搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SGT-MOSFET电场解析模型的建立

苏乐 王彩琳 杨武华 梁晓刚 张超

引用本文:
Citation:

SGT-MOSFET电场解析模型的建立

苏乐, 王彩琳, 杨武华, 梁晓刚, 张超

Analytically modeling electric field of shielded gate trench metal-oxide-semiconductor field effect transistor

Su Le, Wang Cai-Lin, Yang Wu-Hua, Liang Xiao-Gang, Zhang Chao
PDF
HTML
导出引用
  • 屏蔽栅沟槽金属氧化物半导体场效应晶体管(SGT-MOSFET)在体内引入了纵向接源电极的屏蔽栅极, 可以辅助耗尽漂移区, 其耐压原理与沟槽MOSFET(VUMOSFET)不同. 本文以110 V左右结构的SGT-MOSFET为研究对象, 通过数值仿真、理论分析以及解析建模, 研究了不同结构的耐压原理以及结构参数与电场强度分布的相关性; 建立了与器件各个结构参数相关的电场解析模型, 为器件结构设计提供了理论依据; 并引入雪崩载流子对小电流下的电场解析模型进行了修正, 使得解析结果和仿真结果吻合较好; 通过修正后的电场解析模型提取了最优电场下的场氧厚度, 使得相应产品的静、动态特性得到明显改善, 从而极大地提升了器件的性能.
    Shielded gate trench metal-oxide-semiconductor field effect transistor (SGT-MOSFET) introduces a longitudinal shielding gate connected to the source inside the body, which can assist in depleting the drift region. Its principle of withstanding voltage is different from that of the vertical U-groove MOSFET (VUMOSFET). The SGT-MOSFET will generate two electric field peaks inside the body, which will further optimize the electric field strength distribution of the device and increase the breakdown voltage of the device. Therefore, SGT-MOSFET has not only the advantages of low conduction loss of CCMOSFET, but also lower switching loss. The effects of structural parameters such as the width of the mesa, the thickness of the field oxygen, the depth of the trench and the doping concentration on the electric field strength distribution of SGT-MOSFET are not independent of each other. The more the parameters, the more complex the correlation of their effects on the electric field strength distribution is. In this paper, we take 110V SGT-MOSFET as a research object. Through numerical simulation, theoretical analysis and analytical modeling, the principle of withstanding voltage for different structures and the correlation between structural parameters and electric field strength distribution are studied. The analytical model of the electric field related to various structural parameters of the device is established, which provides a theoretical basis for the design of the device structure. The analytical model of electric field under low current is modified by introducing avalanche carriers, so that the modified analytical results can better match the simulation results. Through the modified electric field analysis model, the field oxygen thicknessin an optimal electric field is 0.68 µm . Comparing with the product of SGTMOSFET with 0.58 µm field oxygen thickness, at the optimal field oxygen thickness of 0.68 µm, the on-resistance of the device is reduced because the on-area of the device is increased; the electric field distribution is more uniform, so the device breakdown voltage increases; the gate-source capacitance decreases and the gate-drain capacitance is almost no change, so the gate-source charge decreases and the gate-drain charge is almost no change, while the total gate charge decreases. As a result, the optimal value parameter FOM1 of the device is increased by 18.9%, and the optimal value parameter FOM2 is reduced by 8.5%. Therefore, the static and dynamic characteristics of the device are significantly promoted, and the performance of the corresponding products is greatly improved.
      通信作者: 王彩琳, wangcailin8511@xaut.edu.cn
    • 基金项目: 陕西省“两链融合”重点研发项目(批准号: 2021LLRH-02)、陕西省教育厅科研计划项目(批准号: 22JK0484)和陕西省科学技术厅自然科学基础研究计划(批准号: 2023-JC-QN-0764)资助的课题.
      Corresponding author: Wang Cai-Lin, wangcailin8511@xaut.edu.cn
    • Funds: Project supported by the “Two Chain” Integration Key Project of Shaanxi Province, China (Grant No. 2021LLRH-02), the Scientific Research Program Project of Shaanxi Provincial Education Department of China (Grant No. 22JK0484), and the Natural Science Basic Research Program of Science and Technology Department of Shaanxi Province, China (Grant No. 2023-JC-QN-0764).
    [1]

    Nguyen M H, Kwak S 2020 Electronics 9 2068Google Scholar

    [2]

    Huang A Q 2017 P. IEEE. 105 2019Google Scholar

    [3]

    Krishnan R 2020 IEEE Ind. Electron. Mag. 16 105

    [4]

    Williams R K, Darwish M N, Blanchard R A, Siemieniec R, Rutter P, Kawaguchi Y 2017 IEEE. T. Electron. Dev. 64 692Google Scholar

    [5]

    Xi J, Wang J, Lu J, Chen J, Xin Y, Li Z, Tu C, Shen Z J 2018 Microelectron. Reliab. 88–90 593

    [6]

    Park C, Havanur S, Shibib A, Terrill K 2016 Proceedings of the 28th International Symposium on Power Semiconductor Devices and ICs Prague, Czech Republic, June 12–16, 2016 p387

    [7]

    Wang Y, Hu H F, Jiao W 2012 IEEE. T. Electron. Dev. 59 3037Google Scholar

    [8]

    Tian Y, Yang Z, Xu Z, Liu S, Sun W F, Shi L, Zhu Y, Ye P, Zhou J 2018 Superlattice. Microst. 116 151Google Scholar

    [9]

    Su L, Wang C L, Yang W H, An J 2022 Microelectron. Reliab. 139 114822Google Scholar

    [10]

    Tong C F, Mawby P A, Covington J A 2009 13th European Conference on Power Electronics and Applications Barcelona, Spain, September 8–10, 2009 10939294

    [11]

    Wang Y, Yu C H, Hu H F, Dou Z 2013 IET. Power. Electron. 7 2964

    [12]

    Wang Y, Lan H, Dou Z, Hu H F 2014 IET. Power. Electron. 7 2030Google Scholar

    [13]

    Deng S, Hossain Z, Taniguchi T 2017 IEEE. T. Electron. Dev. 64 735Google Scholar

    [14]

    Wang W, Ning R, Shen Z J 2017 IEEE. Electr. Device. L. 38 1055Google Scholar

    [15]

    Chien F T, Wang Z Z, Lin C L, Kang T K, Chen C W, Chiu H C 2020 Micromachines 11 504Google Scholar

    [16]

    Chen R, Wang L, Jiu N, Zhang H, Guo, M 2020 Electronics 9 745Google Scholar

    [17]

    Wang Z K, Qiao M, Fang D, Wang R D, Qi Z, Li Z J, Zhang B 2020 IEEE. Electr. Device. L. 41 749Google Scholar

    [18]

    Su L, Wang C L, Yang W H, Zhang C 2023 Microelectron. Reliab. 143 114950Google Scholar

    [19]

    Zhang W T, Pu S, Lai C L, Ye L, Cheng S, Zhang S, He B, Wang Z, Luo X, Qiao M 2018 Proceedings of the 30th International Symposium on Power Semiconductor Devices and ICs Chicago, IL, USA, May 13–17, 2018 p475

    [20]

    Zhang W T, Ye L, Fang D, Qiao M, Xiao K, He B Y, Li Z J, Zhang B 2019 IEEE. T. Electron. Dev. 66 1416Google Scholar

    [21]

    Zhang W T, Zhang B, Qiao M, Wu L J, Mao K, Li Z J 2014 IEEE. T. Electron. Dev. 61 518Google Scholar

    [22]

    Oetjen J, Jungblut R, Kuhlmann U, Arkenau J, Sittig R 2000 Solid. State. Electronic. 44 117Google Scholar

    [23]

    Jacoboni C, Canali C, Ottaviani G, Quaranta A A 1977 Solid. State. Electronic. 20 77Google Scholar

  • 图 1  SGT-MOSFE产品SEM图

    Fig. 1.  The SEM photo of SGT-MOSFE product.

    图 2  两元胞VUMOSFET (a), CCMOSFET (b), SGT-MOSFET (c)结构图

    Fig. 2.  The structures of two-cell VUMOSFET (a), CCMOSFET (b), SGT - MOSFET (c).

    图 3  (a)栅电荷测试电路; (b) 栅电荷测试波形

    Fig. 3.  (a) Testing circuit of the gate charge; (b) test waveform of the gate charge.

    图 4  不同结构击穿曲线对比

    Fig. 4.  Comparison of breakdown curves of different structures.

    图 5  不同结构电场强度分布图

    Fig. 5.  The electric field strength distribution diagram of different structures.

    图 6  不同结构电势分布曲线

    Fig. 6.  The potential distribution curves of different structures.

    图 7  不同场氧厚度下的击穿电压

    Fig. 7.  The breakdown voltage under different field oxygen thicknesses.

    图 8  SGT-MOSFET结构示意图

    Fig. 8.  The schematic diagram of SGT-MOSFET.

    图 9  不同电压下电场解析结果和仿真结果的对比

    Fig. 9.  Comparison of electric field analysis results and simulation results under different drain-source voltages.

    图 10  修正后的电场解析模型

    Fig. 10.  Revised electric field analytical model.

    图 11  不同场氧厚度下的电场解析模型

    Fig. 11.  Analytical model of electric field under different field oxygen thicknesses.

    图 12  不同场氧厚度下的RonVBR、归一化优值FOM1

    Fig. 12.  Ron, VBR, and normalized FOM1 under different

    图 13  不同场氧厚度下的栅电荷

    Fig. 13.  Gate charges under different field oxygen thicknesses.

    图 14  不同场氧厚度下的RonQg、优值FOM2

    Fig. 14.  Ron, Qg, and FOM2 under different field oxygen thickness.

    表 1  SGT-MOSFE产品具体结构参数

    Table 1.  The structural parameters of SGT-MOSFET product.

    参数掺杂浓度/cm–3厚度/宽度(µm/µm)
    n+源区5.0×10190.30
    p体区1.3×10170.80
    p漂移区1.5×10167.40
    p+衬底1.5×101915.00
    沟槽深度①4.70
    屏蔽栅深度②4.30
    控制栅深度③1.00
    单元胞宽度④3.20
    沟槽宽度⑤1.80
    台面宽度⑥1.40
    场氧厚度⑦0.58
    下载: 导出CSV

    表 2  表达式中的具体参数值

    Table 2.  Specific parameter values in expressions.

    参数参数值单位
    ND1.5×1016cm–3
    NA4×1016cm–3
    q1.602×10–19C
    ${\varepsilon }_{ {\rm{s} }{\rm{i} } }$1.053626×10–12F/cm
    $ {D}_{{\rm{p}}} $0.8×10–4cm
    Ln3.5×10–4cm
    Wn0.70×10–4cm
    Tox0.58×10–4cm
    K3.0512820513
    T1.2005×10–4cm
    t0.49497×10–4cm
    下载: 导出CSV
  • [1]

    Nguyen M H, Kwak S 2020 Electronics 9 2068Google Scholar

    [2]

    Huang A Q 2017 P. IEEE. 105 2019Google Scholar

    [3]

    Krishnan R 2020 IEEE Ind. Electron. Mag. 16 105

    [4]

    Williams R K, Darwish M N, Blanchard R A, Siemieniec R, Rutter P, Kawaguchi Y 2017 IEEE. T. Electron. Dev. 64 692Google Scholar

    [5]

    Xi J, Wang J, Lu J, Chen J, Xin Y, Li Z, Tu C, Shen Z J 2018 Microelectron. Reliab. 88–90 593

    [6]

    Park C, Havanur S, Shibib A, Terrill K 2016 Proceedings of the 28th International Symposium on Power Semiconductor Devices and ICs Prague, Czech Republic, June 12–16, 2016 p387

    [7]

    Wang Y, Hu H F, Jiao W 2012 IEEE. T. Electron. Dev. 59 3037Google Scholar

    [8]

    Tian Y, Yang Z, Xu Z, Liu S, Sun W F, Shi L, Zhu Y, Ye P, Zhou J 2018 Superlattice. Microst. 116 151Google Scholar

    [9]

    Su L, Wang C L, Yang W H, An J 2022 Microelectron. Reliab. 139 114822Google Scholar

    [10]

    Tong C F, Mawby P A, Covington J A 2009 13th European Conference on Power Electronics and Applications Barcelona, Spain, September 8–10, 2009 10939294

    [11]

    Wang Y, Yu C H, Hu H F, Dou Z 2013 IET. Power. Electron. 7 2964

    [12]

    Wang Y, Lan H, Dou Z, Hu H F 2014 IET. Power. Electron. 7 2030Google Scholar

    [13]

    Deng S, Hossain Z, Taniguchi T 2017 IEEE. T. Electron. Dev. 64 735Google Scholar

    [14]

    Wang W, Ning R, Shen Z J 2017 IEEE. Electr. Device. L. 38 1055Google Scholar

    [15]

    Chien F T, Wang Z Z, Lin C L, Kang T K, Chen C W, Chiu H C 2020 Micromachines 11 504Google Scholar

    [16]

    Chen R, Wang L, Jiu N, Zhang H, Guo, M 2020 Electronics 9 745Google Scholar

    [17]

    Wang Z K, Qiao M, Fang D, Wang R D, Qi Z, Li Z J, Zhang B 2020 IEEE. Electr. Device. L. 41 749Google Scholar

    [18]

    Su L, Wang C L, Yang W H, Zhang C 2023 Microelectron. Reliab. 143 114950Google Scholar

    [19]

    Zhang W T, Pu S, Lai C L, Ye L, Cheng S, Zhang S, He B, Wang Z, Luo X, Qiao M 2018 Proceedings of the 30th International Symposium on Power Semiconductor Devices and ICs Chicago, IL, USA, May 13–17, 2018 p475

    [20]

    Zhang W T, Ye L, Fang D, Qiao M, Xiao K, He B Y, Li Z J, Zhang B 2019 IEEE. T. Electron. Dev. 66 1416Google Scholar

    [21]

    Zhang W T, Zhang B, Qiao M, Wu L J, Mao K, Li Z J 2014 IEEE. T. Electron. Dev. 61 518Google Scholar

    [22]

    Oetjen J, Jungblut R, Kuhlmann U, Arkenau J, Sittig R 2000 Solid. State. Electronic. 44 117Google Scholar

    [23]

    Jacoboni C, Canali C, Ottaviani G, Quaranta A A 1977 Solid. State. Electronic. 20 77Google Scholar

  • [1] 赵华良, 彭红玲, 周旭彦, 张建心, 牛博文, 尚肖, 王天财, 曹澎. InP衬底上的双载流子倍增雪崩光电二极管结构设计. 物理学报, 2023, 72(19): 198502. doi: 10.7498/aps.72.20230885
    [2] 徐晗, 张璐. 考虑空间电荷层效应的氧离子导体电解质内载流子传输特性. 物理学报, 2021, 70(6): 068801. doi: 10.7498/aps.70.20201651
    [3] 韩冬, 孙飞阳, 鲁继远, 宋福明, 徐跃. 采用多晶硅场板降低单光子雪崩二极管探测器暗计数. 物理学报, 2020, 69(14): 148501. doi: 10.7498/aps.69.20200523
    [4] 吕懿, 张鹤鸣, 胡辉勇, 杨晋勇. 单轴应变SiNMOSFET热载流子栅电流模型. 物理学报, 2014, 63(19): 197103. doi: 10.7498/aps.63.197103
    [5] 张希仁, 高椿明. 方波调制下自由载流子吸收测量半导体载流子输运参数的时域模型. 物理学报, 2014, 63(13): 137801. doi: 10.7498/aps.63.137801
    [6] 辛艳辉, 刘红侠, 范小娇, 卓青青. 非对称Halo异质栅应变Si SOI MOSFET的二维解析模型. 物理学报, 2013, 62(15): 158502. doi: 10.7498/aps.62.158502
    [7] 韩名君, 柯导明, 迟晓丽, 王敏, 王保童. 超短沟道MOSFET电势的二维半解析模型. 物理学报, 2013, 62(9): 098502. doi: 10.7498/aps.62.098502
    [8] 危卫, 鲁录义, 顾兆林. 风沙运动的电场-流场耦合模型及气固两相流数值模拟. 物理学报, 2012, 61(15): 158301. doi: 10.7498/aps.61.158301
    [9] 李聪, 庄奕琪, 韩茹, 张丽, 包军林. 非对称HALO掺杂栅交叠轻掺杂漏围栅MOSFET的解析模型. 物理学报, 2012, 61(7): 078504. doi: 10.7498/aps.61.078504
    [10] 范孟豹, 曹丙花, 杨雪锋. 脉冲涡流检测瞬态涡流场的时域解析模型. 物理学报, 2010, 59(11): 7570-7574. doi: 10.7498/aps.59.7570
    [11] 李劲, 刘红侠, 李斌, 曹磊, 袁博. 高k栅介质应变Si SOI MOSFET的阈值电压解析模型. 物理学报, 2010, 59(11): 8131-8136. doi: 10.7498/aps.59.8131
    [12] 王金东, 吴祖恒, 张 兵, 魏正军, 廖常俊, 刘颂豪. 用于红外单光子探测的雪崩光电二极管传输线抑制电路模型的理论分析. 物理学报, 2008, 57(9): 5620-5626. doi: 10.7498/aps.57.5620
    [13] 栾苏珍, 刘红侠, 贾仁需, 蔡乃琼. 高k介质异质栅全耗尽SOI MOSFET二维解析模型. 物理学报, 2008, 57(6): 3807-3812. doi: 10.7498/aps.57.3807
    [14] 郜锦侠, 张义门, 汤晓燕, 张玉明. C-V法提取SiC隐埋沟道MOSFET沟道载流子浓度. 物理学报, 2006, 55(6): 2992-2996. doi: 10.7498/aps.55.2992
    [15] 陈卫兵, 徐静平, 邹 晓, 李艳萍, 许胜国, 胡致富. 小尺寸MOSFET隧穿电流解析模型. 物理学报, 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
    [16] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型. 物理学报, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [17] 李领伟, 曹世勋, 黎文峰, 刘 芬, 池长昀, 敬 超, 张金仓. 氧含量对Fe掺杂YBCO体系中载流子局域化与离子团簇效应的影响. 物理学报, 2005, 54(8): 3839-3844. doi: 10.7498/aps.54.3839
    [18] 代月花, 陈军宁, 柯导明, 孙家讹. 考虑量子化效应的MOSFET阈值电压解析模型. 物理学报, 2005, 54(2): 897-901. doi: 10.7498/aps.54.897
    [19] 崔万照, 朱长纯, 刘君华. 薄膜场发射开启电场的小波神经网络预测模型研究. 物理学报, 2004, 53(5): 1583-1587. doi: 10.7498/aps.53.1583
    [20] 李向亭, 马红孺. 电流变液中电场强度的半解析计算. 物理学报, 2000, 49(6): 1070-1075. doi: 10.7498/aps.49.1070
计量
  • 文章访问数:  5533
  • PDF下载量:  265
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-07
  • 修回日期:  2023-04-18
  • 上网日期:  2023-05-08
  • 刊出日期:  2023-07-20

/

返回文章
返回