmerman G, Veselova I, Wiesen S 2019 Nucl. Mater. Energy 20 100696Google Scholar

    [4]

    Wang B G, Zhu D Z, Ding R, Chen J L 2017 Plasma Sci. Technol. 19 025603Google Scholar

    [5]

    Hirai T, Escourbiac F, Carpentier-Chouchana S, Fedosov A, Ferrand L, Jokinen T, Komarov V, Kukushkin A, Merola M, Mitteau R, Pitts R A, Shu W, Sugihara M, Riccardi B, Suzuki S, Villari R 2013 Fusion Eng. Des. 88 1798Google Scholar

    [6]

    Missirlian M, Firdaouss M, Richou M, Languille P, Lecocq S, Lipa M 2013 Fusion Eng. Des. 88 1793Google Scholar

    [7]

    Li C J, Zhu D Z, Ding R, Wang B G, Chen J L, Gao B F, Le Y 2020 Nucl. Mater. Energy 25 100847Google Scholar

    [8]

    Perkins F W, Post D E, Uckan N A, et al. 1999 Nucl. Fusion 39 2137Google Scholar

    [9]

    Loarte A, Saibene G, Sartori R, Riccardo V, Andrew P, Paley J, Fundamenski W, Eich T, Herrmann A, Pautasso G, Kirk A, Counsell G, Federici G, Strohmayer G, Whyte D, Leonard A, Pitts R A, Landman I, Bazylev B, Pestchanyi S 2007 Phys. Scr. T128 222Google Scholar

    [10]

    Bazylev B, Janeschitz G, Landman I S, Loarte A, Pestchanyi S E 2007 J. Nucl. Mater. 363–365 1011Google Scholar

    [11]

    Bazylev B, Janeschitz G, Landman I S, Pestchanyi S E 2005 Fusion Eng. Des. 75–79 407Google Scholar

    [12]

    Coenen J W, Bazylev B, Brezinsek S, Philipps V, Hirai T, Kreter A, Linke J, Sergienko G, Pospieszczyk A, Tanabe T, Ueda Y, Samm U, The TEXTOR-Team 2011 J. Nucl. Mater. 415 S78Google Scholar

    [13]

    Chen X H, Ding F, Mao H M, Luo G N, Hu Z H, Xu F, Niu G J 2016 Fusion Eng. Des.108 98Google Scholar

    [14]

    El-Din El-Morshedy S 2021 Nucl. Mater. Energy 28 101035Google Scholar

    [15]

    Raffray A R, Federici G J 1997 Nucl. Mater. 244 85Google Scholar

    [16]

    Federici G, Loarte A, Strohmayer G 2003 Plasma Phys. Control. Fusion 45 1523Google Scholar

    [17]

    Dejarnac R, Gunn J P 2007 J. Nucl. Mater. 363–365 560Google Scholar

    [18]

    Gunn J P, Carpentier S C, Dejarnac R, Escourbiac F, Hirai T, Komm M, Kukushkin A, Panayotis S, Pitts R A 2016 Nucl. Mater. Energ. 12 75Google Scholar

    [19]

    Gunn J P, Carpentier-Chouchana S, Escourbiac F, Hirai T, Panayotis S, Pitts R A, Corre Y, Dejarnac R, Firdaouss M, Kočan M, Komm M, Kukushkin A, Languille P, Missirlian M, Zhao W, Zhong G 2017 Nucl. Fusion 57 046025Google Scholar

    [20]

    Komm M, Ratynskaia S, Tolias P, Cavalier J, Dejarnac R, Gunn J P, Podolnik A 2017 Plasma Phys. Control. Fusion 59 094002Google Scholar

    [21]

    Sang C F, Sun J Z, Wang D Z 2011 J. Nucl. Mater. 415 S204Google Scholar

    [22]

    Hu W P, Sang C F, Sun Z Y, Wang D Z 2017 Fusion Eng. Des. 116 5Google Scholar

    [23]

    黄艳, 孙继忠, 桑超峰, 丁芳, 王德真 2014 物理学报 63 035204Google Scholar

    Huang Y, Sun J Z, Sang C F, Ding F, Wang D Z 2014 Acta Phys. Sin. 63 035204Google Scholar

    [24]

    Huang Y, Sun J Z, Hu W P, Sang C F, Wang D Z 2016 Fusion Eng. Des. 102 28Google Scholar

    [25]

    Birdsall C K, Langdon A B 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill) pp1–479

    [26]

    Verboncoeur J P 2005 Plasma Phys. Control. Fusion 47 A231Google Scholar

    [27]

    Carslaw H W, Jaeger J C 1959 Conduction of Heat in Solids (Oxford: Clarendon) p2

    [28]

    Behrisch R 2010 J. Surf. Invest-X-Ray 4 549Google Scholar

    [29]

    Dittus F W, Boelter L M K 1985 Int. Commun. Heat Mass Transfer 12 3Google Scholar

    [30]

    Sieder E N, Tate G E 1936 Ind. Eng. Chem. 28 1429Google Scholar

    [31]

    Collier J G, Thome J R 1994 Convective Boiling and Condensation (3rd Ed.) (New York: Clarendon Press) pp109–111

    [32]

    Chen J C 1966 Ind. Eng. Chem. Process Des. Dev. 5 322Google Scholar

    [33]

    Robinson K, Hawley J G, Campbell N A F 2003 Proc. Inst. Mech. Eng. D 217 877Google Scholar

    [34]

    Kukushkin A S, Pacher H D, Kotov V, Reiter D, Coster D, Pacher G W 2007 Nucl. Fusion 47 698Google Scholar

    [35]

    Aymar R, Barabaschi P, Shimomura Y 2002 Plasma Phys. Control. Fusion 44 519Google Scholar

    [36]

    Roth J, Tsitrone E, Loarte A, Loarer Th, Counsell G, Neu R, Philipps V, Brezinsek S, Lehnen M, Coad P, Grisolia Ch, Schmid K, Krieger K, Kallenbach A, Lipschultz B, Doerner R, Causey R, Alimov V, Shu W, Ogorodnikova O, Kirschner A, Federici G, Kukushkin A, EFDA PWI Task Force, ITER PWI Team, Fusion for Energy, ITPA SOL/DIV 2009 J. Nucl. Mater. 390–391 1Google Scholar

    [37]

    Dejarnac R, Komm M, Gunn J P, Panek R 2009 J. Nucl. Mater. 390–391 818Google Scholar

    [38]

    Miloshevsky G V, Hassanein A 2010 Nucl. Fusion 50 115005Google Scholar

    [39]

    Loarte A 2003 Plasma Phys. Control. Fusion 45 1549Google Scholar

    [40]

    Escourbiac F, Durocher A, Fedosov A, Hirai T, Pitts R A, Gavila P, Riccardi B, Kuznetcov V, Volodin A, Komarov A 2019 Fusion Eng. Des. 146 2036Google Scholar

  • [1] 秦梦飞, 王英敏, 张红玉, 孙继忠. $\langle 100\rangle $ 间隙型位错环在纯钨及含氦杂质钨$(010)$表面下运动行为的分子动力学模拟. 物理学报, 2023, 72(24): 245204. doi: 10.7498/aps.72.20230651
    [2] 徐驰, 万发荣. 聚变材料钨辐照后退火形成的位错环特性及inside-outside衬度分析. 物理学报, 2023, 72(5): 056801. doi: 10.7498/aps.72.20222124
    [3] 秦晨晨, 牟茂淋, 陈少永. 负三角形变位型下剥离气球模的非线性演化特征. 物理学报, 2023, 72(4): 045203. doi: 10.7498/aps.72.20222138
    [4] 黄艳, 孙继忠, 桑超峰, 胡万鹏, 王德真. 边界局域模引起钨偏滤器靶板侵蚀和形貌变化的数值模拟研究. 物理学报, 2017, 66(3): 035201. doi: 10.7498/aps.66.035201
    [5] 黄艳, 孙继忠, 桑超峰, 丁芳, 王德真. 边界局域模对EAST钨偏滤器靶板腐蚀程度的数值模拟研究. 物理学报, 2014, 63(3): 035204. doi: 10.7498/aps.63.035204
    [6] 陈丽群, 于涛, 彭小芳, 刘健. 难熔元素钨在NiAl位错体系中的占位及对键合性质的影响. 物理学报, 2013, 62(11): 117101. doi: 10.7498/aps.62.117101
    [7] 杨顺华, 李国旺, 黄军平. 二相介质中的运动位错. 物理学报, 1991, 40(5): 771-780. doi: 10.7498/aps.40.771
    [8] 高飞, 张宏图. 位错规范场对于位错芯区的应用. 物理学报, 1989, 38(7): 1127-1133. doi: 10.7498/aps.38.1127
    [9] 高飞, 张宏图. 存在异性夹杂的位错塞积. 物理学报, 1988, 37(8): 1315-1325. doi: 10.7498/aps.37.1315
    [10] 陈金长, 黄依森, 魏培才. KDP晶体中位错的研究. 物理学报, 1985, 34(3): 377-380. doi: 10.7498/aps.34.377
    [11] 龙期威, 王屴. 位错在裂纹顶端的象力. 物理学报, 1984, 33(9): 1337-1340. doi: 10.7498/aps.33.1337
    [12] 郭常霖. α—SiC晶体中的位错. 物理学报, 1982, 31(11): 1511-1525. doi: 10.7498/aps.31.1511
    [13] 郭可信, 林保军. 镍铬合金中的位错运动与位错反应. 物理学报, 1978, 27(6): 729-745. doi: 10.7498/aps.27.729
    [14] 刘振茂, 王贵华, 洪晶, 叶以正. 硅中位错增殖的实验观察. 物理学报, 1966, 22(9): 1077-1097. doi: 10.7498/aps.22.1077
    [15] 邢修三. 空位位错环的形成. 物理学报, 1966, 22(5): 541-546. doi: 10.7498/aps.22.541
    [16] 葛庭燧, 张志舜, 张进修. 铝-0.1%镁合金中表现反常振幅效应的低频位错内耗峰. 物理学报, 1966, 22(3): 270-280. doi: 10.7498/aps.22.270
    [17] 洪晶, 叶以正. 硅中位错运动速度. 物理学报, 1965, 21(12): 1968-1976. doi: 10.7498/aps.21.1968
    [18] 葛庭燧, 张进修. Al-0.5%Cu合金中表现反常振幅效应的低频位错内耗. 物理学报, 1965, 21(10): 1711-1724. doi: 10.7498/aps.21.1711
    [19] 闵乃本, 吉光民, 冯端. 钨单晶体中位错的侵蚀斑. 物理学报, 1964, 20(11): 1182-1186. doi: 10.7498/aps.20.1182
    [20] 孙瑞蕃, М.П.沙斯柯里斯卡娅. 晶体中滑移的位错机构研究. 物理学报, 1960, 16(4): 229-240. doi: 10.7498/aps.16.229
计量
  • 文章访问数:  907
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-26
  • 修回日期:  2023-07-16
  • 上网日期:  2023-07-26
  • 刊出日期:  2023-09-20

/

返回文章
返回