搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极化中子散射零磁场屏蔽体的有限元分析

曾滔 董雨晨 王天昊 田龙 黄楚怡 唐健 张俊佩 余羿 童欣 樊群超

引用本文:
Citation:

极化中子散射零磁场屏蔽体的有限元分析

曾滔, 董雨晨, 王天昊, 田龙, 黄楚怡, 唐健, 张俊佩, 余羿, 童欣, 樊群超

Finite element analysis of zero magnetic field shielding for polarized neutron scattering

Zeng Tao, Dong Yu-Chen, Wang Tian-Hao, Tian Long, Huang Chu-Yi, Tang Jian, Zhang Jun-Pei, Yu Yi, Tong Xin, Fan Qun-Chao
PDF
HTML
导出引用
  • 极化中子散射技术是中子散射实验技术中的一种, 是当前探索物质微观结构的有力手段. 在极化中子散射实验中, 磁场是重要的环境因素直接影响中子极化率的传播和样品所处的环境. 用于极化中子的零磁场环境是实现完全极化分析和精确极化调控的必要条件, 需要通过精确的磁场屏蔽和约束实现. 针对目前前沿的混合材料磁屏蔽原理, 开展磁场屏蔽的有限元分析, 同时通过中子极化动力学计算进行验证. 研究展示经过优化的极化中子零磁场屏蔽体的屏蔽效果, 以及设计参数与屏蔽效果的关系, 并对屏蔽体的实际磁场约束效果进行了测量验证.
    Polarized neutron scattering, as one of the experimental techniques of neutron scattering, is a powerful tool for exploring the microstructure of matter. In polarized neutron scattering experiments, magnetic field maintains and guides the neutron polarization, and determines the sample magnetic environment. For complex magnetic sample, it is often necessary to apply zero-field environment at the sample position, so that general polarization analysis becomes feasible. To achieve effective zero-field environment for polarized neutron experiment, carefully designed magnetic field is required.In this work, we demonstrate a zero-field sample chamber designed for polarized neutron experiment by utilizing both permalloy material and high-TC superconducting films. This design adopts a simple and low-maintenance ‘deep-well’ shape to achieve effective shielding. The study uses finite element simulation method to analyze the effect of dimensions on the magnetic field shielding performance of the device of the model, including height, arm length, opening radius, and superconductor distance. At optimal dimensions, the designed zero field chamber achieves an internal magnetic field integral of 0.67 G·cm along the neutron path under the geomagnetic field condition. The maximum neutron depolarization for 0.4 nm neutrons is 0.76%, which sufficient for general polarization analysis application. The finite element method simulation results are examined by neutron Bloch equation dynamics simulations and in-lab measurement . Based on the established effective zero-field shielding design, we further discuss the relationship between magnetic field shielding and the dimensions of the device. The application of the device to spectrometers and the future improvement in the device structure are also discussed.
      通信作者: 樊群超, fanqunchao@mail.xhu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFA0406000)、国家自然科学基金(批准号: 12075265, U2032219))、广东省基础与应用基础研究基金(批准号: 2021B1515140016)、东莞市引进创新创业领军人才计划(批准号: 20191122)和广东省自然科学杰出青年基金(批准号: 2021B1515020101)资助的课题.
      Corresponding author: Fan Qun-Chao, fanqunchao@mail.xhu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2020YFA0406000), the National Natural Science Foundation of China (Grant Nos. 12075265, U2032219), the Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2021B1515140016), the Dongguan Introduction Program of Leading Innovative and Entrepreneurial Talents, China (Grant No. 20191122), and the Guangdong Natural Science Funds for Distinguished Young Scholar, China (Grant No. 2021B1515020101).
    [1]

    Halpern O, Johnson M H 1939 Phys. Rev. 55 898Google Scholar

    [2]

    Moon R M, Riste T, Koehler W C 1969 Phys. Rev. 181 920Google Scholar

    [3]

    Kozhevnikov S V, Ott F, Radu F 2018 Phys. Part. Nuclei 49 308Google Scholar

    [4]

    Halpern O, Holstein T 1941 Phys. Rev. 59 960Google Scholar

    [5]

    童欣 2020 物理 49 765Google Scholar

    Tong X 2020 Physics 49 765Google Scholar

    [6]

    Tasset F 1989 Physica B: Condensed Matter 156–157 627

    [7]

    Brown P J, Forsyth J B, Tasset F Neutron polarimetry 1997 Proc. Royal Soc. London A: Math. Phys. Sci. 442 147Google Scholar

    [8]

    Janoschek M, Klimko S, Gähler R, Roessli B, Böni P 2007 Physica B: Condensed Matter 397 125Google Scholar

    [9]

    Tasset F, Lelièvre-Berna E, Roberts T W, Bourgeat-Lami E, Pujol S, Thomas M 1997 Physica B: Condensed Matter 241–243 177Google Scholar

    [10]

    Tasset F, Brown P J, Lelièvre-Berna E, Roberts T, Pujol S, Allibon J, Bourgeat-Lami E 1999 Physica B: Condensed Matter 267–268 69Google Scholar

    [11]

    Lelièvre-Berna E, Bourgeat-Lami E, Fouilloux P, Geffray B, Gibert Y, Kakurai K, Kernavanois N, Longuet B, Mantegezza F, Nakamura M, Pujol S, Regnault L P, Tasset F, Takeda M, Thomas M, Tonon X 2005 Physica B: Condensed Matter 356 131Google Scholar

    [12]

    Regnault L P, Geffray B, Fouilloux P, Longuet B, Mantegezza F, Tasset F, Lelièvre-Berna E, Bourgeat-Lami E, Thomas M, Gibert Y 2003 Physica B: Condensed Matter 335 255Google Scholar

    [13]

    Takeda M, Nakamura M, Kakurai K, Lelièvre-berna E, Tasset F, Regnault L P 2005 Physica B:Condensed Matter 356 136Google Scholar

    [14]

    Hutanu V, Luberstetter W, Bourgeat-Lami E, Meven M, Sazonov A, Steffen A, Heger G, Roth G, Lelièvre-Berna E 2016 Rev. Sci. Instrum. 87 105108Google Scholar

    [15]

    Wang T 2015 Ph. D. Dissertation (Bloomington: Indiana University)

    [16]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [17]

    Parnell S R, Kaiser H, Washington A L, Li F, Wang T, Baxter D V, Pynn R 2013 Physics Procedia 42 125Google Scholar

    [18]

    Bloch F 1946 Phys. Rev. 70 460Google Scholar

    [19]

    Seeger P A, Daemen L L 2001 Nucl. Instrum. Methods Phys. Res. , Sect. A 457 338Google Scholar

    [20]

    Dong Y C, Wang T H, Kreuzpaintner W, Liu X T, Li Z H, Kang Y D, Zhang J P, Tian L, Huang C Y, Bai B, Tong X 2022 Nucl. Sci. Tech. 33 145Google Scholar

  • 图 1  混合屏蔽深井式方案整体设计示意图 (a) 零场腔设计与磁场元件分布图; (b) 基于原型设计进行计算的磁场模拟结果示意图

    Fig. 1.  Schematic diagram of hybrid shielding ‘deep well’ design: (a) Schematic diagram of design of zero field chamber (ZFC) and distribution of magnetic field elements; (b) schematic diagram of magnetic field simulation result based on prototype design.

    图 2  零磁腔三维有限元分析模型

    Fig. 2.  Three-dimensional FEM model of ZFC

    图 3  零场腔磁场分布XZ平面截面图

    Fig. 3.  XZ-plane cross-sectional view of magnetic field distribution of ZFC

    图 4  最优设计条件下零场腔内沿束流方向的磁场分布与极化演化 (a) 零场腔中子束流沿线磁场分布; (b) 零场腔内内中子束流沿行进方向的极化变化

    Fig. 4.  Magnetic field distribution and polarization evolution in direction of beam path in ZFC under optimal conditions: (a) Magnetic field distribution of ZFC along the neutron beam direction; (b) polarization evolution along neutron beam direction inside the ZFC.

    图 5  不同高度条件对零场腔屏蔽性能的影响 (a)沿中子路径上的磁场分布对比; (b)零场腔内中子路径上的磁场积分随高度条件的变化

    Fig. 5.  Influence of height conditions on shielding performance of ZFC: (a) Comparison of magnetic field distributions along neutron beam path; (b) variation of magnetic field integral along neutron beam path inside ZFC with height.

    图 11  不同坡莫合金材料厚度对零场腔屏蔽性能的影响 (a) 沿中子路径上的磁场分布对比; (b)零场腔内中子路径上的磁场积分随厚度条件的变化

    Fig. 11.  Influence of permalloy thickness conditions on shielding performance of ZFC: (a) Comparison of magnetic field distributions along neutron beam path; (b) variation of magnetic field integral along neutron beam path inside ZFC with permalloy thickness.

    图 6  不同高度条件下的磁场分布XZ平面截面图 (a) h = 140 mm; (b) h = 200 mm; (c) h = 300 mm

    Fig. 6.  XZ-plane cross-sectional view of magnetic field distribution under different height conditions: (a) h = 140 mm; (b) h = 200 mm; (c) h = 300 mm.

    图 7  不同半径条件对零场腔屏蔽性能的影响 (a)沿中子路径上的磁场分布对比; (b)零场腔内中子路径上的磁场积分随半径条件的变化

    Fig. 7.  Influence of radius conditions on shielding performance of ZFC: (a) Comparison of magnetic field distributions along neutron beam path; (b) variation of magnetic field integral along neutron beam path inside ZFC with radius.

    图 8  不同臂长条件对零场腔屏蔽性能的影响 (a)沿中子路径上的磁场分布对比; (b)零场腔内中子路径上的磁场积分随臂长条件的变化

    Fig. 8.  Influence of arm length conditions on shielding performance of ZFC: (a) Comparison of magnetic field distributions along neutron beam path; (b) variation of magnetic field integral along neutron beam path inside ZFC with arm length.

    图 9  超导体薄膜与零磁场腔端口的间距对零场腔屏蔽性能的影响 (a) 沿中子路径上的磁场分布对比; (b) 零场腔内中子路径上的磁场积分随超导体薄膜距离的变化

    Fig. 9.  Influence on shielding performance of ZFC caused by distance between superconducting thin film and end of arm: (a) Comparison of magnetic field distributions along neutron beam path; (b) variation of magnetic field integral along neutron beam path inside ZFC with distance between superconducting thin film and end of the arm.

    图 10  不同间距条件下的磁场分布XZ平面截面图 (a) d = 1 mm; (b) d = 23 mm

    Fig. 10.  XZ-plane cross-sectional view of magnetic field distribution under different distance conditions: (a) d = 1 mm; (b) d = 23 mm.

    图 12  FEM磁场模拟结果与实际测量结果的对比(屏蔽体两端口分别位于±151 mm处) (a)原型装置的磁场分布对比; (b)优化装置的磁场分布对比

    Fig. 12.  Comparison of magnetic field distribution results between FEM simulation and actual measurement (Ends of arm of ZFC are located at ±151 mm): (a) Magnetic field distribution comparison of prototype; (b) magnetic field distribution comparison of optimized device.

    图 13  (a)优化前和(b)优化后零磁场腔的磁场分布XZ平面截面图

    Fig. 13.  XZ-plane cross-sectional view of magnetic field distribution of ZFC (a) before and (b) after optimization.

    图 14  偏离中心线时沿中子行进方向上的磁场分布 (a) 偏离中心线5 mm时的磁场强度分布; (b)偏离中心线10 mm时的磁场强度分布

    Fig. 14.  Distribution of magnetic field along neutron path when off-centerline: (a) Magnetic field distribution at 5 mm deviation from centerline; (b) magnetic field distribution at 10 mm deviation from centerline

    表 1  有限元模拟各材料物理性能定义

    Table 1.  Physical properties definition of different materials in FEM model.

    材料电导率 σ/(S·m–1)相对磁导率 μr
    空气01
    坡莫合金(80% Ni)$ 1.74\times {10}^{6} $$ 80000 $
    $ 1.12\times {10}^{7} $$ 4000 $
    $ 6.00\times {10}^{7} $1
    YBCO薄膜(自定义材料)$ 1\times {10}^{10} $$ 1\times {10}^{-10} $
    下载: 导出CSV
  • [1]

    Halpern O, Johnson M H 1939 Phys. Rev. 55 898Google Scholar

    [2]

    Moon R M, Riste T, Koehler W C 1969 Phys. Rev. 181 920Google Scholar

    [3]

    Kozhevnikov S V, Ott F, Radu F 2018 Phys. Part. Nuclei 49 308Google Scholar

    [4]

    Halpern O, Holstein T 1941 Phys. Rev. 59 960Google Scholar

    [5]

    童欣 2020 物理 49 765Google Scholar

    Tong X 2020 Physics 49 765Google Scholar

    [6]

    Tasset F 1989 Physica B: Condensed Matter 156–157 627

    [7]

    Brown P J, Forsyth J B, Tasset F Neutron polarimetry 1997 Proc. Royal Soc. London A: Math. Phys. Sci. 442 147Google Scholar

    [8]

    Janoschek M, Klimko S, Gähler R, Roessli B, Böni P 2007 Physica B: Condensed Matter 397 125Google Scholar

    [9]

    Tasset F, Lelièvre-Berna E, Roberts T W, Bourgeat-Lami E, Pujol S, Thomas M 1997 Physica B: Condensed Matter 241–243 177Google Scholar

    [10]

    Tasset F, Brown P J, Lelièvre-Berna E, Roberts T, Pujol S, Allibon J, Bourgeat-Lami E 1999 Physica B: Condensed Matter 267–268 69Google Scholar

    [11]

    Lelièvre-Berna E, Bourgeat-Lami E, Fouilloux P, Geffray B, Gibert Y, Kakurai K, Kernavanois N, Longuet B, Mantegezza F, Nakamura M, Pujol S, Regnault L P, Tasset F, Takeda M, Thomas M, Tonon X 2005 Physica B: Condensed Matter 356 131Google Scholar

    [12]

    Regnault L P, Geffray B, Fouilloux P, Longuet B, Mantegezza F, Tasset F, Lelièvre-Berna E, Bourgeat-Lami E, Thomas M, Gibert Y 2003 Physica B: Condensed Matter 335 255Google Scholar

    [13]

    Takeda M, Nakamura M, Kakurai K, Lelièvre-berna E, Tasset F, Regnault L P 2005 Physica B:Condensed Matter 356 136Google Scholar

    [14]

    Hutanu V, Luberstetter W, Bourgeat-Lami E, Meven M, Sazonov A, Steffen A, Heger G, Roth G, Lelièvre-Berna E 2016 Rev. Sci. Instrum. 87 105108Google Scholar

    [15]

    Wang T 2015 Ph. D. Dissertation (Bloomington: Indiana University)

    [16]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [17]

    Parnell S R, Kaiser H, Washington A L, Li F, Wang T, Baxter D V, Pynn R 2013 Physics Procedia 42 125Google Scholar

    [18]

    Bloch F 1946 Phys. Rev. 70 460Google Scholar

    [19]

    Seeger P A, Daemen L L 2001 Nucl. Instrum. Methods Phys. Res. , Sect. A 457 338Google Scholar

    [20]

    Dong Y C, Wang T H, Kreuzpaintner W, Liu X T, Li Z H, Kang Y D, Zhang J P, Tian L, Huang C Y, Bai B, Tong X 2022 Nucl. Sci. Tech. 33 145Google Scholar

  • [1] 丛源涛, 王秋良, 程军胜, 熊玲, 孙建. 一种轴径双向分离式电磁线圈驱动装置的结构响应特性. 物理学报, 2024, 73(13): 130201. doi: 10.7498/aps.73.20240239
    [2] 郝鹏, 张丽丽, 丁明明. 高分子囊泡在微管流中惯性迁移现象的有限元分析. 物理学报, 2022, 71(18): 188701. doi: 10.7498/aps.71.20220606
    [3] 李婷, 卢晓同, 张强, 孔德欢, 王叶兵, 常宏. 锶原子光晶格钟黑体辐射频移评估. 物理学报, 2019, 68(9): 093701. doi: 10.7498/aps.68.20182294
    [4] 王日兴, 叶华, 王丽娟, 敖章洪. 垂直自由层倾斜极化层自旋阀结构中的磁矩翻转和进动. 物理学报, 2017, 66(12): 127201. doi: 10.7498/aps.66.127201
    [5] 赵宏宇, 王頔, 魏智, 金光勇. 毫秒脉冲激光致硅光电二极管电学损伤的有限元分析及实验研究. 物理学报, 2017, 66(10): 104203. doi: 10.7498/aps.66.104203
    [6] 姜珊珊, 刘艳, 邢尔军. 低差分模式时延少模光纤的有限元分析及设计. 物理学报, 2015, 64(6): 064212. doi: 10.7498/aps.64.064212
    [7] 曹超, 王胜, 唐科, 尹伟, 吴洋. 极化中子照相磁场量化技术方案比较与分析. 物理学报, 2014, 63(18): 182801. doi: 10.7498/aps.63.182801
    [8] 于歌, 韩奇钢, 李明哲, 贾晓鹏, 马红安, 李月芬. 新型圆角式高压碳化钨硬质合金顶锤的有限元分析. 物理学报, 2012, 61(4): 040702. doi: 10.7498/aps.61.040702
    [9] 赵建涛, 冯国英, 杨火木, 唐淳, 陈念江, 周寿桓. 薄片激光器热效应及其对输出功率的影响. 物理学报, 2012, 61(8): 084208. doi: 10.7498/aps.61.084208
    [10] 钟广明, 杜晓晴, 唐杰灵, 董向坤, 雷小华, 陈伟民. 影响倒装焊LED芯片电流分布均匀性的因素分析. 物理学报, 2012, 61(12): 127803. doi: 10.7498/aps.61.127803
    [11] 韩奇钢, 马红安, 肖宏宇, 李瑞, 张聪, 李战厂, 田宇, 贾晓鹏. 基于有限元法分析宝石级金刚石的合成腔体温度场. 物理学报, 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [12] 韩奇钢, 贾晓鹏, 马红安, 李瑞, 张聪, 李战厂, 田宇. 基于三维有限元法模拟分析六面顶顶锤的热应力. 物理学报, 2009, 58(7): 4812-4816. doi: 10.7498/aps.58.4812
    [13] 王天琪, 俞重远, 刘玉敏, 芦鹏飞. 有限元法分析不同形状量子点的应变能及弛豫度变化. 物理学报, 2009, 58(8): 5618-5623. doi: 10.7498/aps.58.5618
    [14] 周旺民, 蔡承宇, 王崇愚, 尹姝媛. 埋置量子点应力分布的有限元分析. 物理学报, 2009, 58(8): 5585-5590. doi: 10.7498/aps.58.5585
    [15] 梁 双, 吕燕伍. 有限元法计算GaN/AlN量子点结构中的电子结构. 物理学报, 2007, 56(3): 1617-1620. doi: 10.7498/aps.56.1617
    [16] 郭小云, 石才土, 张久昶, 辛洪兵. 永磁扭摆磁铁的同步辐射特性和结构分析. 物理学报, 2006, 55(4): 1731-1735. doi: 10.7498/aps.55.1731
    [17] 万 红, 谢立强, 吴学忠, 刘希从. TbDyFe/PZT层状复合材料的磁电效应研究. 物理学报, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [18] 万 红, 沈仁发, 吴学忠. 对称磁电层合板磁电转换效应理论研究. 物理学报, 2005, 54(3): 1426-1430. doi: 10.7498/aps.54.1426
    [19] 王相綦, 冯德仁, 尚 雷, 裴元吉, 何 宁, 赵 涛. 磁矩进动阻尼引起相位滞后的实验测量和理论分析. 物理学报, 2004, 53(12): 4319-4324. doi: 10.7498/aps.53.4319
    [20] 吴苍生, 戴光曦, 刘功谆, 丁渝. 弱磁场中质子的自由进动和一个野外测磁场的实验. 物理学报, 1965, 21(6): 1175-1187. doi: 10.7498/aps.21.1175
计量
  • 文章访问数:  3068
  • PDF下载量:  112
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-09
  • 修回日期:  2023-04-29
  • 上网日期:  2023-05-13
  • 刊出日期:  2023-07-20

/

返回文章
返回