-
神光II升级装置是国际上为数不多常年运行的惯性约束核聚变激光装置, 为进一步提升其输出能力以满足更高物理需求, 采用新型钕玻璃, 并结合增加钕玻璃数、提高氙灯能源配置等措施来提升主放大器的增益能力. 改进后的测试表明装置的平均小信号增益系数从4.15% cm增至4.94% cm, 单路小信号增益倍数从9000提升到118000, 提升幅度超过了1个数量级, 有效降低了高通量下非线性相移引起的激光近场小尺寸调制, 提升了装置基频输出能力, 为实现更高的打靶能量奠定关键基础. 运行打靶验证了装置高峰值功率下基频近场调制的改善, 以及10 ns脉冲12.5 kJ的基频输出能力, 有力支撑了高通量要求的物理实验目标 .The SGII-UP laser facility is one of the most important high power laser systems in China, and it is also one of a few inertial confinement fusion laser devices that operate all year round in the world. In order to further improve its output capacity to meet higher physical requirements, measures such as increasing the number of neodymium glasses, adopting new N41 neodymium glasses, and improving the energy configuration of xenon lamps are taken to improve the gain capacity of the main amplifier. Calculation of the new main amplifier construction model predicts that the small gain coefficient will reach 4.9%. And further modulation of the laser device shows that when the output of 10 kJ fundamental frequency energy is needed, the injection energy decreases from 5 J to 1.26 J, which supports a higher output energy and a stronger basic frequency output capability. Furthermore, it is analyzed that under different laser pulse injection conditions of 1, 5, 10 ns, the B integral is obviously reduced, which means that the near-filed quality of the beams is better. According a small-size modulation suppression is induced by nonlinear phase shift, and high-fluence laser is expected to pass before and after the improvement, which is a key prerequisite for a higher output energy. Based on these analyses, fundamental frequency output energy values with different pulse injections are calculated and an improvement from 8 kJ to 12.5 kJ output is expected under 10 ns square pulse condition. Tests show that the small signal gain coefficient of the device increases from 4.15% cm to 4.94% cm, which is consistent with simulation results, and the average gain multiple of a single beam increases from 9000 to 118000, which is an order of magnitude higher. The output verifies the fundamental frequency output capacity exceeding 12.5 kJ under 10 ns square pulse as well as a small-size modulation suppression around 0.16 mm–1 as a result of joint action of non-linear phase shift and spatial filtering. After the significant improvement, the SGII-UP laser facility will strongly support more ambitious physical experiment targets.
-
Keywords:
- high power laser /
- laser fusion /
- output capacity
[1] Haynam C A, Wegner P J, Auerbach J M, et al. 2007 B. M. Appl. Opt. 46 3276Google Scholar
[2] Vivini P, Nicolaizeau M 2015 Proc. SPIE 9345 934503Google Scholar
[3] 高妍绮, 朱宝强, 刘代中, 彭增云, 林尊琪 2011 物理学报 60 065204Google Scholar
Gao Y Q, Zhu B Q, Liu D Z, Peng Z Y, Lin Z Q 2011 Acta Phys. Sin. 60 065204Google Scholar
[4] Touze G L, Cabourdin O, Mengue J F, Guenet M, Grebot E, Seznec S E, Jancaitis K S, Marshall C D, Zapata L E, Erlandson A E 1999 Proc. SPIE 3492 630Google Scholar
[5] 张华, 范滇元 2001 物理学报 50 2375Google Scholar
Zhang H, Fan D Y 2001 Acta Phys. Sin. 50 2375Google Scholar
[6] 周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅 2004 物理学报 53 620Google Scholar
Zhou W Y, Tian J G, Zang W P, Liu Z B, Zhang C P, Zhang G Y 2004 Acta Phys. Sin. 53 620Google Scholar
[7] Stuart B C, Herman S, Rubenchik A M, Shore B W, Perry M D 1996 Phys. Rev. B 53 1749Google Scholar
[8] Gao Y Q, Ma W X, Zhu B Q, et al. 2013 IEEE Photonics Conference Bellevue, WA, USA, September 1, 2013 p73
[9] 郭爱林, 朱海东, 杨泽平, 李恩德, 谢兴龙, 朱健强, 林尊琪, 马伟新, 朱俭 2013 光学学报 33 0214001Google Scholar
Guo A L, Zhu H D, Yang Z P, Li E D, Xie X L, Zhu J Q, Lin Z Q, Ma W X, Zhu J 2013 Acta Opt. Sin. 33 0214001Google Scholar
[10] 田超, 单连强, 周维民, 高喆, 谷渝秋, 张保汉 2014 物理学报 63 125205Google Scholar
Tian C, Shan L Q, Zhou W M, Gao Z, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 125205Google Scholar
[11] 张喆, 远晓辉, 张翌航, 刘浩, 方可, 张成龙, 刘正东, 赵旭, 董全力, 刘高扬, 戴羽, 谷昊琛, 李玉同, 郑坚, 仲佳勇, 张杰 2022 物理学报 71 155201Google Scholar
Zhang Z, Yuan X H, Zhang Y H, Liu H, Fang K, Zhang C L, Liu Z D, Zhao X, Dong Q L, Liu G Y, Dai Y, Gu H C, Li Y T, Zheng J, Zhong J Y, Zhang J 2022 Acta Phys. Sin. 71 155201Google Scholar
[12] 何民卿, 张华, 李明强, 彭力, 周沧涛 2023 物理学报 72 095201Google Scholar
He M Q, Zhang H, Li M Q, Peng L, Zhou C T 2023 Acta Phys. Sin. 72 095201Google Scholar
[13] 王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵 2021 物理学报 70 195202Google Scholar
Wang C, An H H, Xiong J, Fang Z H, Ji Y, Lian C W, Xie Z Y, Guo E F, He Z Y, Cao Z D, Wang W, Yan R, Pei W B 2021 Acta Phys. Sin. 70 195202Google Scholar
[14] 熊俊, 安红海, 王琛, 张振驰, 矫金龙, 雷安乐, 王瑞荣, 胡广月, 王伟, 孙今人 2022 物理学报 71 215201Google Scholar
Xiong J, An H H, Wang C, Zhang Z C, Jiao J L, Lei A L, Wang R R, Hu G Y, Wang W, Sun J R 2022 Acta Phys. Sin. 71 215201Google Scholar
[15] 周炳琨, 高以智, 陈倜嵘, 陈家骅 2011 激光原理 (第6卷) (北京: 国防工业出版社) 第149页
Zhou B K, Gao Y Z, Chen T R, Chen J H 2011 Principles of Laser (Vol. 6) (Beijing: National Defense Industry Press) p149
[16] 黄晚晴, 张颖, 孙喜博, 耿远超, 王文义, 刘兰琴 2019 激光与光电子学进展 56 121403Google Scholar
Huang W Q, Zhang Y, Sun X B, Geng Y C, Wang W Y, Liu L Q 2019 Las. Opt. Pro. 56 121403Google Scholar
[17] Manes K R, Spaeth M L, Adams J J, et al. 2015 Fus. Scienc. Techn. 69 146Google Scholar
[18] 温磊, 陈林, 陈伟, 胡丽丽, 吴谊群 2016 光学精密工程 24 2925Google Scholar
Wen L, Chen L, Chen W, Hu L L, Wu Y Q 2016 Opt. Prec. Eng. 24 2925Google Scholar
[19] 彭志涛 景峰 刘兰琴, 朱启华, 陈波, 张昆, 刘华, 张清泉, 程晓峰, 蒋东镔, 刘红婕, 彭翰生 2003 物理学报 52 87Google Scholar
Peng Z T, Jing F, Liu L Q, Zhu Q H, Chen B, Zhang K, Liu H, Zhang Q Q, Cheng X F, Jiang D B, Liu H J, Peng H S 2003 Acta Phys. Sin. 52 87Google Scholar
[20] 赵军普 2006 硕士学位论文(成都: 四川大学)
Zhao J P 2006 M. S. Thesis (Chengdu: Sichuan University
-
图 7 改进前后高平均功率密度条件下的激光近场功率密度直方图 (a)第5路, 改进前, 输出能量2790 J/1 ns; (b)第5路, 改进后, 输出能量2700 J/1 ns; (c)第8路, 改进前, 输出能量2700 J/1 ns; (d)第8路, 改进后, 输出能量3238 J/1 ns
Fig. 7. Histogram of the near-field with high average power density before and after improvement: (a) Beam 5, before improvement, with 2790 J/1 ns output; (b) Beam 5, after improvement, with 2700 J/1 ns output; (c) Beam 8, before improvement, with 2700 J/1 ns output; (d) Beam 8, after improvement, with 3238 J/1 ns output.
表 1 N31和N41钕玻璃参数对比
Table 1. Characteristics comparison of N31 and N41 Nd: glass.
参数 N31 N41 Nd3+掺杂浓度/(1020 cm–1) 3.5 4.2 受激发射截面/(10–20 cm–3) 3.8 3.9 荧光寿命/μs 310 310 1053 nm非线性折射率系数/(10–13 esu) 1.20 1.05 1053 nm折射率 1.532 1.504 密度/(g·cm–3) 2.850 2.596 表 2 主放大器改进前后助推放大器和腔放大器的钕玻璃构成
Table 2. Configuration of Nd: glass in the main amplifier.
助推放大器的钕玻璃 腔放大器的钕玻璃 改进前 5片N3130 8片N3122 改进后 5片N4142 4片N3122 + 5片N3130 表 3 改进后不同钕玻璃材料小信号增益系数模拟计算值
Table 3. Calculation value of small gain coefficient of different Nd: glass after improvement.
钕玻璃材料 厚度/mm 增益系数/cm–1 N4142 40 5.24% N3130 45 4.90% N3122 45 4.70% 表 4 不同脉宽下的装置基频输出能力评估
Table 4. Estimation of output capability at different frequencies.
配置 输出能力/kJ 10 ns 方波 10 ns 斜角波 5 ns 方波 5 ns 斜角波 3 ns 方波 3 ns 斜角波 1 ns 方波 改进前 8.0 8.0 8.0 6.5 7.4 4.47 3.2 改进后 12.5 12.5 11.2 7.3 8.2 4.8 3.45 表 5 升级第三路片放增益提升前后的实测数据
Table 5. Measurement value of output energy of SGII-UP Facility Beam 3 before and after improvement.
发次编号 注入能量/mJ 输出能量/J 放大倍数 增益系数/cm–1 改进前 20181022008 198.25 628.88 8175 4.10% 20190525001 189.38 652.30 8877 4.14% 20190525002 192.30 750.00 10052 4.21% 改进后 20200826001 14.47 779.33 138810 5.04% 20200826002 13.38 715.61 137844 5.04% 表 6 升级其他光路片放改进后的实测数据
Table 6. Output energy measurement value of other beams of SGII-UP Facility after improvement.
光束
编号注入能
量/mJ输出能量/J 放大倍数 增益系
数/cm–1光束
编号注入能
量/mJ输出能量/J 放大倍数 增益系
数/cm–11 13.9 731.8 135111 5.00% 6 28.7 985.4 101343 4.88% 2 12.8 449.5 103428 4.89% 7 24.2 941.6 115029 4.94% 4 13.6 492.2 106537 4.91% 8 19.5 959.0 126692 4.98% 表 7 激光近场高峰值功率密度像素点占比
Table 7. Percentage of pixels for peak power density of the laser near-field.
发次编号 激光束
编号> 4 GW/cm2
像素点占比/%> 5 GW/cm2
像素点占比/%20180123002 Beam 5 18.5 2.9 20201009003 Beam 5 16.5 0.8 20180123002 Beam 8 17.8 16.2 20201009003 Beam 8 45.0 8.1 -
[1] Haynam C A, Wegner P J, Auerbach J M, et al. 2007 B. M. Appl. Opt. 46 3276Google Scholar
[2] Vivini P, Nicolaizeau M 2015 Proc. SPIE 9345 934503Google Scholar
[3] 高妍绮, 朱宝强, 刘代中, 彭增云, 林尊琪 2011 物理学报 60 065204Google Scholar
Gao Y Q, Zhu B Q, Liu D Z, Peng Z Y, Lin Z Q 2011 Acta Phys. Sin. 60 065204Google Scholar
[4] Touze G L, Cabourdin O, Mengue J F, Guenet M, Grebot E, Seznec S E, Jancaitis K S, Marshall C D, Zapata L E, Erlandson A E 1999 Proc. SPIE 3492 630Google Scholar
[5] 张华, 范滇元 2001 物理学报 50 2375Google Scholar
Zhang H, Fan D Y 2001 Acta Phys. Sin. 50 2375Google Scholar
[6] 周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅 2004 物理学报 53 620Google Scholar
Zhou W Y, Tian J G, Zang W P, Liu Z B, Zhang C P, Zhang G Y 2004 Acta Phys. Sin. 53 620Google Scholar
[7] Stuart B C, Herman S, Rubenchik A M, Shore B W, Perry M D 1996 Phys. Rev. B 53 1749Google Scholar
[8] Gao Y Q, Ma W X, Zhu B Q, et al. 2013 IEEE Photonics Conference Bellevue, WA, USA, September 1, 2013 p73
[9] 郭爱林, 朱海东, 杨泽平, 李恩德, 谢兴龙, 朱健强, 林尊琪, 马伟新, 朱俭 2013 光学学报 33 0214001Google Scholar
Guo A L, Zhu H D, Yang Z P, Li E D, Xie X L, Zhu J Q, Lin Z Q, Ma W X, Zhu J 2013 Acta Opt. Sin. 33 0214001Google Scholar
[10] 田超, 单连强, 周维民, 高喆, 谷渝秋, 张保汉 2014 物理学报 63 125205Google Scholar
Tian C, Shan L Q, Zhou W M, Gao Z, Gu Y Q, Zhang B H 2014 Acta Phys. Sin. 63 125205Google Scholar
[11] 张喆, 远晓辉, 张翌航, 刘浩, 方可, 张成龙, 刘正东, 赵旭, 董全力, 刘高扬, 戴羽, 谷昊琛, 李玉同, 郑坚, 仲佳勇, 张杰 2022 物理学报 71 155201Google Scholar
Zhang Z, Yuan X H, Zhang Y H, Liu H, Fang K, Zhang C L, Liu Z D, Zhao X, Dong Q L, Liu G Y, Dai Y, Gu H C, Li Y T, Zheng J, Zhong J Y, Zhang J 2022 Acta Phys. Sin. 71 155201Google Scholar
[12] 何民卿, 张华, 李明强, 彭力, 周沧涛 2023 物理学报 72 095201Google Scholar
He M Q, Zhang H, Li M Q, Peng L, Zhou C T 2023 Acta Phys. Sin. 72 095201Google Scholar
[13] 王琛, 安红海, 熊俊, 方智恒, 季雨, 练昌旺, 谢志勇, 郭尔夫, 贺芝宇, 曹兆栋, 王伟, 闫锐, 裴文兵 2021 物理学报 70 195202Google Scholar
Wang C, An H H, Xiong J, Fang Z H, Ji Y, Lian C W, Xie Z Y, Guo E F, He Z Y, Cao Z D, Wang W, Yan R, Pei W B 2021 Acta Phys. Sin. 70 195202Google Scholar
[14] 熊俊, 安红海, 王琛, 张振驰, 矫金龙, 雷安乐, 王瑞荣, 胡广月, 王伟, 孙今人 2022 物理学报 71 215201Google Scholar
Xiong J, An H H, Wang C, Zhang Z C, Jiao J L, Lei A L, Wang R R, Hu G Y, Wang W, Sun J R 2022 Acta Phys. Sin. 71 215201Google Scholar
[15] 周炳琨, 高以智, 陈倜嵘, 陈家骅 2011 激光原理 (第6卷) (北京: 国防工业出版社) 第149页
Zhou B K, Gao Y Z, Chen T R, Chen J H 2011 Principles of Laser (Vol. 6) (Beijing: National Defense Industry Press) p149
[16] 黄晚晴, 张颖, 孙喜博, 耿远超, 王文义, 刘兰琴 2019 激光与光电子学进展 56 121403Google Scholar
Huang W Q, Zhang Y, Sun X B, Geng Y C, Wang W Y, Liu L Q 2019 Las. Opt. Pro. 56 121403Google Scholar
[17] Manes K R, Spaeth M L, Adams J J, et al. 2015 Fus. Scienc. Techn. 69 146Google Scholar
[18] 温磊, 陈林, 陈伟, 胡丽丽, 吴谊群 2016 光学精密工程 24 2925Google Scholar
Wen L, Chen L, Chen W, Hu L L, Wu Y Q 2016 Opt. Prec. Eng. 24 2925Google Scholar
[19] 彭志涛 景峰 刘兰琴, 朱启华, 陈波, 张昆, 刘华, 张清泉, 程晓峰, 蒋东镔, 刘红婕, 彭翰生 2003 物理学报 52 87Google Scholar
Peng Z T, Jing F, Liu L Q, Zhu Q H, Chen B, Zhang K, Liu H, Zhang Q Q, Cheng X F, Jiang D B, Liu H J, Peng H S 2003 Acta Phys. Sin. 52 87Google Scholar
[20] 赵军普 2006 硕士学位论文(成都: 四川大学)
Zhao J P 2006 M. S. Thesis (Chengdu: Sichuan University
计量
- 文章访问数: 3288
- PDF下载量: 55
- 被引次数: 0