搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

成像板发光原理及其特性

王浩然 田宝贤 薄楠 刘伏龙 贺创业 贾少青 郭冰 王乃彦

引用本文:
Citation:

成像板发光原理及其特性

王浩然, 田宝贤, 薄楠, 刘伏龙, 贺创业, 贾少青, 郭冰, 王乃彦

Luminescence principle and characteristics of imaging plate

Wang Hao-Ran, Tian Bao-Xian, Bo Nan, Liu Fu-Long, He Chuang-Ye, Jia Shao-Qing, Guo Bing, Wang Nai-Yan
PDF
HTML
导出引用
  • 由于成像板(imaging plate, IP)对电磁辐射场不敏感, 因而作为探测介质被广泛应用于激光驱动的辐射粒子诊断设备中, 在使用前需要对其特性和物理机制进行研究. 利用90Sr/90Y电子源测量BAS-SR和BAS-TR两种IP板的时间衰减曲线, 同时对长时间辐照的衰减曲线进行修正; 刻度了 BAS-SR和BAS-TR两种IP板对90Sr/90Y电子源的绝对灵敏度, 其分别为(0.033±0.002) PSL/e和(0.0180±0.0038) PSL/e (photostimulated light, PSL), 与国际上大部分电子绝对刻度的结果基本相符, IP板对辐射粒子的绝对刻度依赖于IP板的类型、扫描设备和实验环境. 此外对BAS-SR和BAS-TR两种IP板辐照后进行多次连续扫描, 研究了信号强度变化趋势的规律. 建立了用于描述辐射粒子在IP板荧光层中沉积能量、存储信息和信息读取微观物理过程的光激励发光模型, 结合光激励发光模型建立的数学模型有效地阐释了IP板探测辐射粒子物理机制与其表现的特性之间的关系. 这些研究可以为后续开展IP板应用于激光等离子体诊断实验提供一定的数据基础.
    The imaging plate (IP) is a reusable detector for detecting radiation particles in a complex electromagnetic field environment, and it is widely used as a detection medium in laser-accelerated particle beam diagnostic equipment. Therefore, it is necessary to study the performance characteristics and physical mechanism of IP. An electron source with known activity is used to explore the performance characteristics of IP. A 90Sr/90Y electron source is used to measure the time attenuation curve, calibrate the absolute sensitivity, and study the law of multiple scanning of BAS-SR and BAS-TR. In the case of a longer irradiation, the fading cannot be neglected, and the attenuation curves are modified. The time attenuation characteristics indicate that the IP should be cooled after irradiation, and the scanning should be carried out in the slow decay process to reduce the influence of the reading error in the decay process. The absolute sensitivity of BAS-SR and BAS-TR to 90Sr/90Y source are (0.033±0.002) PSL/e and (0.018±0.0038) PSL/e (photostimulated light, PSL), respectively, which are consistent with the results of most absolute sensitivity. The absolute sensitivity is closely related to the type of IP, scanning equipment, and experimental environment. In addition, the energy spectrum integral effect of the broad spectrum β source has a significant influence on the absolute sensitivity. This method is only suitable for the rough evaluation of the sensitivity characteristic parameters of the IP. Multiple scanning approximately satisfies the double exponential function distribution, which is consistent with the physical model. The characteristics of IP are determined by its storage principle. The fluorescence layer of IP is composed of typical electron trapping materials MFX (M = Ca, Sr, Ba; X = C1, Br, I) alkaline earth metal fluorhalide BaFBr. When the IP is irradiated, a large number of free electron-hole pairs are excited by the deposited energy in the material, and the free electrons will be captured by the electron trap, so the fluorescence layer of the IP records the radiation particles’ information through the energy deposited. In this paper, we study three kinds of models. Based on the models, a photo-stimulated luminescence model is proposed to describe the electron transfer process. The photo-stimulated luminescence model describes the physical mechanism of energy deposition, information storage, and information scanning of radiation particles. The relationship between the physical mechanism and characteristics is explained effectively by combining the microscopic mathematical model with the macroscopic physical phenomenon. It provides a specific data basis for the subsequent application of IPs in laser plasma diagnostic experiments.
      通信作者: 王乃彦, wangny@bnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11935008)资助的课题.
      Corresponding author: Wang Nai-Yan, wangny@bnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11935008).
    [1]

    Danson C N, Haefner C, Bromage J 2019 High Power Laser Sci. 7 54Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    黄建微, 李德红, 党永乐, 吴笛, 王乃彦, 郝艳梅 2017 核电子学与探测技术 37 559Google Scholar

    Huang J W, Li D H, Dang Y L, Wu D, Wang N Y, Hao Y M 2017 Nucl. Electron. Detect. Technol. 37 559Google Scholar

    [4]

    Zeil K, Kraft S D, Jochmann A, Kroll F, Jahr W, Schramm U, Karsch L, Pawelke J, Hidding B, Pretzler G 2010 Rev. Sci. Instrum. 81 013307Google Scholar

    [5]

    Gales S G, Bentley C D 2004 Rev. Sci. Instrum. 75 4001Google Scholar

    [6]

    Busold1 S, Philipp K, Otten A, Roth M 2014 Rev. Sci. Instrum. 85 113306Google Scholar

    [7]

    孙力, 王永生, 董金凤, 何志毅, 徐征 2001 激光与红外 31 269Google Scholar

    Sun L, Wang Y S, Dong J F, He Z Y, Xu Z 2001 Laser Infrared 31 269Google Scholar

    [8]

    Bonnet T, Comet M, Denis-Petit D, Gobet F, Hannachi F, Tarisien M, Versteegen M, Aléonard M M 2013 Rev. Sci. Instrum. 84 103510Google Scholar

    [9]

    Bonnet T, Comet M, Denis-Petit D, Gobet F, Hannachi F, Tarisien M, Versteegen M, Aleonard M M 2013 Rev. Sci. Instrum. 84 103508Google Scholar

    [10]

    Williams G, Jackson M, Brian R, Chen H, Kojima S 2014 Rev. Sci. Instrum. 85 11E604Google Scholar

    [11]

    Ohuchi H, Yamadera A, Nakamura T 2000 Nucl. Instrum. Meth. A 450 343Google Scholar

    [12]

    Tanaka K A, Yabuuchi T, Sato T, Kodama R, Kitagawa Y, Takahashi T, Ikeda T, Honda Y, Okuda S 2005 Rev. Sci. Instrum. 76 013507Google Scholar

    [13]

    Chen H, Back N L, Bartal T, Beg F N, Eder D C, Link A J, MacPhee A G, Ping Y, Song P M, Throop A, Van Woerkom L 2008 Rev. Sci. Instrum. 79 033301Google Scholar

    [14]

    Rabhi N, Bohacek K, Batani D, Boutoux G, Ducret J E, Guillaume E, Jakubowska K, Thaury C, Thfoin I 2016 Rev. Sci. Instrum. 87 053306Google Scholar

    [15]

    Singh S, Slavicek T, Hodak R, Versaci R, Pridal P, Kumar D 2017 Rev. Sci. Instrum. 88 075105Google Scholar

    [16]

    Takahashi K, Kohda K, Miyahara J 1984 J. Lumi. 31 266

    [17]

    Von Seggern H, Voigt T, Knüpfer W, Lange G 1988 J. Appl. Phys. 64 1405Google Scholar

    [18]

    Von Seggern H 1999 Brazilian J. Phys. 29 254Google Scholar

    [19]

    赵辉, 王永生, 徐征, 侯延冰, 徐叙 1998 物理学报 47 333Google Scholar

    Zhao H, Wang Y S, Xu Z, Hou Y B, Xu X 1998 Acta Phys. Sin. 47 333Google Scholar

    [20]

    Golovin D O, Mirfayzi S R, Shokita S, Abe Y, Lanl Z, Arikawa Y, Morace A, Pikuz T A, Yogo A 2021 J. Instrum. 16 T02005Google Scholar

    [21]

    Qi J M, Zhang F Q, Chen J C, Xie H W 2014 Chin. Phys. C 38 016001Google Scholar

  • 图 1  利用90Sr/90Y 放射源标定IP板特性参数实验

    Fig. 1.  Calibration experiments for IPs based on a 90Sr/90Y radioactive source.

    图 2  BAS-SR和BAS-TR时间衰减曲线

    Fig. 2.  Fading time effect curves of BAS-SR and BAS-TR.

    图 3  BAS-SR和 BAS-TR型IP板的PSL与电子数的关系

    Fig. 3.  Relationship between PSL and number of electron for BAS-SR and BAS-TR.

    图 4  BAS-SR型IP多次扫描下信号强度的变化

    Fig. 4.  Signal intensity decreases with the scanning number for BAS-SR.

    图 5  BAS-TR型IP板多次扫描下信号强度变化

    Fig. 5.  Signal intensity decreases with the scanning number for BAS-TR.

    图 6  IP记录辐射粒子的物理机制

    Fig. 6.  Physical mechanism of the IP records radiation particles.

    图 7  BAS-SR 型IP板多次扫描规律曲线

    Fig. 7.  Multiple scanning regular curve of BAS-SR.

    图 8  BAS-TR型IP板多次扫描规律曲线

    Fig. 8.  Multiple scanning regular curve of BAS-MS.

    表 1  IP板衰退效应时间函数的参数以及文献中对应参数[4,9,20,21]

    Table 1.  Parameters of fading time effect for IPs and corresponding parameters [4,9,20,21].

    IP$ {A}_{1} $$ {B}_{1} $/min$ {A}_{2} $$ {B}_{2} $/min
    BAS-SR0.559.30.453792.2
    BAS-TR0.4711.70.533937.2
    BAS-SR[4]0.2736.00.331338
    BAS-MS[4]0.1836.00.17288
    BAS-MS[9]0.2637.60.742604
    BAS-TR[9]0.4917.90.511482
    BAS-SR[9]0.4911.90.511390
    BAS-MS[21]0.1249.00.27335
    BAS-TR[21]0.3148.00.25295
    BAS-TR[20]0.3633.00.642041
    下载: 导出CSV

    表 2  衰退时间效应对IP板读数信号强度的影响

    Table 2.  Signal intensity decreases with fading time.

    冷却
    时间
    BAS-SRBAS-TR
    衰减剩余/%衰减速率/%衰减剩余/%衰减速率/%
    B165.122.1962.161.49
    2B152.220.8151.090.56
    3B147.410.3146.940.21
    4B145.570.1245.330.09
    5B144.820.0544.650.05
    下载: 导出CSV

    表 3  IP板对电子的灵敏度[8,12,13,15]

    Table 3.  Sensitivity of IP to different energy of electrons[8,12,13,15].

    实验室/
    IP板类型
    Ee = 196 keV
    灵敏度(PSL/e)
    Ee = 934 keV
    灵敏度(PSL/e)
    CENBGR/
    BAS-SR[8]
    0.0370.015
    CENBGR/
    BAS-TR[8]
    0.0250.007
    LLNL/
    BAS-SR[13]
    0.0370.009
    ILE/BAS-SR[12]0.0300.010
    ELI/BAS-SR[15]0.02990.012
    BAS-SR0.030 0.033
    BAS-TR0.024 0.018
    下载: 导出CSV
  • [1]

    Danson C N, Haefner C, Bromage J 2019 High Power Laser Sci. 7 54Google Scholar

    [2]

    Esarey E, Schroeder C B, Leemans W P 2009 Rev. Mod. Phys. 81 1229Google Scholar

    [3]

    黄建微, 李德红, 党永乐, 吴笛, 王乃彦, 郝艳梅 2017 核电子学与探测技术 37 559Google Scholar

    Huang J W, Li D H, Dang Y L, Wu D, Wang N Y, Hao Y M 2017 Nucl. Electron. Detect. Technol. 37 559Google Scholar

    [4]

    Zeil K, Kraft S D, Jochmann A, Kroll F, Jahr W, Schramm U, Karsch L, Pawelke J, Hidding B, Pretzler G 2010 Rev. Sci. Instrum. 81 013307Google Scholar

    [5]

    Gales S G, Bentley C D 2004 Rev. Sci. Instrum. 75 4001Google Scholar

    [6]

    Busold1 S, Philipp K, Otten A, Roth M 2014 Rev. Sci. Instrum. 85 113306Google Scholar

    [7]

    孙力, 王永生, 董金凤, 何志毅, 徐征 2001 激光与红外 31 269Google Scholar

    Sun L, Wang Y S, Dong J F, He Z Y, Xu Z 2001 Laser Infrared 31 269Google Scholar

    [8]

    Bonnet T, Comet M, Denis-Petit D, Gobet F, Hannachi F, Tarisien M, Versteegen M, Aléonard M M 2013 Rev. Sci. Instrum. 84 103510Google Scholar

    [9]

    Bonnet T, Comet M, Denis-Petit D, Gobet F, Hannachi F, Tarisien M, Versteegen M, Aleonard M M 2013 Rev. Sci. Instrum. 84 103508Google Scholar

    [10]

    Williams G, Jackson M, Brian R, Chen H, Kojima S 2014 Rev. Sci. Instrum. 85 11E604Google Scholar

    [11]

    Ohuchi H, Yamadera A, Nakamura T 2000 Nucl. Instrum. Meth. A 450 343Google Scholar

    [12]

    Tanaka K A, Yabuuchi T, Sato T, Kodama R, Kitagawa Y, Takahashi T, Ikeda T, Honda Y, Okuda S 2005 Rev. Sci. Instrum. 76 013507Google Scholar

    [13]

    Chen H, Back N L, Bartal T, Beg F N, Eder D C, Link A J, MacPhee A G, Ping Y, Song P M, Throop A, Van Woerkom L 2008 Rev. Sci. Instrum. 79 033301Google Scholar

    [14]

    Rabhi N, Bohacek K, Batani D, Boutoux G, Ducret J E, Guillaume E, Jakubowska K, Thaury C, Thfoin I 2016 Rev. Sci. Instrum. 87 053306Google Scholar

    [15]

    Singh S, Slavicek T, Hodak R, Versaci R, Pridal P, Kumar D 2017 Rev. Sci. Instrum. 88 075105Google Scholar

    [16]

    Takahashi K, Kohda K, Miyahara J 1984 J. Lumi. 31 266

    [17]

    Von Seggern H, Voigt T, Knüpfer W, Lange G 1988 J. Appl. Phys. 64 1405Google Scholar

    [18]

    Von Seggern H 1999 Brazilian J. Phys. 29 254Google Scholar

    [19]

    赵辉, 王永生, 徐征, 侯延冰, 徐叙 1998 物理学报 47 333Google Scholar

    Zhao H, Wang Y S, Xu Z, Hou Y B, Xu X 1998 Acta Phys. Sin. 47 333Google Scholar

    [20]

    Golovin D O, Mirfayzi S R, Shokita S, Abe Y, Lanl Z, Arikawa Y, Morace A, Pikuz T A, Yogo A 2021 J. Instrum. 16 T02005Google Scholar

    [21]

    Qi J M, Zhang F Q, Chen J C, Xie H W 2014 Chin. Phys. C 38 016001Google Scholar

  • [1] 刘劼, 陈伟, 杨秋琳, 穆根, 高昊, 申滔, 杨思华, 张振辉. 偏振光声成像技术的研究与发展. 物理学报, 2023, 72(20): 204202. doi: 10.7498/aps.72.20230900
    [2] 刘飞, 孙少杰, 韩平丽, 赵琳, 邵晓鹏. 基于稀疏低秩特性的水下非均匀光场偏振成像技术研究. 物理学报, 2021, 70(16): 164201. doi: 10.7498/aps.70.20210314
    [3] 戚俊成, 刘宾, 陈荣昌, 夏正德, 肖体乔. X射线光场成像技术研究. 物理学报, 2019, 68(2): 024202. doi: 10.7498/aps.68.20181555
    [4] 尹剑飞, 温激鸿, 肖勇, 温熙森. 基于高级统计能量分析的周期加筋板振动特性研究. 物理学报, 2015, 64(13): 134301. doi: 10.7498/aps.64.134301
    [5] 程帅, 徐旭辉, 王鹏久, 邱建备. 新型电子俘获型材料β-Sr2SiO4:Eu2+, La3+长余辉和光激励发光性能的研究. 物理学报, 2015, 64(1): 017802. doi: 10.7498/aps.64.017802
    [6] 李泽龙, 钟哲强, 张彬. 基于互补型偏振控制板的多光束叠加特性研究. 物理学报, 2014, 63(9): 095204. doi: 10.7498/aps.63.095204
    [7] 章法强, 祁建敏, 张建华, 李林波, 陈定阳, 谢红卫, 杨建伦, 陈进川. 一种基于成像板的能量卡阈式快中子图像测量方法. 物理学报, 2014, 63(12): 128701. doi: 10.7498/aps.63.128701
    [8] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究. 物理学报, 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [9] 简小华, 崔崤峣, 向永嘉, 韩志乐. 自适应多光谱光声成像技术研究. 物理学报, 2012, 61(21): 217801. doi: 10.7498/aps.61.217801
    [10] 秦青松, 马新龙, 邵宇, 杨星瑜, 盛鸿飞, 杨靖忠, 尹瑶, 张加驰. 新型光存储材料Sr2SnO4: Tb3+, Li+ 的合成及其红外上转换光激励发光性能的研究. 物理学报, 2012, 61(9): 097804. doi: 10.7498/aps.61.097804
    [11] 占江徽, 姚欣, 高福华, 阳泽健, 张怡霄, 郭永康. 惯性约束聚变驱动器连续相位板前置时频率转换晶体内部光场研究. 物理学报, 2011, 60(1): 014205. doi: 10.7498/aps.60.014205
    [12] 陈赵江, 张淑仪, 郑凯. 高功率超声脉冲激励下金属板的非线性振动现象研究. 物理学报, 2010, 59(6): 4071-4083. doi: 10.7498/aps.59.4071
    [13] 李明宇, 顾培夫, 张锦龙, 郑臻荣, 刘 旭. 金属薄膜亚波长近场成像特性研究. 物理学报, 2008, 57(7): 4564-4569. doi: 10.7498/aps.57.4564
    [14] 董建军, 曹磊峰, 陈 铭, 谢常青, 杜华冰. 微聚焦菲涅耳波带板聚焦特性研究. 物理学报, 2008, 57(5): 3044-3047. doi: 10.7498/aps.57.3044
    [15] 王长顺, 潘 煦, Urisu Tsuneo. 同步辐射光激励的二氧化硅薄膜刻蚀研究. 物理学报, 2006, 55(11): 6163-6167. doi: 10.7498/aps.55.6163
    [16] 何志毅, 王永生, 孙 力, 徐叙. SrS:Eu与SrS:Eu,Sm中电子陷阱与光存储研究. 物理学报, 2000, 49(7): 1377-1382. doi: 10.7498/aps.49.1377
    [17] 赵 辉, 王永生, 徐 征, 侯延冰, 徐叙. 光激励发光的并行模型. 物理学报, 1998, 47(2): 333-339. doi: 10.7498/aps.47.333
    [18] 王永生, 张光寅, 熊光楠, 徐叙瑢. BaFCl:Eu~(2+)光激励发光的多隧穿能级模型. 物理学报, 1995, 44(12): 2007-2012. doi: 10.7498/aps.44.2007
    [19] 吴文豪, 韩大星. 用红外光激励电流法研究非晶半导体带隙态分布. 物理学报, 1988, 37(6): 916-923. doi: 10.7498/aps.37.916
    [20] 程科华. 玻璃自聚焦板的成像研究. 物理学报, 1981, 30(1): 66-73. doi: 10.7498/aps.30.66
计量
  • 文章访问数:  1810
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-12
  • 修回日期:  2023-06-12
  • 上网日期:  2023-06-27
  • 刊出日期:  2023-08-20

/

返回文章
返回