搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HL-2A装置上电子回旋共振加热沉积位置影响鱼骨模主动控制效果的实验研究

施培万 朱霄龙 陈伟 余鑫 杨曾辰 何小雪 王正汹

引用本文:
Citation:

HL-2A装置上电子回旋共振加热沉积位置影响鱼骨模主动控制效果的实验研究

施培万, 朱霄龙, 陈伟, 余鑫, 杨曾辰, 何小雪, 王正汹

Effect of deposition location of electron cyclotron resonance heating on active control of fishbone modes in the HL-2A tokamak

Shi Pei-Wan, Zhu Xiao-Long, Chen Wei, Yu Xin, Yang Zeng-Chen, He Xiao-Xue, Wang Zheng-Xiong
PDF
HTML
导出引用
  • 近期, 在中国环流器2号A (HL-2A)装置上利用电子回旋共振加热(electron cyclotron resonance heating, ECRH)开展了鱼骨模主动控制的实验研究. 结果发现, 鱼骨模的主动控制效果与射频波功率沉积位置密切相关. 在相同的注入功率条件下, ECRH离轴加热的效果比在轴的效果更好, 甚至可以实现对鱼骨模的完全抑制. 分析表明, 大功率离轴射频波通过提升电子温度进而使得等离子体压强梯度和等离子体电流密度变化, 随后导致安全因子改变并使得最小安全因子$q_{{\rm{min}}}>1$. M3D-K程序模拟表明, 鱼骨模的增长率随着$q_{{\rm{min}}}$增大而减小, 这意味着ECRH通过提高安全因子导致q = 1有理面的缺失并使得鱼骨模被完全抑制.
    Experiment on suppressing fishbone activities is carried out in HL-2A tokamak by electron cyclotron resonance heating (ECRH). To achieve multiple deposition locations of ECRH, the magnetic field is in a range of 1.22–1.4 T from shot to shot. It is found that the fishbone modes exhibit different characteristics at different radial deposition locations. With the same injected power, the effect of off-axis ECRH is much better than that of on-axis heating. The fishbone modes can be completely suppressed when ECRH is deposited nearby the q = 1 rational surface, but would only mitigate in other cases. Further analysis indicate that injection of high power ECRH leads the electron temperature to increase, then the pressure gradient and plasma current density to change, finally safety factor to change and the minimum safety factor to reach a value larger than 1. Meanwhile, M3D-K simulation results show that the growth rate of fishbone mode declines with the increase of qmin. In other words, the growth of safety factor and disappearance of q = 1 rational surface induced by ECRH contribute to the suppression of fishbone activities. The experimental results reported here may not only help to better understand complex effects of ECRH on magnetohydrodynamic instability, but also provide a physics basis for actively controlling the energetic particle driven modes in the future magnetic confined fusion devices.
      通信作者: 陈伟, chenw@swip.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFE03020000)、国家自然科学基金(批准号: 12125502, 12205034)、中央引导地方科技发展专项(批准号: 2022ZYD0019)和四川省自然科学基金(批准号: 2022NSFSC1823)资助的课题.
      Corresponding author: Chen Wei, chenw@swip.ac.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2019YFE03020000), the National Natural Science Foundation of China (Grant Nos. 12125502, 12205034), the Sichuan Science and Technology Program, China (Grant No. 2022ZYD0019), and the Natural Science Foundation of Sichuan Province, China (Grant No. 2022NSFSC1823).
    [1]

    McGuire K, Goldston R, Bell M, et al. 1983 Phys. Rev. Lett. 50 891Google Scholar

    [2]

    Chen L, White R B, Rosenbluth M N 1984 Phys. Rev. Lett. 52 1122Google Scholar

    [3]

    Heidbrink W W, Sager G 1990 Nucl. Fusion 30 1015Google Scholar

    [4]

    Nave M F F, Campbell D J, Joffrin E, et al. 1991 Nucl. Fusion 31 697Google Scholar

    [5]

    Zonca F, Chen L, Botrugno A, et al. 2009 Nucl. Fusion 49 085009Google Scholar

    [6]

    Wong K L, Chu M S, Luce T C, et al. 2000 Phys. Rev. Lett. 85 996Google Scholar

    [7]

    Yu L M, Ding X T, Chen W, et al. 2013 Nucl. Fusion 53 053002Google Scholar

    [8]

    Perez von Thun C, Perona A, Johnson T, et al. 2010 Nucl. Fusion 50 084009Google Scholar

    [9]

    Perez von Thun C, Salmi A, Perona A, et al. 2012 Nucl. Fusion 52 094010Google Scholar

    [10]

    Kiptily V G, Fitzgerald M, Goloborodko V, et al. 2018 Nucl. Fusion 58 014003Google Scholar

    [11]

    Anderson D, Elevant T, Hamnén H, et al. 1993 Fusion Sci. Tech. 23 5Google Scholar

    [12]

    Hender T C, Buratti P, Casson F J, et al. 2016 Nucl. Fusion 56 066002Google Scholar

    [13]

    Fredrickson E D, Belova E V, Battaglia D J, et al. 2017 Phys. Rev. Lett. 118 265001Google Scholar

    [14]

    Bortolon A, Heidbrink W W, Kramer G J, et al. 2013 Phys. Rev. Lett. 110 265008Google Scholar

    [15]

    Maslovsky D, Levitt B, Mauel M E, et al. 2003 Phys. Rev. Lett. 90 185001Google Scholar

    [16]

    Nagaoka K, Ido T, Ascasíbar E, et al. 2013 Nucl. Fusion 53 072004Google Scholar

    [17]

    Van Zeeland M A, Heidbrink W W, Nazikian R, et al. 2009 Nucl. Fusion 49 065003Google Scholar

    [18]

    Van Zeeland M A, Heidbrink W W, Sharapov S E, et al. 2016 Nucl. Fusion 56 112007Google Scholar

    [19]

    Yamamoto S, Nagasaki K, Kobayashi S, et al. 2017 Nucl. Fusion 57 126065Google Scholar

    [20]

    Chen W, Yu L M, Shi P W, et al. 2018 Nucl. Fusion 58 014001Google Scholar

    [21]

    Shi P W, Chen W, Duan X R 2021 Chin. Phys. Lett. 38 035202Google Scholar

    [22]

    Seol J, Lee S G, Park B H, et al. 2012 Phys. Rev. Lett. 109 195003Google Scholar

    [23]

    Shi P W, Zhu X L, Liang A S, et al. 2022 Nucl. Fusion 62 106009Google Scholar

    [24]

    Wei W, Li M H, Wang X J 2018 Nucl. Fusion Plasma Phys. 38 144Google Scholar

    [25]

    Chen W, Ding X T, Yu L M, et al. 2010 Nucl. Fusion 50 084008Google Scholar

    [26]

    Berk H L, Borba, D N, Breizman B N, et al. 2001 Phys. Rev. Lett. 87 185002Google Scholar

    [27]

    Shi P W, Yang Y R, Chen W, et al. 2022 Chin. Phys. Lett. 39 105201Google Scholar

    [28]

    Shi P W, Chen W, Shi Z B, et al. 2019 Nucl. Fusion 59 066015Google Scholar

    [29]

    Chen W, Yu L M, Liu Y, et al. 2014 Nucl. Fusion 54 104002Google Scholar

    [30]

    Yang Y R, Chen W, Ye M Y, et al. 2020 Nucl. Fusion 60 106012Google Scholar

    [31]

    Chen W J, Ma Z W, Zhang H W, et al. 2022 Plasma Sci. Tech. 24 035101Google Scholar

    [32]

    Yu L M, Chen W, Jiang M, et al. 2017 Nucl. Fusion 57 036023Google Scholar

    [33]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [34]

    Chen W, Wang Z X 2020 Chin. Phys. Lett. 37 125001Google Scholar

    [35]

    Heidbrink W W 2002 Phys. Plasmas 9 2113Google Scholar

  • 图 1  HL-2A 装置第27214次(黑)和第27216次(红)放电的实验参数 (a)等离子体电流; (b)环向磁场; (c)电子线平均密度(实线)及反馈送气电压信号(点线); (d)电子温度; (e)离子温度; (f)旋转频率; (g)等离子体比压; (h)中性束注入功率(实线)和电子回旋共振加热功率(虚线)

    Fig. 1.  History evolution of basic parameters during the 27214 and 27216 discharges on HL-2A tokamak: (a) Plasma current; (b) toroidal magnetic field; (c) line-averaged electron density (solid) and voltage signal of gas puffing (dot); (d) electron temperature; (e) ion temperature; (f) rotation frequency; (g) plasma beta; (h) power of NBI and ECRH

    图 2  第27214次(黑)和27216次(红)放电过程中ECRH功率沉积分布

    Fig. 2.  Power deposition position of ECRH during the 27214 (black) and 27216 (red) discharges.

    图 3  第27214次(a)和27216次(b)放电的磁探针频谱, 其中黑色线为ECRH注入功率 (×40)

    Fig. 3.  Magnetic spectrum for the 27214 (a) and 27216 (b) discharges. Noted that, the black curves are the power of ECRH ($ \times 40 $).

    图 4  第27216次等离子体放电过程中反剪切阿尔芬本征模频率和最小安全因子

    Fig. 4.  Temporal frequency of reversed shear Alfvén eigenmode and minimum safety factor during the 27216 discharge.

    图 5  第27214次(黑)和27216次(红)放电750 ms 时刻的平衡参数剖面 (a)电子密度$ n_{\rm{e}} $; (b)旋转频率$ f_{{\rm{rot}}} $; (c)电子温度$ T_{\rm{e}} $, 虚线为电子温度内部输运垒的根部位置; (d)离子温度$ T_{\rm{i}} $; (e)等离子体压强$ P=n_{\rm{e}}(T_{\rm{e}}+T_{\rm{i}})K $, K为开尔文常数; (f)安全因子

    Fig. 5.  Basic profiles at 750 ms for the 27124 (black) and 27216 (red) discharges: (a) Electron density $ n_{\rm{e}} $; (b) plasma rotation frequency $ f_{{\rm{rot}}} $; (c) electron temperature $ T_{\rm{e}} $, the dotted lines indicate locations of internal transport barrier in electron temperature; (d) ion temperature $ T_{\rm{i}} $; (e) plasma pressure $ P=n_{\rm{e}}(T_{\rm{e}}+T_{\rm{i}})K $, K is the Kelvin constant; (f) safety factor

    图 6  第27214 (a)和27216 (b)次放电过程中750 ms 时刻归一化压强梯度($ R/L_{\rm{P}} $, 红)、电子温度梯度($ R/L_{T_{\rm{e}}} $, 黑)、离子温度梯度(R/$ L_{T_{\rm{i}}} $, 蓝)和电子密度梯度($ R/L_{n_{\rm{e}}} $, 绿)的特征长度

    Fig. 6.  Normalized scale length of pressure gradient ($ R/L_{\rm{P}} $, red), electron temperature gradient ($ R/L_{T_{\rm{e}}} $, black), ion temperature gradient ($ R/L_{T_{\rm{i}}} $, blue), electron density gradient ($ R/L_{n_{\rm{e}}} $, green) at 750 ms for the 27214 (a) and 27216 (b) discharges.

    图 7  第27214次(左)和27216次(右)放电700—750 ms 之间的(a1), (a2)电子温度分布、(b1), (b2)电子温度梯度、(c1), (c2)等离子体压强梯度

    Fig. 7.  (a1), (a2) Electron temperature profile, (b1), (b2) temperature gradient and (c1), (c2) pressure gradient during 700–750 ms for the 27124 (left) and 27216 (right) discharges.

    图 8  (a)具有不同最小值的安全因子分布, 其中蓝色曲线为第27214次放电750 ms时刻的安全因子分布, 上下方两曲线的偏移量分别为$ \Delta q=0.09 $, $ \Delta q=0.06 $, $ \Delta q=-0.02 $, $ \Delta q=-0.05 $; (b)鱼骨模增长率与最小安全因子的关系

    Fig. 8.  (a) Safety factor profiles with different minimum safety factors, the blue one is the safety factor profile at 750 ms for the 27214 discharge, the two upper and below curves are the safety factors with a offset of $ \Delta q=0.09 $, $ \Delta q=0.06 $, $ \Delta q=-0.02 $, $ \Delta q=-0.05 $; (b) relationship between the growth rate of fishbone mode and minimum safety factors.

  • [1]

    McGuire K, Goldston R, Bell M, et al. 1983 Phys. Rev. Lett. 50 891Google Scholar

    [2]

    Chen L, White R B, Rosenbluth M N 1984 Phys. Rev. Lett. 52 1122Google Scholar

    [3]

    Heidbrink W W, Sager G 1990 Nucl. Fusion 30 1015Google Scholar

    [4]

    Nave M F F, Campbell D J, Joffrin E, et al. 1991 Nucl. Fusion 31 697Google Scholar

    [5]

    Zonca F, Chen L, Botrugno A, et al. 2009 Nucl. Fusion 49 085009Google Scholar

    [6]

    Wong K L, Chu M S, Luce T C, et al. 2000 Phys. Rev. Lett. 85 996Google Scholar

    [7]

    Yu L M, Ding X T, Chen W, et al. 2013 Nucl. Fusion 53 053002Google Scholar

    [8]

    Perez von Thun C, Perona A, Johnson T, et al. 2010 Nucl. Fusion 50 084009Google Scholar

    [9]

    Perez von Thun C, Salmi A, Perona A, et al. 2012 Nucl. Fusion 52 094010Google Scholar

    [10]

    Kiptily V G, Fitzgerald M, Goloborodko V, et al. 2018 Nucl. Fusion 58 014003Google Scholar

    [11]

    Anderson D, Elevant T, Hamnén H, et al. 1993 Fusion Sci. Tech. 23 5Google Scholar

    [12]

    Hender T C, Buratti P, Casson F J, et al. 2016 Nucl. Fusion 56 066002Google Scholar

    [13]

    Fredrickson E D, Belova E V, Battaglia D J, et al. 2017 Phys. Rev. Lett. 118 265001Google Scholar

    [14]

    Bortolon A, Heidbrink W W, Kramer G J, et al. 2013 Phys. Rev. Lett. 110 265008Google Scholar

    [15]

    Maslovsky D, Levitt B, Mauel M E, et al. 2003 Phys. Rev. Lett. 90 185001Google Scholar

    [16]

    Nagaoka K, Ido T, Ascasíbar E, et al. 2013 Nucl. Fusion 53 072004Google Scholar

    [17]

    Van Zeeland M A, Heidbrink W W, Nazikian R, et al. 2009 Nucl. Fusion 49 065003Google Scholar

    [18]

    Van Zeeland M A, Heidbrink W W, Sharapov S E, et al. 2016 Nucl. Fusion 56 112007Google Scholar

    [19]

    Yamamoto S, Nagasaki K, Kobayashi S, et al. 2017 Nucl. Fusion 57 126065Google Scholar

    [20]

    Chen W, Yu L M, Shi P W, et al. 2018 Nucl. Fusion 58 014001Google Scholar

    [21]

    Shi P W, Chen W, Duan X R 2021 Chin. Phys. Lett. 38 035202Google Scholar

    [22]

    Seol J, Lee S G, Park B H, et al. 2012 Phys. Rev. Lett. 109 195003Google Scholar

    [23]

    Shi P W, Zhu X L, Liang A S, et al. 2022 Nucl. Fusion 62 106009Google Scholar

    [24]

    Wei W, Li M H, Wang X J 2018 Nucl. Fusion Plasma Phys. 38 144Google Scholar

    [25]

    Chen W, Ding X T, Yu L M, et al. 2010 Nucl. Fusion 50 084008Google Scholar

    [26]

    Berk H L, Borba, D N, Breizman B N, et al. 2001 Phys. Rev. Lett. 87 185002Google Scholar

    [27]

    Shi P W, Yang Y R, Chen W, et al. 2022 Chin. Phys. Lett. 39 105201Google Scholar

    [28]

    Shi P W, Chen W, Shi Z B, et al. 2019 Nucl. Fusion 59 066015Google Scholar

    [29]

    Chen W, Yu L M, Liu Y, et al. 2014 Nucl. Fusion 54 104002Google Scholar

    [30]

    Yang Y R, Chen W, Ye M Y, et al. 2020 Nucl. Fusion 60 106012Google Scholar

    [31]

    Chen W J, Ma Z W, Zhang H W, et al. 2022 Plasma Sci. Tech. 24 035101Google Scholar

    [32]

    Yu L M, Chen W, Jiang M, et al. 2017 Nucl. Fusion 57 036023Google Scholar

    [33]

    Chen L, Zonca F 2016 Rev. Mod. Phys. 88 015008Google Scholar

    [34]

    Chen W, Wang Z X 2020 Chin. Phys. Lett. 37 125001Google Scholar

    [35]

    Heidbrink W W 2002 Phys. Plasmas 9 2113Google Scholar

  • [1] 任珍珍, 申伟. 负三角形变托卡马克位形下高能量离子激发鱼骨模的模拟研究. 物理学报, 2023, 72(21): 215202. doi: 10.7498/aps.72.20230650
    [2] 夏旭, 杨涓, 金逸舟, 杭观荣, 付瑜亮, 胡展. 磁路和天线位置对2 cm电子回旋共振离子推力器性能影响的实验研究. 物理学报, 2019, 68(23): 235202. doi: 10.7498/aps.68.20191122
    [3] 罗东云, 程冰, 周寅, 吴彬, 王肖隆, 林强. 基于滑模鲁棒算法的超低频主动隔振系统. 物理学报, 2018, 67(2): 020702. doi: 10.7498/aps.67.20171884
    [4] 王观, 胡华, 伍康, 李刚, 王力军. 基于两级摆杆结构的超低频垂直隔振系统. 物理学报, 2016, 65(20): 200702. doi: 10.7498/aps.65.200702
    [5] 徐天宇, 何峰. H2+在阿秒以及双色飞秒激光脉冲中解离时电子位置的相干控制. 物理学报, 2013, 62(6): 068201. doi: 10.7498/aps.62.068201
    [6] 唐传胜, 戴跃洪. 参数不确定永磁同步电机混沌系统的有限时间稳定控制. 物理学报, 2013, 62(18): 180504. doi: 10.7498/aps.62.180504
    [7] 沈惠杰, 温激鸿, 郁殿龙, 蔡力, 温熙森. 基于主动声学超材料的圆柱声隐身斗篷设计研究. 物理学报, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [8] 赵建利, 王京, 王慧. 洛伦兹-哈肯激光混沌系统有限时间稳定主动控制方法研究. 物理学报, 2012, 61(11): 110209. doi: 10.7498/aps.61.110209
    [9] 路永坤. 受扰统一混沌系统的主动自适应模糊积分滑模控制. 物理学报, 2012, 61(22): 220504. doi: 10.7498/aps.61.220504
    [10] 刘福才, 李俊义, 臧秀凤. 基于自适应主动及滑模控制的分数阶超混沌系统异结构反同步. 物理学报, 2011, 60(3): 030504. doi: 10.7498/aps.60.030504
    [11] 王兴元, 朱全龙, 张晓鹏. 基于三种方法的新Lü混沌系统的同步. 物理学报, 2011, 60(10): 100510. doi: 10.7498/aps.60.100510
    [12] 郭会军, 刘丁, 赵光宙. 受扰统一混沌系统基于RBF网络的主动滑模控制. 物理学报, 2011, 60(1): 010510. doi: 10.7498/aps.60.010510
    [13] 柯博, 汪磊, 倪添灵, 丁芳, 陈牧笛, 周海洋, 温晓辉, 朱晓东. 电子回旋共振-射频双等离子体沉积氧化硅薄膜过程中的射频偏压效应. 物理学报, 2010, 59(2): 1338-1343. doi: 10.7498/aps.59.1338
    [14] 刘福才, 宋佳秋. 基于主动滑模控制的一类混沌系统异结构反同步. 物理学报, 2008, 57(8): 4729-4737. doi: 10.7498/aps.57.4729
    [15] 王洪坡, 李 杰. 一类非自治位置时滞反馈控制系统的亚谐共振响应. 物理学报, 2007, 56(5): 2504-2516. doi: 10.7498/aps.56.2504
    [16] 王兴元, 王明军. 三种方法实现超混沌Chen系统的反同步. 物理学报, 2007, 56(12): 6843-6850. doi: 10.7498/aps.56.6843
    [17] 宁兆元, 程珊华, 叶超. 电子回旋共振等离子体增强化学气相沉积a-CFx薄膜的化学键结构. 物理学报, 2001, 50(3): 566-571. doi: 10.7498/aps.50.566
    [18] 叶超, 宁兆元, 程珊华. 电子回旋共振等离子体增强沉积氟化非晶碳薄膜的光学性质. 物理学报, 2001, 50(10): 2017-2022. doi: 10.7498/aps.50.2017
    [19] 王世庆, 金亚秋. 电子回旋共振加热情形锯齿振荡的数值分析. 物理学报, 2001, 50(9): 1737-1741. doi: 10.7498/aps.50.1737
    [20] 汪茂泉, 詹如娟. 用电子迴旋共振加热抑制托卡马克中的撕裂模. 物理学报, 1986, 35(9): 1233-1237. doi: 10.7498/aps.35.1233
计量
  • 文章访问数:  2722
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 修回日期:  2023-07-20
  • 上网日期:  2023-08-02
  • 刊出日期:  2023-11-05

/

返回文章
返回