-
距离发现反铁电已有70多年的历史, 其独特的电场诱导相变行为使其在储能、换能器、驱动器、电卡制冷、负电容晶体管、热管理等领域显示出了巨大的应用价值. 随着薄膜生长技术的发展及器件小型化、集成化趋势的需求, 反铁电薄膜受到越来越多的关注. 大量研究表明, 反铁电从块体到薄膜显现出与块体不同的新奇物性, 同时也面临更多挑战, 如尺寸效应使得其反铁电特性在临界厚度下减弱甚至消失等. 在此基础上, 回顾了锆酸铅基反铁电研究的发展历史, 从反铁电的起源、结构、相变到应用等方面进行了讨论. 希望能够吸引更多的研究者关注反铁电薄膜的发展, 探索未知的奥秘, 共同开发更多的新材料和新应用.It has been more than 70 years since the first anti-ferroelectric was discovered. Its unique electric-field-induced phase transition behavior shows great potential applications in the fields of energy storage, electrocaloric, negative capacitance, thermal switching, etc. With the development of advanced synthesis technology and the trend of miniaturization and integration of devices, high-quality functional oxide films have received more and more attention. A large number of studies have shown that anti-ferroelectric thin film exhibits more novel properties than bulk, but it also faces more challenges, such as the disappearance of antiferroelectricity under a critical thickness induced by size effect. In this paper, we review the development history of lead zirconate-based anti-ferroelectric thin films, and discuss their structures, phase transitions and applications. We hope that this paper can attract more researchers to pay attention to the development of anti-ferroelectric thin films, so as to develop more new materials and explore new applications.
-
Keywords:
- antiferoelectrric /
- lead zirconate /
- stucture /
- applications
[1] Acharya M, Banyas E, Ramesh M, Jiang Y, Fernandez A, Dasgupta A, Ling H, Hanrahan B, Persson K, Neaton J B, Martin L W 2022 Adv. Mater. 334 2105967Google Scholar
[2] Zhang S T, Kounga A B, Jo W, Jamin C, Seifert K, Granzow T, Rödel J, Damjanovic D 2009 Adv. Mater. 21 4716Google Scholar
[3] Geng W, Liu Y, Meng X, Bellaiche L, Scott J F, Dkhil B, Jiang A 2015 Adv. Mater. 27 3165Google Scholar
[4] Aryana K, Tomko J A, Gao R, et al. 2022 Nat. Commun. 13 1573Google Scholar
[5] Qiao L, Song C, Sun Y, Fayaz M U, Lu T, Yin S, Chen C, Xu H, Ren T L, Pan F 2021 Nat. Commun. 12 4215Google Scholar
[6] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 物理学报 67 207701Google Scholar
Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar
[7] Kittel C 1951 Phys. Rev. 82 729Google Scholar
[8] Shirane G, Sawaguchi E, Takagi Y 1951 Phys. Rev. 84 476Google Scholar
[9] He X, Chen C, Li C, Zeng H, Yi Z 2019 Adv. Funct. Mater. 29 1900918Google Scholar
[10] Li D, Zhou D, Wang D, Zhao W, Guo Y, Shi Z 2022 Adv. Funct. Mater. 32 2111776Google Scholar
[11] Yao Y, Naden A, Tian M, Lisenkov S, Beller Z, Kumar A, Kacher J, Ponomareva I, Bassiri-Gharb N 2023 Adv. Mater. 35 2206541Google Scholar
[12] Perez-Tomas A, Lira-Cantu M, Catalan G 2016 Adv. Mater. 28 9644Google Scholar
[13] Apachitei G, Peters J J P, Sanchez A M, Kim D J, Alexe M 2017 Adv. Electron. Mater. 3 1700126Google Scholar
[14] Huang X X, Zhang T F, Gao R Z, Huang H B, Ge P Z, Tang H, Tang X G 2021 ACS Appl. Mater. Inter. 13 21331Google Scholar
[15] Wei X K, Domingo N, Sun Y, Balke N, Dunin-Borkowski R E, Mayer J 2022 Adv. Energy Mater. 12 2201199Google Scholar
[16] Jaffe B, Roth R, Marzullo S 1954 J. Appl. Phys. 25 809Google Scholar
[17] Megaw H D 1946 Proc. Phys. Soc. 58 133Google Scholar
[18] Smepard R 1950 J. Am. Ceram. Soc. 33 63Google Scholar
[19] Shirane G, Sawaguchi E, Takeda A 1950 Phys. Rev. 80 485Google Scholar
[20] Corker D L, Glazer A M, Dec J, Roleder K, Whatmore R W 1997 Acta Crystallogr. Sect. B:Struct. Sci. 53 135Google Scholar
[21] Jona F, Shirane G, Mazzi F, Pepinsky R 1957 Phys. Rev. 105 849Google Scholar
[22] Glazer A, Roleder K, Dec J 1993 Acta Crystallogr. Sect. B:Struct. Sci. 49 846Google Scholar
[23] Fujishita H, Shiozaki Y, Sawaguchi E 1979 J. Phys. Soc. Jpn. 46 1391Google Scholar
[24] Tanaka M, Saito R, Tsuzuki K 1982 J. Phys. Soc. Jpn. 51 2635Google Scholar
[25] Dai X, Li J F, Viehland D 1995 Phys. Rev. B 51 2651Google Scholar
[26] Ayyub P, Chattopadhyay S, Pinto R, Multani M 1998 Phys. Rev. B 57 R5559Google Scholar
[27] Pintilie L, Boldyreva K, Alexe M, Hesse D 2008 J. Appl. Phys. 103 024101Google Scholar
[28] Wei X K, Tagantsev A K, Kvasov A, Roleder K, Jia C L, Setter N 2014 Nat. Commun. 5 3031Google Scholar
[29] Wei X K, Vaideeswaran K, Sandu C S, Jia C L, Setter N 2015 Adv. Mater. Inter. 2 1500349Google Scholar
[30] Aramberri H, Cazorla C, Stengel M, Íñiguez J 2021 npj Compt. Mater. 7 196Google Scholar
[31] Burkovsky R G, Lityagin G A, Ganzha A E, Vakulenko A F, Gao R, Dasgupta A, Xu B, Filimonov A V, Martin L W 2022 Phys. Rev. B 105 125409Google Scholar
[32] Fujishita H, Katano S 1997 J. Phys. Soc. Jpn. 66 3484Google Scholar
[33] Fujishita H, Shiozaki Y, Achiwa N, Sawaguchi E 1982 J. Phys. Soc. Jpn. 51 3583Google Scholar
[34] Samara G A 1970 Phys. Rev. B 1 3777Google Scholar
[35] Tagantsev A K, Vaideeswaran K, Vakhrushev S B, Filimonov A V, Burkovsky R G, Shaganov A, Andronikova D, Rudskoy A I, Baron A Q, Uchiyama H, Chernyshov D, Bosak A, Ujma Z, Roleder K, Majchrowski A, Ko J H, Setter N 2013 Nat. Commun. 4 2229Google Scholar
[36] Hlinka J, Ostapchuk T, Buixaderas E, Kadlec C, Kuzel P, Gregora I, Kroupa J, Savinov M, Klic A, Drahokoupil J 2014 Phys. Rev. Lett. 112 197601Google Scholar
[37] Bussmann-Holder A, Ko J H, Majchrowski A, Górny M, Roleder K 2013 J. Phys. :Condens. Matter 25 212202Google Scholar
[38] Ko J H, Górny M, Majchrowski A, Roleder K, Bussmann-Holder A 2013 Phys. Rev. B 87 184110Google Scholar
[39] Jaffe B 1961 Proc. IRE 49 1264Google Scholar
[40] Thacher P 1968 J. Appl. Phys. 39 1996Google Scholar
[41] Liu J, An K, Liu L, He J, Chou X, Xue C 2015 J. Mater. Sci. :Mater. Electron. 27 1758Google Scholar
[42] An K, Liu L, Zhang P, He J, Chou X, Xue C, Zhang W 2016 Microelectron. Eng. 162 45Google Scholar
[43] An K, Zhang H, Chou X, Xue C, Zhang W 2016 Micro Nano Lett. 11 803Google Scholar
[44] Uchino K 2016 Actuators 5 11Google Scholar
[45] Zhuo F, Damjanovic D, Li Q, Zhou Y, Ji Y, Yan Q, Zhang Y, Zhou Y, Chu X 2019 Mater. Horiz. 6 1699Google Scholar
[46] Cordero F 2015 Materials 8 8195Google Scholar
[47] Haertling G H, Land C E 1971 J. Am. Ceram. Soc. 54 1Google Scholar
[48] Pan W, Zhang Q, Bhalla A, Cross L E 1989 J. Am. Ceram. Soc. 72 571Google Scholar
[49] Xu Y, Yang Z, Xu K, Cao Y, Tian Y, Guo L, Tian J, Tian H, Liu X, Lin L, Wang G 2021 Chem. Eng. J. 426 131047Google Scholar
[50] Zhao L, Liu Q, Gao J, Zhang S, Li J F 2017 Adv. Mater. 29 1701824Google Scholar
[51] Randall C A, Fan Z, Reaney I, Chen L Q, Trolier-McKinstry S 2021 J. Am. Ceram. Soc. 104 3775Google Scholar
[52] Si Y, Zhang T, Chen Z, Zhang Q, Xu S, Lin T, Huang H, Zhou C, Chen S, Liu S, DongY, Liu C, Tang Y, Lu Y, Jin K, Guo E J, Lin X 2022 ACS Appl. Mater. Inter. 14 51096Google Scholar
[53] Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X 2015 J. Am. Ceram. Soc. 98 551Google Scholar
[54] Jiang R J, Cao Y, Geng W R, Zhu M X, Tang Y L, Zhu Y L, Wang Y, Gong F, Liu S Z, Chen Y T, Liu J, Liu N, Wang J H, Lv X D, Chen S J, Ma X L 2023 Nano Lett. 23 1522Google Scholar
[55] Pan H, Tian Z, Acharya M, Huang X, Kavle P, Zhang H, Wu L, Chen D, Carroll J, Scales R, Meyers C J G, Coleman K, Hanrahan B, Spanier J E, Martin L W 2023 Adv. Mater. 2300257Google Scholar
[56] Zhang T F, Tang X G, Ge P Z, Liu Q X, Jiang Y P 2017 Ceram. Int. 43 16300Google Scholar
[57] Zhang T F, Huang X X, Tang X G, Jiang Y P, Liu Q X, Lu B, Lu S G 2018 Sci. Rep. 8 396Google Scholar
[58] Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X, Zhou Q F 2016 J. Phys. D: Appl. Phys. 49 095302Google Scholar
[59] Hu Z, Ma B, Koritala R E, Balachandran U 2014 Appl. Phys. Lett. 104 263902Google Scholar
[60] Fesenko O E, Kolesova R V, Sindeyev Y G 1978 Ferroelectrics 20 177Google Scholar
[61] Ostapchuk T, Petzelt J, Zelezny V, Kamba S, Bovtun V, Porokhonskyy V, Pashkin A, Kuzel P, Glinchuk M, Bykov I 2001 J. Phys.: Condens. Matter 13 2677Google Scholar
[62] Íñiguez J, Stengel M, Prosandeev S, Bellaiche L 2014 Phys. Rev. B 90 220103Google Scholar
[63] Xu B, Hellman O, Bellaiche L 2019 Phys. Rev. B 100 020102Google Scholar
[64] Vales-Castro P, Roleder K, Zhao L, Li J F, Kajewski D, Catalan G 2018 Appl. Phys. Lett. 113 132903Google Scholar
[65] Lisenkov S, Yao Y, Bassiri-Gharb N, Ponomareva I 2020 Phys. Rev. B 102 104101Google Scholar
[66] Wei X K, Jia C L, Du H C, Roleder K, Mayer J, Dunin-Borkowski R E 2020 Adv. Mater. 32 1907208Google Scholar
[67] Wei X K, Jia C L, Roleder K, Dunin-Borkowski R E, Mayer J 2021 Adv. Funct. Mater. 31 2008609Google Scholar
[68] Bharadwaja S, Krupanidhi S 2001 J. Appl. Phys. 89 4541Google Scholar
[69] Si M, Lyu X, Shrestha P R, Sun X, Wang H, Cheung K P, Ye P D 2019 Appl. Phys. Lett. 115 072107Google Scholar
[70] Roleder K, Dee J 1989 J. Phys.: Condens. Matter 1 1503Google Scholar
[71] Mani B, Chang C M, Lisenkov S, Ponomareva I 2015 Phys. Rev. Lett. 115 097601Google Scholar
[72] Roy Chaudhuri A, Arredondo M, Hähnel A, Morelli A, Becker M, Alexe M, Vrejoiu I 2011 Phys. Rev. B 84 054112Google Scholar
[73] Boldyreva K, Pintilie L, Lotnyk A, Misirlioglu I B, Alexe M, Hesse D 2007 Appl. Phys. Lett. 91 122915Google Scholar
[74] Chen D, Nelson C T, Zhu X, Serrao C R, Clarkson J D, Wang Z, Gao Y, Hsu S L, Dedon L R, Chen Z, Yi D, Liu H J, Zeng D, Chu Y H, Liu J, Schlom D G, Ramesh R 2017 Nano Lett. 17 5823Google Scholar
[75] Reyes-Lillo S E, Rabe K M 2013 Phys. Rev. B 88 180102Google Scholar
[76] Lee H J, Lee M, Lee K, Jo J, Yang H, Kim Y, Chae S C, Waghmare U, Lee J H 2020 Science 369 1343Google Scholar
[77] Cheema S S, Shanker N, Hsu S L, Rho Y, Hsu C H, Stoica V A, Zhang Z, Freeland J W, Shafer P, Grigoropoulos C 2022 Science 376 648Google Scholar
[78] Hou C, Huang W, Zhao W, Zhang D, Yin Y, Li X 2017 ACS Appl. Mater. Inter. 9 20484Google Scholar
[79] Zhao P, Tang B, Fang Z, Si F, Yang C, Liu G, Zhang S 2021 J. Materiomics 7 195Google Scholar
[80] Kim J, Saremi S, Acharya M, Velarde G, Parsonnet E, Donahue P, Qualls A, Garcia D, Martin L W 2020 Science 369 81Google Scholar
[81] Li Y Z, Lin J L, Bai Y, Li Y, Zhang Z D, Wang Z J 2020 ACS Nano 14 6857Google Scholar
[82] Liu Z, Lu T, Xue F, Nie H, Wang G 2020 Sci. Adv. 6 eaba0367Google Scholar
[83] Li J, Li F, Xu Z, Zhang S 2018 Adv. Mater. 30 e1802155Google Scholar
[84] Zhu L F, Deng S, Zhao L, Li G, Wang Q, Li L, Yan Y, Qi H, Zhang B P, Chen J, Li J F 2023 Nat. Commun. 14 1166Google Scholar
[85] Luo Y, Wang C, Chen C, Gao Y, Sun F, Li C, Yin X, Luo C, Kentsch U, Cai X, Bai M, Fan Z, Qin M, Zeng M, Dai J, Zhou G, Lu X, Lou X, Zhou S, Gao X, Chen D, Liu J M 2023 Appl. Phys. Rev. 10 011403Google Scholar
[86] Li Z, Fu Z, Cai H, Hu T, Yu Z, Luo Y, Zhang L, Yao H, Chen X, Zhang S, Wang G, Dong X, Xu F 2022 Sci. Adv. 8 eabl9088Google Scholar
[87] Ge G, Shi C, Chen C, Shi Y, Yan F, Bai H, Yang J, Lin J, Shen B, Zhai J 2022 Adv. Mater. 34 2201333Google Scholar
[88] Nguyen M D, Birkhölzer Y A, Houwman E P, Koster G, Rijnders G 2022 Adv. Energy Mater. 12 2200517Google Scholar
[89] Luo N, Han K, Cabral M J, Liao X, Zhang S, Liao C, Zhang G, Chen X, Feng Q, Li J F, Wei Y 2020 Nat. Commun. 11 4824Google Scholar
[90] Qi H, Zuo R, Xie A, Tian A, Fu J, Zhang Y, Zhang S 2019 Adv. Funct. Mater. 29 1903877Google Scholar
[91] Wang M, Feng Q, Luo C, Lan Y, Yuan C, Luo N, Zhou C, Fujita T, Xu J, Chen G, Wei Y 2021 ACS Appl. Mater. Inter. 13 51218Google Scholar
[92] Chen L, Long F, Qi H, Liu H, Deng S, Chen J 2021 Adv. Funct. Mater. 32 2110478Google Scholar
[93] Owate I O, Freer R 1992 J. Appl. Phys. 72 2418Google Scholar
[94] Xie A, Qi H, Zuo R 2020 ACS Appl. Mater. Inter. 12 19467Google Scholar
[95] Jin Y, Wang J, Jiang L, Yao Y, Huang Y, Chen P, Chang W 2021 Ceram. Intl. 47 2869Google Scholar
[96] Chen G, Zhao J, Li S, Zhong L 2012 Appl. Phys. Lett. 100 222904Google Scholar
[97] Tong S 2021 J. Adv. Ceram. 10 181Google Scholar
[98] Bian F, Yan S, Xu C, Liu Z, Chen X, Mao C, Cao F, Bian J, Wang G, Dong X 2018 J. Eur. Ceram. Soc. 38 3170Google Scholar
[99] Ren P, Ren D, Sun L, Yan F, Yang S, Zhao G 2020 J. Eur. Ceram. Soc. 40 4495Google Scholar
[100] Zhang G, Chen Z, Fan B, Liu J, Chen M, Shen M, Liu P, Zeng Y, Jiang S, Wang Q 2016 APL Mater. 4 064103Google Scholar
[101] Pan H, Li F, Liu Y, Zhang Q H, Wang M, Lan S, Zheng Y P, Ma J, Gu L, Shen Y, Yu P, Zhang S J, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578Google Scholar
[102] Han K, Luo N, Mao S, Zhuo F, Chen X, Liu L, Hu C, Zhou H, Wang X, Wei Y 2019 J. Materiomics 5 597Google Scholar
[103] Yang J, Zhao Y, Lou X, Wu J, Hao X 2020 J. Mater. Chem. C 8 4030Google Scholar
[104] Ma W, Zhu Y, Marwat M A, Fan P, Xie B, Salamon D, Ye Z G, Zhang H 2019 J. Mater. Chem. C 7 281Google Scholar
[105] Yuan Q, Yao F, Wang Y, Ma R, Wang H 2017 J. Mater. Chem. C 5 9552Google Scholar
[106] Wu Q, Zhao Y, Zhou Y, Chen X, Wu X, Zhao S 2021 J. Alloy. Compd. 881 160576Google Scholar
[107] Fan P, Zhang S T, Xu J, Zang J, Samart C, Zhang T, Tan H, Salamon D, Zhang H, Liu G 2020 J. Mater. Chem. C 8 5681Google Scholar
[108] Silva J P B, Silva J M B, Oliveira M J S, Weingärtner T, Sekhar K C, Pereira M, Gomes M J M 2018 Adv. Funct. Mater. 29 1807196Google Scholar
[109] Nguyen M D, Houwman E P, Do M T, Rijnders G 2020 Energy Storage Mater. 25 193Google Scholar
[110] Yan F, Bai H, Shi Y, Ge G, Zhou X, Lin J, Shen B, Zhai J 2021 Chem. Eng. J. 425 130669Google Scholar
[111] Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar
[112] Kobeko P, Kurtschatov J 1930 Z. Phys. 66 192Google Scholar
[113] Granicher H 1956 Helv. Phys. Acta 29 210
[114] Bai Y, Zheng G P, Shi S Q 2011 Mater. Res. Bull. 46 1866Google Scholar
[115] Allouche B, Hwang H J, Yoo T J, Lee B H 2020 Nanoscale 12 3894Google Scholar
[116] Guo M, Wu M, Gao W, Sun B, Lou X 2019 J. Mater. Chem. C 7 617Google Scholar
[117] Peng B, Fan H, Zhang Q 2013 Adv. Funct. Mater. 23 2987Google Scholar
[118] Wu M, Song D, Guo M, Bian J, Li J, Yang Y, Huang H, Pennycook S J, Lou X 2019 ACS Appl. Mater. Inter. 11 36863Google Scholar
[119] Vales-Castro P, Faye R, Vellvehi M, Nouchokgwe Y, Perpiñà X, Caicedo J M, Jordà X, Roleder K, Kajewski D, Perez-Tomas A, Defay E, Catalan G 2021 Phys. Rev. B 103 054112Google Scholar
[120] Damjanovic D 2005 J. Am. Ceram. Soc. 88 2663Google Scholar
[121] Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J 2012 J. Electroceram. 29 71Google Scholar
[122] Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X 2018 Adv. Mater. 30 1705171Google Scholar
[123] Park S E, Pan M J, Markowski K, Yoshikawa S, Cross L E 1997 J. Appl. Phys. 82 1798Google Scholar
[124] Zhuo F, Li Q, Zhou Y, Ji Y, Yan Q, Zhang Y, Xi X, Chu X, Cao W 2018 Acta Mater. 148 28Google Scholar
[125] Guo Y, Liu Y, Withers R L, Brink F, Chen H 2011 Chem. Mater. 23 219Google Scholar
[126] Berlincourt D A 1968 IEEE Trans. Sonic. Ultrason. 15 89Google Scholar
[127] Chou X, Guan X, Lv Y, Geng W, Liu J, Xue C, Zhang W 2013 IEEE Electron Dev. Lett. 34 1187Google Scholar
[128] Íñiguez J, Zubko P, Luk’yanchuk I, Cano A 2019 Nat. Rev. Mater. 4 243Google Scholar
[129] Landauer R 1976 Collect. Phenom. 2 167
[130] Wong J C, Salahuddin S 2018 Proc. IEEE 107 49Google Scholar
[131] Appleby D J, Ponon N K, Kwa K S, Zou B, Petrov P K, Wang T, Alford N M, O’Neill A 2014 Nano Lett. 14 3864Google Scholar
[132] Hoffmann M, Wang Z, Tasneem N, et al. 2022 Nat. Commun. 13 1228Google Scholar
[133] Cheema S S, Shanker N, Wang L C, et al. 2022 Nature 604 65Google Scholar
[134] Sheikholeslami A, Gulak P G 2000 Proc. IEEE 88 667Google Scholar
[135] Vopson M M, Tan X 2016 IEEE Electron Dev. Lett. 37 1551Google Scholar
[136] Morris D H, Avci U E, Young I A 2019 EP Patent 3576092
[137] Esaki L, Chang L 1970 Phys. Rev. Lett. 25 653Google Scholar
[138] Kohlstedt H, Pertsev N A, Rodríguez Contreras J, Waser R 2005 Phys. Rev. B 72 125341Google Scholar
[139] Guo M, Qian Y, Qi H, Bi K, Chen Y 2020 Carbon 157 185Google Scholar
[140] Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X 2017 Science 355 371Google Scholar
[141] Starkiewicz J, Sosnowski L, Simpson O 1946 Nature 158 28Google Scholar
[142] Goldstein B, Pensak L 1959 J. Appl. Phys. 30 155Google Scholar
[143] Yang S, Seidel J, Byrnes S, Shafer P, Yang C H, Rossell M, Yu P, Chu Y H, Scott J, Ager Iii J 2010 Nat. Nanotech. 5 143Google Scholar
[144] Junquera J, Ghosez P 2003 Nature 422 506Google Scholar
[145] Nataf G F, Guennou M, Gregg J M, Meier D, Hlinka J, Salje E K H, Kreisel J 2020 Nat. Rev. Phys. 2 634Google Scholar
[146] Yang B, Zhang Y, Pan H, Si W, Zhang Q, Shen Z, Yu Y, Lan S, Meng F, Liu Y, Huang H, He J, Gu L, Zhang S, Chen L Q, Zhu J, Nan C W, Lin Y H 2022 Nat. Mater. 21 1074Google Scholar
[147] Garcia-Castro A C, Ma Y, Romestan Z, Bousquet E, Cen C, Romero A H 2021 Adv. Funct. Mater. 32 2107135Google Scholar
[148] Phuoc N N, Ong C 2013 Adv. Mater. 25 980Google Scholar
[149] Catalan G, Noheda B, McAneney J, Sinnamon L, Gregg J 2005 Phys. Rev. B 72 020102Google Scholar
[150] Wang J, Wylie-van Eerd B, Sluka T, Sandu C, Cantoni M, Wei X K, Kvasov A, McGilly L J, Gemeiner P, Dkhil B 2015 Nat. Mater. 14 985Google Scholar
-
图 2 Pb(Zr, Ti)O3[46] (a)和(Pb, La)(Zr, Ti)O3[47] (b)的二元相图; Pb0.99Nb0.02(Zr, Sn, Ti)0.98O3[48] (c)和(Pb0.97La0.02)(Zr, Sn, Ti)O3 [48] (d)的三元相图
Fig. 2. Binary phase diagram for Pb(Zr, Ti)O3[46] (a) and (Pb, La)(Zr, Ti)O3[47] (b); ternary phase diagram for Pb0.99Nb0.02(Zr, Sn, Ti)0.98O3 [48] (c) and Pb0.97La0.02(Zr, Sn, Ti)O3[48] (d).
图 3 (a) 改变电子束辐照时间同一区域PZO薄膜的相变行为[54]; (b) 从(001)和(042)取向PZO薄膜中铅离子位移提取的极化构型[11]; (c) 不同生长氧压 (120, 80和45 mTorr, 1 Torr = 133.32 Pa) PZO薄膜的极化行为[55]
Fig. 3. (a) Phase-boundary-driven phase transition in PZO films under the irradiation of an electron beam[54]; (b) polarization configurations extracted from Pb ions displacements in (001) and (042) oriented PZO films[11]; (c) polarization-electric field loops of PZO grown at various oxygen pressures (120, 80 and 45 mTorr, 1 Torr = 133.32 Pa)[55].
图 4 (a) PZO块体的介电温谱图[8]; (b) PZO基反铁电薄膜的C-V特性曲线[59]; (c) PZO薄膜的P-E和I-E回线[52]; (d) PZO薄膜在直流电场EDC和交流电场EAC作用下的电致应变和压电系数[11]
Fig. 4. (a) Temperature dependent dielectric spectrum of PZO bulk materials, reproduced from[8]; (b) C-V characteristics of PZO based AFE thin films[59]; (c) P-E and I-E loops of PZO thin films[52]; (d) electromechanical response as strain and effective longitudinal piezoelectric coefficient as a function of EAC and EDC, respectively[11].
图 5 (a) Kittel提出的双子晶格模型; (b) 不同组合多态软模的能量[62]; (c) PZO中可能存在的调制结构及其能量[31]; (d) AFE/FE能量与PZO薄膜厚度的关系[71]
Fig. 5. (a) Antiferroelectric structure model proposed by Kittel; (b) energy difference for different combination of multisoft mode[62]; (c) proposed modulation structure in PZO and the corresponding energy[31]; (d) dependence of the AFE/FE energy on thickness of PZO thin film[71].
图 7 (a) 异价元素Ta掺杂AgNbO3前后Ag和Nb原子±
$[1\overline 1 0]$ 方向位移波动[84]; (b) 异价元素Ta掺杂AgNbO3前后击穿电场、极化强度、储能密度、储能效率的对比[84]; (c) 离子轰击PZO反铁电薄膜前后的击穿电场和储能对比[85]Fig. 7. (a) Ag and Nb atoms displacement fluctuations along ±
$[1\overline 1 0]$ of pure AgNbO3 and Ta doped AgNbO3[84]; (b) comparison of breakdown field, polarization, efficiency and energy storage density of pure AgNbO3 and Ta doped AgNbO3[84]; (c) comparison of energy storage performance of PZO thin film before and after ion bombardment[85].图 8 (a) 电卡效应制冷的卡诺循环; (b) PbZr0.95Ti0.05O3薄膜中的电卡温度变化∆T [111]; (c) 电场响应的PbZrO3相图及∆T-∆S示意图[119]
Fig. 8. (a) Carnot cycle of electrocaloric effect refrigeration; (b) temperature change ∆T in PbZr0.95Ti0.05O3 thin film[111]; (c) tentative phase diagram for PbZrO3 as a function of electric field and schematic ∆T-∆S diagram[119].
图 9 (a) 电致应变的4个主要组成部分; (b) Pb0.98La0.02(Zr0.66Ti0.10Sn0.24)0.995O3反铁电陶瓷相变过程中应变与电场的关系[123]; PLZST单晶(c)极化和(d)应变在选定温度下对电场的响应[45]
Fig. 9. (a) The four main components of electro-strain; (b) strain as a function of electric field during phase transition in Pb0.98La0.02(Zr0.66Ti0.10Sn0.24)0.995O3 ceramic, reproduced from[123]; (c) polarization and (d) strain loops of the PLZST single crystals at selected temperatures measured at 1 Hz[45].
图 10 (a) 反铁电双电滞回线, 其中BC和B'C'呈现出负电容行为[132]; (b) 反铁电随机存取存储器的4个可选读出状态[135]; (c) 反铁电隧道结的示意图[13]; (d) PZO薄膜实时高低热导率转变[4]; (e) PZO电容器的稳态光伏响应, 显示超过100 V的开路光电压[12]
Fig. 10. (a) P-E loop of an antiferroelectric material, segments BC and B'C' represent the unstable negative capacitance (C < 0) regions[132]; (b) four pseudo-remanent memory states marked on the loop in AFRAM[135]; (c) schematic representations of expected behaviors of antiferroelectric tunnel junctions[13]; (d) real-time switching of epitaxial PZO to low and high thermal conductivity[4]; (e) steady-state photovoltaic response of PZO capacitor, showing an open-circuit photovoltage in excess of 100 V[12].
-
[1] Acharya M, Banyas E, Ramesh M, Jiang Y, Fernandez A, Dasgupta A, Ling H, Hanrahan B, Persson K, Neaton J B, Martin L W 2022 Adv. Mater. 334 2105967Google Scholar
[2] Zhang S T, Kounga A B, Jo W, Jamin C, Seifert K, Granzow T, Rödel J, Damjanovic D 2009 Adv. Mater. 21 4716Google Scholar
[3] Geng W, Liu Y, Meng X, Bellaiche L, Scott J F, Dkhil B, Jiang A 2015 Adv. Mater. 27 3165Google Scholar
[4] Aryana K, Tomko J A, Gao R, et al. 2022 Nat. Commun. 13 1573Google Scholar
[5] Qiao L, Song C, Sun Y, Fayaz M U, Lu T, Yin S, Chen C, Xu H, Ren T L, Pan F 2021 Nat. Commun. 12 4215Google Scholar
[6] 吴金根, 高翔宇, 陈建国, 王春明, 张树君, 董蜀湘 2018 物理学报 67 207701Google Scholar
Wu J G, Gao X Y, Chen J G, Wang C M, Zhang S J, Dong S X 2018 Acta Phys. Sin. 67 207701Google Scholar
[7] Kittel C 1951 Phys. Rev. 82 729Google Scholar
[8] Shirane G, Sawaguchi E, Takagi Y 1951 Phys. Rev. 84 476Google Scholar
[9] He X, Chen C, Li C, Zeng H, Yi Z 2019 Adv. Funct. Mater. 29 1900918Google Scholar
[10] Li D, Zhou D, Wang D, Zhao W, Guo Y, Shi Z 2022 Adv. Funct. Mater. 32 2111776Google Scholar
[11] Yao Y, Naden A, Tian M, Lisenkov S, Beller Z, Kumar A, Kacher J, Ponomareva I, Bassiri-Gharb N 2023 Adv. Mater. 35 2206541Google Scholar
[12] Perez-Tomas A, Lira-Cantu M, Catalan G 2016 Adv. Mater. 28 9644Google Scholar
[13] Apachitei G, Peters J J P, Sanchez A M, Kim D J, Alexe M 2017 Adv. Electron. Mater. 3 1700126Google Scholar
[14] Huang X X, Zhang T F, Gao R Z, Huang H B, Ge P Z, Tang H, Tang X G 2021 ACS Appl. Mater. Inter. 13 21331Google Scholar
[15] Wei X K, Domingo N, Sun Y, Balke N, Dunin-Borkowski R E, Mayer J 2022 Adv. Energy Mater. 12 2201199Google Scholar
[16] Jaffe B, Roth R, Marzullo S 1954 J. Appl. Phys. 25 809Google Scholar
[17] Megaw H D 1946 Proc. Phys. Soc. 58 133Google Scholar
[18] Smepard R 1950 J. Am. Ceram. Soc. 33 63Google Scholar
[19] Shirane G, Sawaguchi E, Takeda A 1950 Phys. Rev. 80 485Google Scholar
[20] Corker D L, Glazer A M, Dec J, Roleder K, Whatmore R W 1997 Acta Crystallogr. Sect. B:Struct. Sci. 53 135Google Scholar
[21] Jona F, Shirane G, Mazzi F, Pepinsky R 1957 Phys. Rev. 105 849Google Scholar
[22] Glazer A, Roleder K, Dec J 1993 Acta Crystallogr. Sect. B:Struct. Sci. 49 846Google Scholar
[23] Fujishita H, Shiozaki Y, Sawaguchi E 1979 J. Phys. Soc. Jpn. 46 1391Google Scholar
[24] Tanaka M, Saito R, Tsuzuki K 1982 J. Phys. Soc. Jpn. 51 2635Google Scholar
[25] Dai X, Li J F, Viehland D 1995 Phys. Rev. B 51 2651Google Scholar
[26] Ayyub P, Chattopadhyay S, Pinto R, Multani M 1998 Phys. Rev. B 57 R5559Google Scholar
[27] Pintilie L, Boldyreva K, Alexe M, Hesse D 2008 J. Appl. Phys. 103 024101Google Scholar
[28] Wei X K, Tagantsev A K, Kvasov A, Roleder K, Jia C L, Setter N 2014 Nat. Commun. 5 3031Google Scholar
[29] Wei X K, Vaideeswaran K, Sandu C S, Jia C L, Setter N 2015 Adv. Mater. Inter. 2 1500349Google Scholar
[30] Aramberri H, Cazorla C, Stengel M, Íñiguez J 2021 npj Compt. Mater. 7 196Google Scholar
[31] Burkovsky R G, Lityagin G A, Ganzha A E, Vakulenko A F, Gao R, Dasgupta A, Xu B, Filimonov A V, Martin L W 2022 Phys. Rev. B 105 125409Google Scholar
[32] Fujishita H, Katano S 1997 J. Phys. Soc. Jpn. 66 3484Google Scholar
[33] Fujishita H, Shiozaki Y, Achiwa N, Sawaguchi E 1982 J. Phys. Soc. Jpn. 51 3583Google Scholar
[34] Samara G A 1970 Phys. Rev. B 1 3777Google Scholar
[35] Tagantsev A K, Vaideeswaran K, Vakhrushev S B, Filimonov A V, Burkovsky R G, Shaganov A, Andronikova D, Rudskoy A I, Baron A Q, Uchiyama H, Chernyshov D, Bosak A, Ujma Z, Roleder K, Majchrowski A, Ko J H, Setter N 2013 Nat. Commun. 4 2229Google Scholar
[36] Hlinka J, Ostapchuk T, Buixaderas E, Kadlec C, Kuzel P, Gregora I, Kroupa J, Savinov M, Klic A, Drahokoupil J 2014 Phys. Rev. Lett. 112 197601Google Scholar
[37] Bussmann-Holder A, Ko J H, Majchrowski A, Górny M, Roleder K 2013 J. Phys. :Condens. Matter 25 212202Google Scholar
[38] Ko J H, Górny M, Majchrowski A, Roleder K, Bussmann-Holder A 2013 Phys. Rev. B 87 184110Google Scholar
[39] Jaffe B 1961 Proc. IRE 49 1264Google Scholar
[40] Thacher P 1968 J. Appl. Phys. 39 1996Google Scholar
[41] Liu J, An K, Liu L, He J, Chou X, Xue C 2015 J. Mater. Sci. :Mater. Electron. 27 1758Google Scholar
[42] An K, Liu L, Zhang P, He J, Chou X, Xue C, Zhang W 2016 Microelectron. Eng. 162 45Google Scholar
[43] An K, Zhang H, Chou X, Xue C, Zhang W 2016 Micro Nano Lett. 11 803Google Scholar
[44] Uchino K 2016 Actuators 5 11Google Scholar
[45] Zhuo F, Damjanovic D, Li Q, Zhou Y, Ji Y, Yan Q, Zhang Y, Zhou Y, Chu X 2019 Mater. Horiz. 6 1699Google Scholar
[46] Cordero F 2015 Materials 8 8195Google Scholar
[47] Haertling G H, Land C E 1971 J. Am. Ceram. Soc. 54 1Google Scholar
[48] Pan W, Zhang Q, Bhalla A, Cross L E 1989 J. Am. Ceram. Soc. 72 571Google Scholar
[49] Xu Y, Yang Z, Xu K, Cao Y, Tian Y, Guo L, Tian J, Tian H, Liu X, Lin L, Wang G 2021 Chem. Eng. J. 426 131047Google Scholar
[50] Zhao L, Liu Q, Gao J, Zhang S, Li J F 2017 Adv. Mater. 29 1701824Google Scholar
[51] Randall C A, Fan Z, Reaney I, Chen L Q, Trolier-McKinstry S 2021 J. Am. Ceram. Soc. 104 3775Google Scholar
[52] Si Y, Zhang T, Chen Z, Zhang Q, Xu S, Lin T, Huang H, Zhou C, Chen S, Liu S, DongY, Liu C, Tang Y, Lu Y, Jin K, Guo E J, Lin X 2022 ACS Appl. Mater. Inter. 14 51096Google Scholar
[53] Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X 2015 J. Am. Ceram. Soc. 98 551Google Scholar
[54] Jiang R J, Cao Y, Geng W R, Zhu M X, Tang Y L, Zhu Y L, Wang Y, Gong F, Liu S Z, Chen Y T, Liu J, Liu N, Wang J H, Lv X D, Chen S J, Ma X L 2023 Nano Lett. 23 1522Google Scholar
[55] Pan H, Tian Z, Acharya M, Huang X, Kavle P, Zhang H, Wu L, Chen D, Carroll J, Scales R, Meyers C J G, Coleman K, Hanrahan B, Spanier J E, Martin L W 2023 Adv. Mater. 2300257Google Scholar
[56] Zhang T F, Tang X G, Ge P Z, Liu Q X, Jiang Y P 2017 Ceram. Int. 43 16300Google Scholar
[57] Zhang T F, Huang X X, Tang X G, Jiang Y P, Liu Q X, Lu B, Lu S G 2018 Sci. Rep. 8 396Google Scholar
[58] Zhang T F, Tang X G, Liu Q X, Jiang Y P, Huang X X, Zhou Q F 2016 J. Phys. D: Appl. Phys. 49 095302Google Scholar
[59] Hu Z, Ma B, Koritala R E, Balachandran U 2014 Appl. Phys. Lett. 104 263902Google Scholar
[60] Fesenko O E, Kolesova R V, Sindeyev Y G 1978 Ferroelectrics 20 177Google Scholar
[61] Ostapchuk T, Petzelt J, Zelezny V, Kamba S, Bovtun V, Porokhonskyy V, Pashkin A, Kuzel P, Glinchuk M, Bykov I 2001 J. Phys.: Condens. Matter 13 2677Google Scholar
[62] Íñiguez J, Stengel M, Prosandeev S, Bellaiche L 2014 Phys. Rev. B 90 220103Google Scholar
[63] Xu B, Hellman O, Bellaiche L 2019 Phys. Rev. B 100 020102Google Scholar
[64] Vales-Castro P, Roleder K, Zhao L, Li J F, Kajewski D, Catalan G 2018 Appl. Phys. Lett. 113 132903Google Scholar
[65] Lisenkov S, Yao Y, Bassiri-Gharb N, Ponomareva I 2020 Phys. Rev. B 102 104101Google Scholar
[66] Wei X K, Jia C L, Du H C, Roleder K, Mayer J, Dunin-Borkowski R E 2020 Adv. Mater. 32 1907208Google Scholar
[67] Wei X K, Jia C L, Roleder K, Dunin-Borkowski R E, Mayer J 2021 Adv. Funct. Mater. 31 2008609Google Scholar
[68] Bharadwaja S, Krupanidhi S 2001 J. Appl. Phys. 89 4541Google Scholar
[69] Si M, Lyu X, Shrestha P R, Sun X, Wang H, Cheung K P, Ye P D 2019 Appl. Phys. Lett. 115 072107Google Scholar
[70] Roleder K, Dee J 1989 J. Phys.: Condens. Matter 1 1503Google Scholar
[71] Mani B, Chang C M, Lisenkov S, Ponomareva I 2015 Phys. Rev. Lett. 115 097601Google Scholar
[72] Roy Chaudhuri A, Arredondo M, Hähnel A, Morelli A, Becker M, Alexe M, Vrejoiu I 2011 Phys. Rev. B 84 054112Google Scholar
[73] Boldyreva K, Pintilie L, Lotnyk A, Misirlioglu I B, Alexe M, Hesse D 2007 Appl. Phys. Lett. 91 122915Google Scholar
[74] Chen D, Nelson C T, Zhu X, Serrao C R, Clarkson J D, Wang Z, Gao Y, Hsu S L, Dedon L R, Chen Z, Yi D, Liu H J, Zeng D, Chu Y H, Liu J, Schlom D G, Ramesh R 2017 Nano Lett. 17 5823Google Scholar
[75] Reyes-Lillo S E, Rabe K M 2013 Phys. Rev. B 88 180102Google Scholar
[76] Lee H J, Lee M, Lee K, Jo J, Yang H, Kim Y, Chae S C, Waghmare U, Lee J H 2020 Science 369 1343Google Scholar
[77] Cheema S S, Shanker N, Hsu S L, Rho Y, Hsu C H, Stoica V A, Zhang Z, Freeland J W, Shafer P, Grigoropoulos C 2022 Science 376 648Google Scholar
[78] Hou C, Huang W, Zhao W, Zhang D, Yin Y, Li X 2017 ACS Appl. Mater. Inter. 9 20484Google Scholar
[79] Zhao P, Tang B, Fang Z, Si F, Yang C, Liu G, Zhang S 2021 J. Materiomics 7 195Google Scholar
[80] Kim J, Saremi S, Acharya M, Velarde G, Parsonnet E, Donahue P, Qualls A, Garcia D, Martin L W 2020 Science 369 81Google Scholar
[81] Li Y Z, Lin J L, Bai Y, Li Y, Zhang Z D, Wang Z J 2020 ACS Nano 14 6857Google Scholar
[82] Liu Z, Lu T, Xue F, Nie H, Wang G 2020 Sci. Adv. 6 eaba0367Google Scholar
[83] Li J, Li F, Xu Z, Zhang S 2018 Adv. Mater. 30 e1802155Google Scholar
[84] Zhu L F, Deng S, Zhao L, Li G, Wang Q, Li L, Yan Y, Qi H, Zhang B P, Chen J, Li J F 2023 Nat. Commun. 14 1166Google Scholar
[85] Luo Y, Wang C, Chen C, Gao Y, Sun F, Li C, Yin X, Luo C, Kentsch U, Cai X, Bai M, Fan Z, Qin M, Zeng M, Dai J, Zhou G, Lu X, Lou X, Zhou S, Gao X, Chen D, Liu J M 2023 Appl. Phys. Rev. 10 011403Google Scholar
[86] Li Z, Fu Z, Cai H, Hu T, Yu Z, Luo Y, Zhang L, Yao H, Chen X, Zhang S, Wang G, Dong X, Xu F 2022 Sci. Adv. 8 eabl9088Google Scholar
[87] Ge G, Shi C, Chen C, Shi Y, Yan F, Bai H, Yang J, Lin J, Shen B, Zhai J 2022 Adv. Mater. 34 2201333Google Scholar
[88] Nguyen M D, Birkhölzer Y A, Houwman E P, Koster G, Rijnders G 2022 Adv. Energy Mater. 12 2200517Google Scholar
[89] Luo N, Han K, Cabral M J, Liao X, Zhang S, Liao C, Zhang G, Chen X, Feng Q, Li J F, Wei Y 2020 Nat. Commun. 11 4824Google Scholar
[90] Qi H, Zuo R, Xie A, Tian A, Fu J, Zhang Y, Zhang S 2019 Adv. Funct. Mater. 29 1903877Google Scholar
[91] Wang M, Feng Q, Luo C, Lan Y, Yuan C, Luo N, Zhou C, Fujita T, Xu J, Chen G, Wei Y 2021 ACS Appl. Mater. Inter. 13 51218Google Scholar
[92] Chen L, Long F, Qi H, Liu H, Deng S, Chen J 2021 Adv. Funct. Mater. 32 2110478Google Scholar
[93] Owate I O, Freer R 1992 J. Appl. Phys. 72 2418Google Scholar
[94] Xie A, Qi H, Zuo R 2020 ACS Appl. Mater. Inter. 12 19467Google Scholar
[95] Jin Y, Wang J, Jiang L, Yao Y, Huang Y, Chen P, Chang W 2021 Ceram. Intl. 47 2869Google Scholar
[96] Chen G, Zhao J, Li S, Zhong L 2012 Appl. Phys. Lett. 100 222904Google Scholar
[97] Tong S 2021 J. Adv. Ceram. 10 181Google Scholar
[98] Bian F, Yan S, Xu C, Liu Z, Chen X, Mao C, Cao F, Bian J, Wang G, Dong X 2018 J. Eur. Ceram. Soc. 38 3170Google Scholar
[99] Ren P, Ren D, Sun L, Yan F, Yang S, Zhao G 2020 J. Eur. Ceram. Soc. 40 4495Google Scholar
[100] Zhang G, Chen Z, Fan B, Liu J, Chen M, Shen M, Liu P, Zeng Y, Jiang S, Wang Q 2016 APL Mater. 4 064103Google Scholar
[101] Pan H, Li F, Liu Y, Zhang Q H, Wang M, Lan S, Zheng Y P, Ma J, Gu L, Shen Y, Yu P, Zhang S J, Chen L Q, Lin Y H, Nan C W 2019 Science 365 578Google Scholar
[102] Han K, Luo N, Mao S, Zhuo F, Chen X, Liu L, Hu C, Zhou H, Wang X, Wei Y 2019 J. Materiomics 5 597Google Scholar
[103] Yang J, Zhao Y, Lou X, Wu J, Hao X 2020 J. Mater. Chem. C 8 4030Google Scholar
[104] Ma W, Zhu Y, Marwat M A, Fan P, Xie B, Salamon D, Ye Z G, Zhang H 2019 J. Mater. Chem. C 7 281Google Scholar
[105] Yuan Q, Yao F, Wang Y, Ma R, Wang H 2017 J. Mater. Chem. C 5 9552Google Scholar
[106] Wu Q, Zhao Y, Zhou Y, Chen X, Wu X, Zhao S 2021 J. Alloy. Compd. 881 160576Google Scholar
[107] Fan P, Zhang S T, Xu J, Zang J, Samart C, Zhang T, Tan H, Salamon D, Zhang H, Liu G 2020 J. Mater. Chem. C 8 5681Google Scholar
[108] Silva J P B, Silva J M B, Oliveira M J S, Weingärtner T, Sekhar K C, Pereira M, Gomes M J M 2018 Adv. Funct. Mater. 29 1807196Google Scholar
[109] Nguyen M D, Houwman E P, Do M T, Rijnders G 2020 Energy Storage Mater. 25 193Google Scholar
[110] Yan F, Bai H, Shi Y, Ge G, Zhou X, Lin J, Shen B, Zhai J 2021 Chem. Eng. J. 425 130669Google Scholar
[111] Mischenko A S, Zhang Q, Scott J F, Whatmore R W, Mathur N D 2006 Science 311 1270Google Scholar
[112] Kobeko P, Kurtschatov J 1930 Z. Phys. 66 192Google Scholar
[113] Granicher H 1956 Helv. Phys. Acta 29 210
[114] Bai Y, Zheng G P, Shi S Q 2011 Mater. Res. Bull. 46 1866Google Scholar
[115] Allouche B, Hwang H J, Yoo T J, Lee B H 2020 Nanoscale 12 3894Google Scholar
[116] Guo M, Wu M, Gao W, Sun B, Lou X 2019 J. Mater. Chem. C 7 617Google Scholar
[117] Peng B, Fan H, Zhang Q 2013 Adv. Funct. Mater. 23 2987Google Scholar
[118] Wu M, Song D, Guo M, Bian J, Li J, Yang Y, Huang H, Pennycook S J, Lou X 2019 ACS Appl. Mater. Inter. 11 36863Google Scholar
[119] Vales-Castro P, Faye R, Vellvehi M, Nouchokgwe Y, Perpiñà X, Caicedo J M, Jordà X, Roleder K, Kajewski D, Perez-Tomas A, Defay E, Catalan G 2021 Phys. Rev. B 103 054112Google Scholar
[120] Damjanovic D 2005 J. Am. Ceram. Soc. 88 2663Google Scholar
[121] Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Rödel J 2012 J. Electroceram. 29 71Google Scholar
[122] Li P, Zhai J, Shen B, Zhang S, Li X, Zhu F, Zhang X 2018 Adv. Mater. 30 1705171Google Scholar
[123] Park S E, Pan M J, Markowski K, Yoshikawa S, Cross L E 1997 J. Appl. Phys. 82 1798Google Scholar
[124] Zhuo F, Li Q, Zhou Y, Ji Y, Yan Q, Zhang Y, Xi X, Chu X, Cao W 2018 Acta Mater. 148 28Google Scholar
[125] Guo Y, Liu Y, Withers R L, Brink F, Chen H 2011 Chem. Mater. 23 219Google Scholar
[126] Berlincourt D A 1968 IEEE Trans. Sonic. Ultrason. 15 89Google Scholar
[127] Chou X, Guan X, Lv Y, Geng W, Liu J, Xue C, Zhang W 2013 IEEE Electron Dev. Lett. 34 1187Google Scholar
[128] Íñiguez J, Zubko P, Luk’yanchuk I, Cano A 2019 Nat. Rev. Mater. 4 243Google Scholar
[129] Landauer R 1976 Collect. Phenom. 2 167
[130] Wong J C, Salahuddin S 2018 Proc. IEEE 107 49Google Scholar
[131] Appleby D J, Ponon N K, Kwa K S, Zou B, Petrov P K, Wang T, Alford N M, O’Neill A 2014 Nano Lett. 14 3864Google Scholar
[132] Hoffmann M, Wang Z, Tasneem N, et al. 2022 Nat. Commun. 13 1228Google Scholar
[133] Cheema S S, Shanker N, Wang L C, et al. 2022 Nature 604 65Google Scholar
[134] Sheikholeslami A, Gulak P G 2000 Proc. IEEE 88 667Google Scholar
[135] Vopson M M, Tan X 2016 IEEE Electron Dev. Lett. 37 1551Google Scholar
[136] Morris D H, Avci U E, Young I A 2019 EP Patent 3576092
[137] Esaki L, Chang L 1970 Phys. Rev. Lett. 25 653Google Scholar
[138] Kohlstedt H, Pertsev N A, Rodríguez Contreras J, Waser R 2005 Phys. Rev. B 72 125341Google Scholar
[139] Guo M, Qian Y, Qi H, Bi K, Chen Y 2020 Carbon 157 185Google Scholar
[140] Lee S, Hippalgaonkar K, Yang F, Hong J, Ko C, Suh J, Liu K, Wang K, Urban J J, Zhang X 2017 Science 355 371Google Scholar
[141] Starkiewicz J, Sosnowski L, Simpson O 1946 Nature 158 28Google Scholar
[142] Goldstein B, Pensak L 1959 J. Appl. Phys. 30 155Google Scholar
[143] Yang S, Seidel J, Byrnes S, Shafer P, Yang C H, Rossell M, Yu P, Chu Y H, Scott J, Ager Iii J 2010 Nat. Nanotech. 5 143Google Scholar
[144] Junquera J, Ghosez P 2003 Nature 422 506Google Scholar
[145] Nataf G F, Guennou M, Gregg J M, Meier D, Hlinka J, Salje E K H, Kreisel J 2020 Nat. Rev. Phys. 2 634Google Scholar
[146] Yang B, Zhang Y, Pan H, Si W, Zhang Q, Shen Z, Yu Y, Lan S, Meng F, Liu Y, Huang H, He J, Gu L, Zhang S, Chen L Q, Zhu J, Nan C W, Lin Y H 2022 Nat. Mater. 21 1074Google Scholar
[147] Garcia-Castro A C, Ma Y, Romestan Z, Bousquet E, Cen C, Romero A H 2021 Adv. Funct. Mater. 32 2107135Google Scholar
[148] Phuoc N N, Ong C 2013 Adv. Mater. 25 980Google Scholar
[149] Catalan G, Noheda B, McAneney J, Sinnamon L, Gregg J 2005 Phys. Rev. B 72 020102Google Scholar
[150] Wang J, Wylie-van Eerd B, Sluka T, Sandu C, Cantoni M, Wei X K, Kvasov A, McGilly L J, Gemeiner P, Dkhil B 2015 Nat. Mater. 14 985Google Scholar
计量
- 文章访问数: 5952
- PDF下载量: 270
- 被引次数: 0