搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于动力学平均场的光晶格超冷原子量子模拟

谭辉 曹睿 李永强

引用本文:
Citation:

基于动力学平均场的光晶格超冷原子量子模拟

谭辉, 曹睿, 李永强

Quantum simulation of ultracold atoms in optical lattice based on dynamical mean-field theory

Tan Hui, Cao Rui, Li Yong-Qiang
PDF
HTML
导出引用
  • 随着原子冷却技术与光晶格技术的发展, 光晶格与超冷原子气体组成的量子系统已经成为量子模拟中的有力工具. 光晶格纯净和高度可控的性质赋予其强大的调控能力, 如今, 人们可以模拟更复杂和有趣的物理现象, 从而加深对量子多体物理的认识. 本文综述了近年来本课题组利用玻色动力学平均场理论对强关联区间的光晶格玻色体系进行的一系列研究, 包括多组分玻色体系、高轨道玻色体系以及存在长程相互作用的体系等. 通过玻色动力学平均场理论的计算, 揭示了从弱相互作用区间到强相互作用区间出现的丰富物理现象, 包括不同磁序的量子相、多步凝聚、超固体相以及高轨道体系中的自旋-角动量耦合和阻挫效应.
    With the development of atomic cooling technology and optical lattice technology, the quantum system composed of optical lattice and ultracold atomic gas has become a powerful tool for quantum simulation. The purity and highly controllable nature of the optical lattice give it a strong regulatory capability. Therefore, more complex and interesting physical phenomena can be simulated, which deepens the understanding of quantum many-body physics. In recent years, we have studied different Bose systems with strong correlations in optical lattice based on the bosonic dynamical mean-field theory, including multi-component system, high- orbit bosonic system, and long-range interaction system. In this review, we introduce the research progress of the above mentioned. Through the calculation by using bosonic dynamical mean-field theory which has been generalized to multi-component and real space versions, a variety of physical phenomena of optical crystal lattice Bose system in weak interaction intervals to strong interaction intervals can be simulated. The phase diagram of spin-1 ultracold bosons in a cubic optical lattice at zero temperature and finite temperature are drawn. A spin-singlet condensate phase is found, and it is observed that the superfluid can be heated into a Mott insulator with even (odd) filling through the first (second) phase transition. In the presence of a magnetic field, the ground state degeneracy is broken, and there are very rich quantum phases in the system, such as nematic phase, ferromagnetic phase, spin-singlet insulating phase, polar superfluid, and broken-axisymmetry superfluid. In addition, multistep condensations are also observed. Further, we calculate the zero-temperature phase diagram of the mixed system of spin-1 alkali metal atoms and spin-0 alkali earth metal atoms, and find that the system exhibits a non-zero magnetic ordering, which shows a second-order Mott insulation-superfluid phase transition when the filling number is $n=1$, and a first-order Mott insulation-superfluid phase transition when the filling number is $n=2$. The two-step Mott-insulating-superfluid phase transition due to mass imbalance is also observed. In the study of long-range interactions, we first use Rydberg atoms to find two distinctive types of supersolids, and then realize the superradiant phase coupled to different orbits by controlling the reflection of the pump laser in the system coupled to the high-finesse cavity. Finally, we study the high-orbit Bose system. We propose a new mechanism of spin angular-momentum coupling with spinor atomic Bosons based on many-body correlation and spontaneous symmetry breaking in a two-dimensional optical lattice, and then study the orbital frustration in a hexagonal lattice. We find that the interaction between orbital frustration and the strong interaction results in exotic Mott and superfluid phases with spin-orbital intertwined orders.
      通信作者: 李永强, li_yq@nudt.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074431, 12374252)和湖南省杰出青年科学基金(批准号: 2021JJ10044)资助的课题.
      Corresponding author: Li Yong-Qiang, li_yq@nudt.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074431, 12374252) and the Science Foundation for Distinguished Young Scholars of Hunan Province, China (Grant No. 2021JJ10044).
    [1]

    Chu S 1998 Rev. Mod. Phys. 70 685Google Scholar

    [2]

    Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707Google Scholar

    [3]

    Phillips W D 1998 Rev. Mod. Phys. 70 721Google Scholar

    [4]

    Orzel C, Tuchman A K, Fenselau M L, Yasuda M, Kasevich M A 2001 Science 291 2386Google Scholar

    [5]

    Greiner M, Bloch I, Mandel O, Hänsch T W, Esslinger T 2001 Phys. Rev. Lett. 87 160405Google Scholar

    [6]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39Google Scholar

    [7]

    Taie S, Ozawa H, Ichinose T, Nishio T, Nakajima S, Takahashi Y 2015 Sci. Adv. 1 e1500854Google Scholar

    [8]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237

    [9]

    Becker C, Soltan-Panahi P, Kronjäger J, Dörscher S, Bongs K, Sengstock K 2010 New J. Phys. 12 065025Google Scholar

    [10]

    Jo G B, Guzman J, Thomas C K, Hosur P, Vishwanath A, Stamper-Kurn D M 2012 Phys. Rev. Lett. 108 045305Google Scholar

    [11]

    Viebahn K, Sbroscia M, Carter E, Yu J C, Schneider U 2019 Phys. Rev. Lett. 122 110404Google Scholar

    [12]

    Goldman N, Budich J C, Zoller P 2016 Nat. Phys. 12 639Google Scholar

    [13]

    Xu M, Kendrick L H, Kale A, Gang Y, Ji G, Scalettar R T, Lebrat M, Greiner M 2022 Nature 620 971

    [14]

    Wei D, Adler D, Srakaew K, Agrawal S, Weckesser P, Bloch I, Zeiher J 2023 Phys. Rev. X 13 021042

    [15]

    Grimm R, Weidemjller M, Ovchinnikov Y B 2000 Advances In Atomic, Molecular, and Optical Physics (San Diego: Academic Press) pp95–170

    [16]

    Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R, Ferlaino F 2012 Phys. Rev. Lett. 108 210401Google Scholar

    [17]

    Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151Google Scholar

    [18]

    Stwalley W C 1976 Phys. Rev. Lett. 37 1628Google Scholar

    [19]

    Courteille P, Freeland R S, Heinzen D J, van Abeelen F A, Verhaar B J 1998 Phys. Rev. Lett. 81 69Google Scholar

    [20]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [21]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [22]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108Google Scholar

    [23]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [24]

    Bloch I, Dalibard J, Nascimbène S 2012 Nat. Phys. 8 267Google Scholar

    [25]

    Dutta O, Gajda M, Hauke P, et al. 2015 Rep. Prog. Phys. 78 066001Google Scholar

    [26]

    Gross C, Bloch I 2017 Science 357 995Google Scholar

    [27]

    Schäfer F, Fukuhara T, Sugawa S, Takasu Y, Takahashi Y 2020 Nat. Rev. Phys. 2 411Google Scholar

    [28]

    Altman E, Brown K R, Carleo G, et al. 2021 PRX Quantum 2 017003Google Scholar

    [29]

    Fraxanet J, Salamon T, Lewenstein M 2022 arXiv: 2204.08905 [quant-ph

    [30]

    Choi J Y 2023 J. Korean Phys. Soc. 82 875

    [31]

    Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen(De) A, Sen U 2007 Adv. Phys. 56 243Google Scholar

    [32]

    Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191Google Scholar

    [33]

    Stamper-Kurn D M, Andrews M R, Chikkatur A P, et al. 1998 Phys. Rev. Lett. 80 2027Google Scholar

    [34]

    Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle W 1998 Nature 396 345Google Scholar

    [35]

    Hall D S, Matthews M R, Ensher J R, Wieman C E, Cornell E A 1998 Phys. Rev. Lett. 81 1539Google Scholar

    [36]

    Matthews M R, Hall D S, Jin D S, et al. 1998 Phys. Rev. Lett. 81 243Google Scholar

    [37]

    Barrett M D, Sauer J A, Chapman M S 2001 Phys. Rev. Lett. 87 010404Google Scholar

    [38]

    Law C K, Pu H, Bigelow N P 1998 Phys. Rev. Lett. 81 5257Google Scholar

    [39]

    Pu H, Law C K, Raghavan S, Eberly J H, Bigelow N P 1999 Phys. Rev. A 60 1463Google Scholar

    [40]

    McGuirk J M, Lewandowski H J, Harber D M, Nikuni T, Williams J E, Cornell E A 2002 Phys. Rev. Lett. 89 090402Google Scholar

    [41]

    Gu Q, Bongs K, Sengstock K 2004 Phys. Rev. A 70 063609Google Scholar

    [42]

    Chang M S, Hamley C D, Barrett M D, et al. 2004 Phys. Rev. Lett. 92 140403Google Scholar

    [43]

    Schmaljohann H, Erhard M, Kronjäger J, et al. 2004 Phys. Rev. Lett. 92 040402Google Scholar

    [44]

    Widera A, Gerbier F, Fölling S, Gericke T, Mandel O, Bloch I 2005 Phys. Rev. Lett. 95 190405Google Scholar

    [45]

    Widera A, Gerbier F, Fölling S, Gericke T, Mandel O, Bloch I 2006 New J. Phys. 8 152Google Scholar

    [46]

    Chang M S, Qin Q, Zhang W, You L, Chapman M S 2005 Nat. Phys. 1 111Google Scholar

    [47]

    Vengalattore M, Leslie S R, Guzman J, Stamper-Kurn D M 2008 Phys. Rev. Lett. 100 170403Google Scholar

    [48]

    Kronjäger J, Becker C, Soltan-Panahi P, Bongs K, Sengstock K 2010 Phys. Rev. Lett. 105 090402Google Scholar

    [49]

    Eto Y, Saito H, Hirano T 2014 Phys. Rev. Lett. 112 185301Google Scholar

    [50]

    Jacob D, Shao L, Corre V, Zibold T, De Sarlo L, Mimoun E, Dalibard J, Gerbier F 2012 Phys. Rev. A 86 061601Google Scholar

    [51]

    Zhao L, Jiang J, Tang T, Webb M, Liu Y 2014 Phys. Rev. A 89 023608Google Scholar

    [52]

    Zhao L, Jiang J, Tang T, Webb M, Liu Y 2015 Phys. Rev. Lett. 114 225302Google Scholar

    [53]

    Batrouni G G, Rousseau V G, Scalettar R T 2009 Phys. Rev. Lett. 102 140402Google Scholar

    [54]

    Apaja V, Syljuasen O F 2006 Phys. Rev. A 74 035601Google Scholar

    [55]

    Rizzi M, Rossini D, De Chiara G, Montangero S, Fazio R 2005 Phys. Rev. Lett. 95 240404Google Scholar

    [56]

    Bergkvist S, McCulloch I P, Rosengren A 2006 Phys. Rev. A 74 053419Google Scholar

    [57]

    Mazurenko A, Chiu C S, Ji G, et al. 2017 Nature 545 462Google Scholar

    [58]

    Sun H, Yang B, Wang H Y, Zhou Z Y, Su G X, Dai H N, Yuan Z S, Pan J W 2021 Nat. Phys. 17 990Google Scholar

    [59]

    Wu C 2006 Mod. Phys. Lett. B 20 1707Google Scholar

    [60]

    Mobarak M, Pelster A 2013 Laser Phys. Lett. 10 115501Google Scholar

    [61]

    Trefzger C, Menotti C, Capogrosso-Sansone B, Lewenstein M 2011 J. Phys. B: At., Mol. Opt. Phys. 44 193001Google Scholar

    [62]

    De’Bell K, MacIsaac A B, Whitehead J P 2000 Rev. Mod. Phys. 72 225Google Scholar

    [63]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [64]

    Maschler C, Mekhov I B, Ritsch H 2008 Eur. Phys. J. D 46 545Google Scholar

    [65]

    Ritsch H, Domokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553Google Scholar

    [66]

    Mivehvar F, Piazza F, Donner T, Ritsch H 2021 Adv. Phys. 70 1Google Scholar

    [67]

    Griesmaier A, Werner J, Hensler S, Stuhler J, Pfau T 2005 Phys. Rev. Lett. 94 160401Google Scholar

    [68]

    Ni K K, Ospelkaus S, de Miranda M H G, et al. 2008 Science 322 231Google Scholar

    [69]

    Zhang X, Chen Y, Wu Z, Wang J, Fan J, Deng S, Wu H 2021 Science 373 1359Google Scholar

    [70]

    Wu C 2009 Mod. Phys. Lett. B 23 1

    [71]

    Liu W V, Wu C 2006 Phys. Rev. A 74 013607Google Scholar

    [72]

    Wu C, Liu W V, Moore J, Sarma S D 2006 Phys. Rev. Lett. 97 190406Google Scholar

    [73]

    Isacsson A, Girvin S 2005 Phys. Rev. A 72 053604Google Scholar

    [74]

    Kock T, Hippler C, Ewerbeck A, Hemmerich A 2016 J. Phys. B: At., Mol. Opt. Phys. 49 042001Google Scholar

    [75]

    Soltan-Panahi P, Lühmann D S, Struck J, Windpassinger P, Sengstock K 2012 Nat. Phys. 8 71Google Scholar

    [76]

    Zhou Q, Porto J V, Das Sarma S 2011 Phys. Rev. A 84 031607Google Scholar

    [77]

    Li X, Liu W V 2016 Rep. Prog. Phys. 79 116401Google Scholar

    [78]

    Liu B, Zhang P, Gao H, Li F 2018 Phys. Rev. Lett. 121 015303Google Scholar

    [79]

    Pinheiro F, Bruun G M, Martikainen J P, Larson J 2013 Phys. Rev. Lett. 111 205302Google Scholar

    [80]

    Müller T, Fölling S, Widera A, Bloch I 2007 Phys. Rev. Lett. 99 200405Google Scholar

    [81]

    Wirth G, Ölschläger M, Hemmerich A 2011 Nat. Phys. 7 147Google Scholar

    [82]

    Kock T, Ölschläger M, Ewerbeck A, Huang W M, Mathey L, Hemmerich A 2015 Phys. Rev. Lett. 114 115301Google Scholar

    [83]

    Hachmann M, Kiefer Y, Riebesehl J, Eichberger R, Hemmerich A 2021 Phys. Rev. Lett. 127 033201Google Scholar

    [84]

    Kiefer Y, Hachmann M, Hemmerich A 2023 Nat. Phys. 19 794Google Scholar

    [85]

    Jin S, Zhang W, Guo X, Chen X, Zhou X, Li X 2021 Phys. Rev. Lett. 126 035301Google Scholar

    [86]

    Jin S, Chen X, Zhou X 2022 Front. Phys. 10 957151Google Scholar

    [87]

    Wang X Q, Luo G Q, Liu J Y, Liu W V, Hemmerich A, Xu Z F 2021 Nature 596 227Google Scholar

    [88]

    Wang X Q, Luo G Q, Liu J Y, et al. 2022 arXiv: 2211.05578 [cond-mat.quant-gas

    [89]

    Huang G H, Xu Z F, Wu Z 2022 Phys. Rev. Lett. 129 185301Google Scholar

    [90]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153Google Scholar

    [91]

    Metzner W, Vollhardt D 1989 Phys. Rev. Lett. 62 324Google Scholar

    [92]

    Müller-Hartmann E 1989 Z. Phys. B: Condens. Matter 74 507

    [93]

    Müller-Hartmann E 1989 Z. Phys. B: Condens. Matter 76 211

    [94]

    Janiš V 1991 Z. Phys. B: Condens. Matter 83 227

    [95]

    Georges A, Kotliar G 1992 Phys. Rev. B 45 6479

    [96]

    Byczuk K, Vollhardt D 2008 Phys. Rev. B 77 235106Google Scholar

    [97]

    Georges A, Kotliar G, Krauth W, Rozenberg M J 1996 Rev. Mod. Phys. 68 13Google Scholar

    [98]

    Limelette P, Wzietek P, Florens S, et al. 2003 Phys. Rev. Lett. 91 016401Google Scholar

    [99]

    Vollhardt D 1993 Correlated Electron Systems (Singapore: World Scientific) pp57–117

    [100]

    Vollhardt D 2010 AIP Conf. Proc. 1297 339

    [101]

    Negele J, Orland H 1998 Quantum Many-Particle System (Boca Raton: CRC Press) pp47–68

    [102]

    Snoek M, Hofstetter W 2013 Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics (Singapore: World Scientific) pp355–365

    [103]

    Hubener A, Snoek M, Hofstetter W 2009 Phys. Rev. B 80 245109Google Scholar

    [104]

    Li Y 2012 Ph. D. Dissertation (Frankfurt am Main: Johann Wolfgang Goethe-Universität

    [105]

    Caffarel M, Krauth W 1994 Phys. Rev. Lett. 72 1545Google Scholar

    [106]

    Rozenberg M, Kotliar G, Kajueter H, Thomas G, Rapkine D, Honig J, Metcalf P 1995 Phys. Rev. Lett. 75 105Google Scholar

    [107]

    Hirsch J E, Fye R M 1986 Phys. Rev. Lett. 56 2521Google Scholar

    [108]

    Wilson K G 1975 Rev. Mod. Phys. 47 773Google Scholar

    [109]

    Helmes R W, Costi T A, Rosch A 2008 Phys. Rev. Lett. 100 056403Google Scholar

    [110]

    Snoek M, Titvinidze I, Tőke C, Byczuk K, Hofstetter W 2008 New J. Phys. 10 093008Google Scholar

    [111]

    Demler E, Zhou F 2002 Phys. Rev. Lett. 88 163001Google Scholar

    [112]

    Imambekov A, Lukin M, Demler E 2003 Phys. Rev. A 68 063602Google Scholar

    [113]

    Snoek M, Zhou F 2004 Phys. Rev. B 69 094410Google Scholar

    [114]

    Tsuchiya S, Kurihara S, Kimura T 2004 Phys. Rev. A 70 043628Google Scholar

    [115]

    Ashhab S 2005 J. Low Temp. Phys. 140 51Google Scholar

    [116]

    Pai R V, Sheshadri K, Pandit R 2008 Phys. Rev. B 77 014503Google Scholar

    [117]

    Kimura T, Tsuchiya S, Kurihara S 2005 Phys. Rev. Lett. 94 110403Google Scholar

    [118]

    Natu S S, Pixley J H, Das Sarma S 2015 Phys. Rev. A 91 043620Google Scholar

    [119]

    Li Y, He L, Hofstetter W 2016 Phys. Rev. A 93 033622Google Scholar

    [120]

    Lang G, Witkowska E 2014 Phys. Rev. A 90 043609Google Scholar

    [121]

    Isoshima T, Ohmi T, Machida K 2000 J. Phys. Soc. Jpn. 69 3864Google Scholar

    [122]

    Zhang W, Yi S, You L 2003 New J. Phys. 5 77Google Scholar

    [123]

    Zhang W, Yi S, You L 2004 Phys. Rev. A 70 043611Google Scholar

    [124]

    Kis-Szabó K, Szépfalusy P, Szirmai G 2007 Phys. Lett. A 364 362Google Scholar

    [125]

    Phuc N T, Kawaguchi Y, Ueda M 2011 Phys. Rev. A 84 043645Google Scholar

    [126]

    Liu Y, Jung S, Maxwell S E, Turner L D, Tiesinga E, Lett P D 2009 Phys. Rev. Lett. 102 125301Google Scholar

    [127]

    Jiang J, Zhao L, Webb M, Liu Y 2014 Phys. Rev. A 90 023610Google Scholar

    [128]

    Frapolli C, Zibold T, Invernizzi A, Jiménez-García K, Dalibard J, Gerbier F 2017 Phys. Rev. Lett. 119 050404Google Scholar

    [129]

    Zan X, Liu J, Han J, Wu J, Li Y 2018 Sci. Rep. 8 9143Google Scholar

    [130]

    Li X, Zhu B, He X, Wang F, Guo M, Xu Z F, Zhang S, Wang D 2015 Phys. Rev. Lett. 114 255301Google Scholar

    [131]

    Barbé V, Ciamei A, Pasquiou B, Reichsöllner L, Schreck F, Żuchowski P S, Hutson J M 2018 Nat. Phys. 14 881Google Scholar

    [132]

    Ciamei A, Szczepkowski J, Bayerle A, et al. 2018 Phys. Chem. Chem. Phys. 20 26221Google Scholar

    [133]

    Tan H, Han J, Yuan J, Li Y 2020 Phys. Rev. A 101 063611Google Scholar

    [134]

    Moses S A, Covey J P, Miecnikowski M T, Yan B, Gadway B, Ye J, Jin D S 2015 Science 350 659Google Scholar

    [135]

    Deiglmayr J, Grochola A, Repp M, Mörtlbauer K, Glück C, Lange J, Dulieu O, Wester R, Weidemüller M 2008 Phys. Rev. Lett. 101 133004Google Scholar

    [136]

    Takekoshi T, Reichsöllner L, Schindewolf A, et al. 2014 Phys. Rev. Lett. 113 205301Google Scholar

    [137]

    Molony P K, Gregory P D, Ji Z, et al. 2014 Phys. Rev. Lett. 113 255301Google Scholar

    [138]

    Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302Google Scholar

    [139]

    Capogrosso-Sansone B, Trefzger C, Lewenstein M, Zoller P, Pupillo G 2010 Phys. Rev. Lett. 104 125301Google Scholar

    [140]

    Pollet L, Picon J D, Büchler H P, Troyer M 2010 Phys. Rev. Lett. 104 125302Google Scholar

    [141]

    Lu M, Burdick N Q, Youn S H, Lev B L 2011 Phys. Rev. Lett. 107 190401Google Scholar

    [142]

    Henkel N, Cinti F, Jain P, Pupillo G, Pohl T 2012 Phys. Rev. Lett. 108 265301Google Scholar

    [143]

    Mattioli M, Dalmonte M, Lechner W, Pupillo G 2013 Phys. Rev. Lett. 111 165302Google Scholar

    [144]

    Dalmonte M, Lechner W, Cai Z, Mattioli M, Läuchli A M, Pupillo G 2015 Phys. Rev. B 92 045106Google Scholar

    [145]

    Iskin M, Freericks J K 2009 Phys. Rev. A 79 053634Google Scholar

    [146]

    Angelone A, Mezzacapo F, Pupillo G 2016 Phys. Rev. Lett. 116 135303Google Scholar

    [147]

    Baier S, Mark M J, Petter D, Aikawa K, Chomaz L, Cai Z, Baranov M, Zoller P, Ferlaino F 2016 Science 352 201Google Scholar

    [148]

    Cinti F, Macr T, Lechner W, Pupillo G, Pohl T 2014 Nat. Commun. 5 3235Google Scholar

    [149]

    Seo B, Huang M, Chen Z, Parit M K, He Y, Chen P, Jo G B 2022 arXiv: 2210.01586 [cond-mat.quant-gas

    [150]

    Wu X, Wang Z, Yang F, Gao R, Liang C, Tey M K, Li X, Pohl T, You L 2023 arXiv: 2305.20070 [cond-mat.quant-gas

    [151]

    Li Y, Geißler A, Hofstetter W, Li W 2018 Phys. Rev. A 97 023619Google Scholar

    [152]

    Pupillo G, Micheli A, Boninsegni M, Lesanovsky I, Zoller P 2010 Phys. Rev. Lett. 104 223002Google Scholar

    [153]

    Guo Y, Kroeze R M, Marsh B P, Gopalakrishnan S, Keeling J, Lev B L 2021 Nature 599 211Google Scholar

    [154]

    Kroeze R M, Marsh B P, Lin K Y, Keeling J, Lev B L 2023 PRX Quantum 4 020326Google Scholar

    [155]

    Masalaeva N, Ritsch H, Mivehvar F 2023 arXiv: 2305.16244 [cond-mat.quant-gas

    [156]

    Gao P, Zhou Z W, Guo G C, Luo X W 2023 Phys. Rev. A 107 023311Google Scholar

    [157]

    Nie X, Zheng W 2023 Phys. Rev. A 107 033311Google Scholar

    [158]

    Fraxanet J, Dauphin A, Lewenstein M, et al. 2023 arXiv: 2305.03409 [cond-mat.quant-gas

    [159]

    Li H, Wu H, Zheng W, Yi W 2023 arXiv: 2305.03891 [cond-mat.quant-gas

    [160]

    Mivehvar F, Ritsch H, Piazza F 2016 Phys. Rev. Lett. 118 073602

    [161]

    Griesser T, Ritsch H 2011 Opt. Express 19 11242Google Scholar

    [162]

    Keßler H, Cosme J G, Hemmerling M, Mathey L, Hemmerich A 2019 Phys. Rev. A 99 053605Google Scholar

    [163]

    Kongkhambut P, Skulte J, Mathey L, Cosme J G, Hemmerich A, Keßler H 2022 Science 377 670Google Scholar

    [164]

    Dreon D, Baumgärtner A, Li X, Hertlein S, Esslinger T, Donner T 2022 Nature 608 494Google Scholar

    [165]

    Zupancic P, Dreon D, Li X, Baumgärtner A, et al. 2019 Phys. Rev. Lett. 123 233601Google Scholar

    [166]

    Li X, Dreon D, Zupancic P, et al. 2021 Phys. Rev. Research 3 L012024Google Scholar

    [167]

    Tan H, Han J, Zheng W, Yuan J, Li Y 2022 Phys. Rev. A 106 023315Google Scholar

    [168]

    Liu X J, Borunda M F, Liu X, Sinova J 2009 Phys. Rev. Lett. 102 046402Google Scholar

    [169]

    Liu X J, Law K T, Ng T K 2014 Phys. Rev. Lett. 112 086401Google Scholar

    [170]

    Liu X J, Liu Z X, Cheng M 2013 Phys. Rev. Lett. 110 076401Google Scholar

    [171]

    Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523Google Scholar

    [172]

    Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [173]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [174]

    DeMarco M, Pu H 2015 Phys. Rev. A 91 033630Google Scholar

    [175]

    Chen H R, Lin K Y, Chen P K, et al. 2018 Phys. Rev. Lett. 121 113204Google Scholar

    [176]

    Zhang D, Gao T, Zou P, et al. 2019 Phys. Rev. Lett. 122 110402Google Scholar

    [177]

    Chiu N C, Kawaguchi Y, Yip S K, Lin Y J 2020 New J. Phys. 22 093017Google Scholar

    [178]

    Chen X L, Peng S G, Zou P, Liu X J, Hu H 2020 Phys. Rev. Res. 2 033152Google Scholar

    [179]

    Chen K J, Wu F, Peng S G, Yi W, He L 2020 Phys. Rev. Lett. 125 260407Google Scholar

    [180]

    Chen K J, Wu F, Hu J, He L 2020 Phys. Rev. A 102 013316Google Scholar

    [181]

    Chen L, Pu H, Zhang Y 2016 Phys. Rev. A 93 013629Google Scholar

    [182]

    Wang L L, Ji A C, Sun Q, Li J 2021 Phys. Rev. Lett. 126 193401Google Scholar

    [183]

    Chen K J, Wu F, He L, Yi W 2022 Phys. Rev. Res. 4 033023Google Scholar

    [184]

    Cao R, Han J, Wu J, Yuan J, He L, Li Y 2022 Phys. Rev. A 105 063308Google Scholar

    [185]

    Zhai H 2015 Rep. Prog. Phys. 78 026001Google Scholar

    [186]

    Zhang L, Liu X J 2018 Synthetic Spin-Orbit Coupling in Cold Atoms (Singapore: World Scientific) pp1–87

    [187]

    Galitski V, Spielman I B 2013 Nature 494 49Google Scholar

    [188]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [189]

    Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q, Zhang J 2016 Nat. Phys. 12 540Google Scholar

    [190]

    Wang Z Y, Cheng X C, Wang B Z, et al. 2021 Science 372 271Google Scholar

    [191]

    Ji Q, Zhang R, Zhang W 2020 Phys. Rev. A 102 063313Google Scholar

    [192]

    You J S, Liu I K, Wang D W, Gou S C, Wu C 2016 Phys. Rev. A 93 053623Google Scholar

    [193]

    Li X, Nan J, Pan X 2020 Phys. Rev. Lett. 125 263002Google Scholar

    [194]

    Li Y, Yuan J, Hemmerich A, Li X 2018 Phys. Rev. Lett. 121 093401Google Scholar

    [195]

    Semeghini G, Levine H, Keesling A, et al 2021 Science 374 1242Google Scholar

    [196]

    Balents L 2010 Nature 464 199Google Scholar

    [197]

    Nisoli C, Moessner R, Schiffer P 2013 Rev. Mod. Phys. 85 1473Google Scholar

    [198]

    Keselman A, Balents L, Starykh O A 2020 Phys. Rev. Lett. 125 187201Google Scholar

    [199]

    Hébert F, Cai Z, Rousseau V G, Wu C, Scalettar R T, Batrouni G G 2013 Phys. Rev. B 87 224505Google Scholar

    [200]

    Lewenstein M, Liu W V 2011 Nat. Phys. 7 101Google Scholar

    [201]

    Struck J, Ölschläger C, Targat R L, et al. 2011 Science 333 996Google Scholar

    [202]

    Li Y, Yuan J, Zhou X, Li X 2021 Phys. Rev. Res. 3 033274

  • 图 1  玻色动力学平均场示意图. 通过与普通玻色子热库和玻色-爱因斯坦凝聚热库耦合[96], 多体格点问题退化为一个单格点问题

    Fig. 1.  Schematic picture of BDMFT. In BDMFT, the many-body lattice problem is reduced to a single lattice problem coupling with normal Bosonic reservoir and reservoir of Bose-Einstein condensate (BEC)[96]

    图 2  Anderson杂质模型下动力学平均场方法的自洽循环示意图. 给Anderson参数初值, 利用杂质求解器求解Anderson杂质模型, 得到物理量和自能, 通过自能得到格点格林函数, 利用Dyson方程得到杂质函数, 从而得到新的Anderson参量, 构成自洽过程

    Fig. 2.  Schematic picture of BDMFT loop in Anderson impurity model. For an initial value of Anderson parameters, physical quantities and self-energy are obtained by solving the Anderson impurity model. After obtain lattice Green function through self-energy, impurity functions are attained. Finally, the loop is complete by fetched new Anderson parameters from impurity functions

    图 3  三维光晶格中自旋-1超冷玻色子在不同反铁磁相互作用下的零温相图[119], $ U_2/U_0 $分别为0.01, 0.04 (23Na), 0.3, 和2.0. 数据来源于BDMFT(黑线), Gutwiller(红线)以及文献[117](蓝线)中的计算. 体系中存在4种不同的相, 即超流相(SF)、向列绝缘相(NI)、自旋单态绝缘相(SSI)和自旋单态凝聚相(SSC)

    Fig. 3.  Zero-temperature phase diagram for spin-1 ultracold bosons in a 3D cubic lattice[119] for different antiferromagnetic interactions $ U_2/U_0 $ = 0.01, 0.04 (23Na), 0.3, and 2.0, respectively, obtained via BDMFT (black circle), Gutzwiller (red cross) and in Ref. [117] (blue dashed). There are four different phases in these diagrams: superfluid (SF), nematic insulator (NI), spin-singlet insulator (SSI) and spin-singlet condensate (SSC)

    图 4  三维光晶格中由BDMFT计算得到的自旋-1 87Rb($ U'_1/U_1=-0.0046 $)和自旋-0 84Sr异核玻色子混合体系在不同种间相互作用$ U_{12}/U_1=0.2, 0.5, 0.935 $和2下的基态相图[133]. 格点上粒子填充数为1时, 系统处在铁磁绝缘相. 格点上粒子填充数为2时, 体系为无序绝缘相. 此外随着隧穿振幅的增大会出现两种不同的超流相. 其中具有铁磁相互作用的三组分自旋-1 87Rb原子也处在铁磁相. 注意, 当种间相互作用特别大($ U_{12}/U_1=2 $)时, 系统中只有自旋1的玻色子. 作为比较, 红色线条是Gutzwiller平均场理论的计算结果. 其他参数为$ t \equiv t_{1_\sigma}\approx 0.97 t_{2_0} $, $ U_2/U_1=1.26 $

    Fig. 4.  Phase diagrams of heteronuclear mixtures of ultracold spin-1 87Rb (spin-dependent interaction $ U_1'/U_1=-0.0046 $) and spin-0 84Sr bosons in a three dimensional (3D) cubic lattice for different interspecies interactions $ U_{12}/U_1 = 0.2, 0.5, 0.935 $ and 2, obtained by BDMFT[133]. The system favors ferromagnetic insulating phase (FM) at filling $ n = 1 $, unorder insulating phase (UI) at $ n = 2 $, and two types of superfluid ($ {\rm{MI_{Sr} + SF_{Rb}}} $, and 2SF), where the three-components of spin-1 87Rb demonstrate ferromagnetic order as a result of ferromagnetic interactions. Note here that the system favors phase separation for $ U_{12}/U_1 = 2 $, and here we only show the phase diagram of spin-1 bosons. For comparisons, the red cross is obtained by Gutzwiller mean-field theory. The other parameters $ t=t_{1\sigma}\approx0.97 t_{20} $, and $ U_2/U_1 = 1.26 $.

    图 5  (a)考虑两个电子基态$ |b\rangle $(蓝色), $ |d\rangle $(红色)和一个里德伯态$ |r\rangle $. 一束非共振激光(拉比频率为Ω, 失谐量为Δ)将态$ |d\rangle $$ |r\rangle $耦合. (b)里德伯态$ |d\rangle $间的软核型相互作用势$ V_{i j} $(红线). 软核半径$R_{\rm{c}}$可以大于晶格间距a, 图中展示的是$R_{\rm{c}}=2 a$的情形. (c)被修饰原子处于有序密度波(DW)时的裸态处于SS. (d)裸态的Roton不稳定性. 声子的Bogoliubov色散关系(沿$ k_x $轴)被种间相互作用显著地改变. 当种间相互作用$U_{{\rm{bd}}}$增加时, 会出现类Roton不稳定性, 表明基态相由均匀的超流体转变为超固体. 图中$U_{{\rm{b d}}} / U= $$ 0$(点线), $U_{{\rm{b d}}} / U=0.45$(虚线), $U_{{\rm{b d}}} / U=1$(实线), 其他参数为$ k_y=0, V / U=0.4 $, 和$ t / U=0.04 $ [151]

    Fig. 5.  (a) Two electronic ground states $ |b\rangle $ (blue) and $ |d\rangle $ (red) and a Rydberg state $ |r\rangle $ are considered. An off-resonant laser (with Rabi frequency Ω and detuning Δ) weakly couples the state $ |d\rangle $ to $ |r\rangle $. (b) The soft-core shape interaction potential $ V_{i j} $ (red) between atoms in the Rydberg dressed state $ |d\rangle $. The soft-core radius $R_{\rm{c}}$ can be larger than the lattice spacing a. Here, $R_{\rm{c}}=2 a$ is shown. (c) SS of the bare state when dressed atoms are in an ordered density wave (DW). (d) Roton instability of the bare species. The Bogoliubov dispersion relation (along the $ k_x $ axis) of phonons is significantly modified by the interspecies interaction. A rotonlike instability emerges when the interspecies interaction $U_{{\rm{b d}}}$ is increased, indicating that the groundstate phase changes from a homogeneous superfluid to supersolid. We show $U_{{\rm{b d}}} / U=0$ (dotted line), $U_{{\rm{b d}}} / U= $$ 0.45$ (dashed line), and $U_{{\rm{b d}}} / U=1$ (solid line). Other parameters are $ k_y=0, V / U=0.4 $, and $ t / U=0.04 $[151]

    图 6  原子在光腔中耦合高轨道态示意图[167] (a)原子被陷俘在光腔中, 由一束不平衡因子$ \eta= E_-/E_+ $的横向泵浦光驱动; (b)四方晶格的布里渊区示意图, 原子从动量态$ {\boldsymbol{k}}= $$ (0, 0) $被散射到$ (\pi, \pi) $, 右侧上下两幅图分别为p-轨道和d-轨道能带原子的动量分布图; (c), (d)腔模和泵浦光之间的主要散射过程, 其引起了高轨道激发. 通过控制参数$ \eta=1 $(c), 原子可以选择性地被散射到偶宇称的d-轨道态, 当$ \eta<1 $ (d), 原子被散射到奇宇称的p-轨道态. 此处$ J^{ij}_{{\rm{sd}}} $, $ J^{ij}_{{\rm{p}}_x{\rm{p}}_y} $,和$ J^{ij}_{{\rm{p}}_y{\rm{d}}} $分别表示s-轨道和$ {\rm{d}}_{xy} $-轨道, $ {\rm{p}}_x $-轨道和$ {\rm{p}}_y $-轨道, s-轨道和$ {\rm{p}}_x $-轨道, $ {\rm{p}}_y $-轨道和$ {\rm{d}}_{xy} $-轨道在格点i和格点j间由散射引起的轨道反转跃迁

    Fig. 6.  Populating higher-orbital states with ultracold atoms in an optical cavity[167]: (a) Atoms are prepared in an opticalcavity, pumped by a blue-detuned laser in the transverse direction with an imbalance parameter $ \eta= E_-/E_+ $. (b) Brillouin zone of the square lattice, where atoms are scattered from the quasimomentum state $ {\boldsymbol{k}}=(0, 0) $to the excite state $ (\pi, \pi) $, with quasimomentum distributions for the p- and d-orbital bands shown in right upper and lower panels, respectively; (c), (d) dominating scattering processes of atoms induced by cavity, leading to higher-orbital excitations. By controlling $ \eta $, atoms can be selectively scattered into the even-parity $ {\rm{d}}_{xy} $-orbital state with a single node in both x and y directions for $ \eta=1 $ (c), or into the odd-parity p-orbital state with a single node only in one direction for $ \eta<1 $ (d). Here, $ J^{ij}_{{\rm{sd}}} $, $ J^{ij}_{{\rm{p}}_x{\rm{p}}_y} $, $ J^{ij}_{{\rm{sp}}_x} $, and $ J^{ij}_{{\rm{p}}_y{\rm{d}}} $ denote cavity induced orbital-flip hoppings between sites i and j for the s- and $ {\rm{d}}_{xy} $-orbitals, $ {\rm{p}}_x $- and $ {\rm{p}}_y $-orbitals, s- and $ {\rm{p}}_x $-orbitals, and $ {\rm{p}}_y $- and $ {\rm{d}}_{xy} $-orbitals, respectively.

    图 7  (a) SAI相的示意图, 在SAI相中, 由于自发的自旋-轨道耦合, 粒子的自旋自由度和轨道自由度相互锁定; (b)在不同相互作用强度下, SAI相的稳定性; (c)在不同的温度下, SAI相的稳定性; (d)粒子数填充$ \langle n \rangle=2 $时, 玻色动力学平均场方法得到的两组分p轨道玻色系统基态相图, 相互作用强度设置为$U_{{/ /}}=U_{\bot}$; (e)表为不同相之间序参量的表征, 下左图和右图分别为$t_{{/ /}}/t_{\bot}=1$和10时, 不同填充数情况下基态相图, 下左图的插图为相变时序参量的变化. 相互作用强度设置为$U_{{/ /}}=U_{\bot}$ [194]

    Fig. 7.  (a) Pictorial illustration of SAI order. In presence of spontaneous spin angular-momentum coupling, the phase of spatial wave-function is entangled with the internal degrees of freedom of an atom in each optical lattice site. (b) Stability of SAI order against interaction quantum fluctuations. (c) Stability of SAI order against thermal fluctuations. (d) Phase diagram of the spinful p-orbital system with an even integer filling. The phase diagram is obtained via BDMFT. The atomic filling is fixed at $ \langle n \rangle=2 $, we set $U_{{/ /}}=U_{\bot}$. (e) Table is the characterization of different quantum phase. Left and right picture are phase diagrams of spinful p-orbital bosons at generic fillings for $t_{{/ /}}/t_{\bot}=1$ and $ 10 $. The inset in left shows the evolution of the order parameters. We use interaction strengths $U_{{/ /}}=U_{\bot}$ [194]

    图 8  (a)左图为二维六角晶格的几何结构, 晶格的格矢为$ {{{\boldsymbol{e}}}}_m $, 右图为晶格的第一布里渊区. (b)强关联区间轨道极化矢量$ {\bf {\cal{P}}} $在实空间的分布图. 左图为无自旋玻色子的Ising型结构, 中间和右图分别为自旋向上、自旋向下玻色子的平面内轨道涡旋结构. (c)粒子填充数$ \langle n \rangle=2 $时, 实空间玻色动力学平均场得到的两组分六角晶格p轨道玻色系统多体基态相图. 左图和右图的相互作用分别为$ U_{\uparrow}=U_{\downarrow}=U_{\uparrow \downarrow} $$ U_{\uparrow}=U_{\downarrow}=2 U_{\uparrow \downarrow} $. 右图的插图为右图灰色垂直线路径下, 序参量的相应变化. (d)不同自旋组分在动量空间下密度的分布[202]

    Fig. 8.  (a) Geometry of two-dimensional hexagonal lattice with lattice vector $ {{{\boldsymbol{e}}}_m} $ (left), and the first Brillouin zone (right). (b) Cartoons of real-space orbital polarization $ {\bf {\cal{P}}} $ for strongly interacting many-body phases in p-orbital bands of the two-dimensional (2D) hexagonal lattice, where left picture is spinless bosons demonstrate out-of-plane Ising-type orbital order, middle and right are spinful case in-plane orbital textures. (c) Hopping-dependent phase diagrams of spinful bosonic gases in p-orbital bans of a 2D hexagonal lattice for fixed filling $ \langle n \rangle=2 $, obtained via real-space bosonic dynamical mean-field theory. The left and right are set $ U_{\uparrow}=U_{\downarrow}=U_{\uparrow \downarrow} $ and $ U_{\uparrow}=U_{\downarrow}=2 U_{\uparrow \downarrow} $. Inset picture is the evolution of order parameter along the gray vertical line. (d) Momentum-space distributions of density $n_{\sigma, {\boldsymbol k}}$[202]

  • [1]

    Chu S 1998 Rev. Mod. Phys. 70 685Google Scholar

    [2]

    Cohen-Tannoudji C N 1998 Rev. Mod. Phys. 70 707Google Scholar

    [3]

    Phillips W D 1998 Rev. Mod. Phys. 70 721Google Scholar

    [4]

    Orzel C, Tuchman A K, Fenselau M L, Yasuda M, Kasevich M A 2001 Science 291 2386Google Scholar

    [5]

    Greiner M, Bloch I, Mandel O, Hänsch T W, Esslinger T 2001 Phys. Rev. Lett. 87 160405Google Scholar

    [6]

    Greiner M, Mandel O, Esslinger T, Hänsch T W, Bloch I 2002 Nature 415 39Google Scholar

    [7]

    Taie S, Ozawa H, Ichinose T, Nishio T, Nakajima S, Takahashi Y 2015 Sci. Adv. 1 e1500854Google Scholar

    [8]

    Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, Esslinger T 2014 Nature 515 237

    [9]

    Becker C, Soltan-Panahi P, Kronjäger J, Dörscher S, Bongs K, Sengstock K 2010 New J. Phys. 12 065025Google Scholar

    [10]

    Jo G B, Guzman J, Thomas C K, Hosur P, Vishwanath A, Stamper-Kurn D M 2012 Phys. Rev. Lett. 108 045305Google Scholar

    [11]

    Viebahn K, Sbroscia M, Carter E, Yu J C, Schneider U 2019 Phys. Rev. Lett. 122 110404Google Scholar

    [12]

    Goldman N, Budich J C, Zoller P 2016 Nat. Phys. 12 639Google Scholar

    [13]

    Xu M, Kendrick L H, Kale A, Gang Y, Ji G, Scalettar R T, Lebrat M, Greiner M 2022 Nature 620 971

    [14]

    Wei D, Adler D, Srakaew K, Agrawal S, Weckesser P, Bloch I, Zeiher J 2023 Phys. Rev. X 13 021042

    [15]

    Grimm R, Weidemjller M, Ovchinnikov Y B 2000 Advances In Atomic, Molecular, and Optical Physics (San Diego: Academic Press) pp95–170

    [16]

    Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R, Ferlaino F 2012 Phys. Rev. Lett. 108 210401Google Scholar

    [17]

    Inouye S, Andrews M R, Stenger J, Miesner H J, Stamper-Kurn D M, Ketterle W 1998 Nature 392 151Google Scholar

    [18]

    Stwalley W C 1976 Phys. Rev. Lett. 37 1628Google Scholar

    [19]

    Courteille P, Freeland R S, Heinzen D J, van Abeelen F A, Verhaar B J 1998 Phys. Rev. Lett. 81 69Google Scholar

    [20]

    Anderson M H, Ensher J R, Matthews M R, Wieman C E, Cornell E A 1995 Science 269 198Google Scholar

    [21]

    Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M, Ketterle W 1995 Phys. Rev. Lett. 75 3969Google Scholar

    [22]

    Jaksch D, Bruder C, Cirac J I, Gardiner C W, Zoller P 1998 Phys. Rev. Lett. 81 3108Google Scholar

    [23]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [24]

    Bloch I, Dalibard J, Nascimbène S 2012 Nat. Phys. 8 267Google Scholar

    [25]

    Dutta O, Gajda M, Hauke P, et al. 2015 Rep. Prog. Phys. 78 066001Google Scholar

    [26]

    Gross C, Bloch I 2017 Science 357 995Google Scholar

    [27]

    Schäfer F, Fukuhara T, Sugawa S, Takasu Y, Takahashi Y 2020 Nat. Rev. Phys. 2 411Google Scholar

    [28]

    Altman E, Brown K R, Carleo G, et al. 2021 PRX Quantum 2 017003Google Scholar

    [29]

    Fraxanet J, Salamon T, Lewenstein M 2022 arXiv: 2204.08905 [quant-ph

    [30]

    Choi J Y 2023 J. Korean Phys. Soc. 82 875

    [31]

    Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen(De) A, Sen U 2007 Adv. Phys. 56 243Google Scholar

    [32]

    Stamper-Kurn D M, Ueda M 2013 Rev. Mod. Phys. 85 1191Google Scholar

    [33]

    Stamper-Kurn D M, Andrews M R, Chikkatur A P, et al. 1998 Phys. Rev. Lett. 80 2027Google Scholar

    [34]

    Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P, Ketterle W 1998 Nature 396 345Google Scholar

    [35]

    Hall D S, Matthews M R, Ensher J R, Wieman C E, Cornell E A 1998 Phys. Rev. Lett. 81 1539Google Scholar

    [36]

    Matthews M R, Hall D S, Jin D S, et al. 1998 Phys. Rev. Lett. 81 243Google Scholar

    [37]

    Barrett M D, Sauer J A, Chapman M S 2001 Phys. Rev. Lett. 87 010404Google Scholar

    [38]

    Law C K, Pu H, Bigelow N P 1998 Phys. Rev. Lett. 81 5257Google Scholar

    [39]

    Pu H, Law C K, Raghavan S, Eberly J H, Bigelow N P 1999 Phys. Rev. A 60 1463Google Scholar

    [40]

    McGuirk J M, Lewandowski H J, Harber D M, Nikuni T, Williams J E, Cornell E A 2002 Phys. Rev. Lett. 89 090402Google Scholar

    [41]

    Gu Q, Bongs K, Sengstock K 2004 Phys. Rev. A 70 063609Google Scholar

    [42]

    Chang M S, Hamley C D, Barrett M D, et al. 2004 Phys. Rev. Lett. 92 140403Google Scholar

    [43]

    Schmaljohann H, Erhard M, Kronjäger J, et al. 2004 Phys. Rev. Lett. 92 040402Google Scholar

    [44]

    Widera A, Gerbier F, Fölling S, Gericke T, Mandel O, Bloch I 2005 Phys. Rev. Lett. 95 190405Google Scholar

    [45]

    Widera A, Gerbier F, Fölling S, Gericke T, Mandel O, Bloch I 2006 New J. Phys. 8 152Google Scholar

    [46]

    Chang M S, Qin Q, Zhang W, You L, Chapman M S 2005 Nat. Phys. 1 111Google Scholar

    [47]

    Vengalattore M, Leslie S R, Guzman J, Stamper-Kurn D M 2008 Phys. Rev. Lett. 100 170403Google Scholar

    [48]

    Kronjäger J, Becker C, Soltan-Panahi P, Bongs K, Sengstock K 2010 Phys. Rev. Lett. 105 090402Google Scholar

    [49]

    Eto Y, Saito H, Hirano T 2014 Phys. Rev. Lett. 112 185301Google Scholar

    [50]

    Jacob D, Shao L, Corre V, Zibold T, De Sarlo L, Mimoun E, Dalibard J, Gerbier F 2012 Phys. Rev. A 86 061601Google Scholar

    [51]

    Zhao L, Jiang J, Tang T, Webb M, Liu Y 2014 Phys. Rev. A 89 023608Google Scholar

    [52]

    Zhao L, Jiang J, Tang T, Webb M, Liu Y 2015 Phys. Rev. Lett. 114 225302Google Scholar

    [53]

    Batrouni G G, Rousseau V G, Scalettar R T 2009 Phys. Rev. Lett. 102 140402Google Scholar

    [54]

    Apaja V, Syljuasen O F 2006 Phys. Rev. A 74 035601Google Scholar

    [55]

    Rizzi M, Rossini D, De Chiara G, Montangero S, Fazio R 2005 Phys. Rev. Lett. 95 240404Google Scholar

    [56]

    Bergkvist S, McCulloch I P, Rosengren A 2006 Phys. Rev. A 74 053419Google Scholar

    [57]

    Mazurenko A, Chiu C S, Ji G, et al. 2017 Nature 545 462Google Scholar

    [58]

    Sun H, Yang B, Wang H Y, Zhou Z Y, Su G X, Dai H N, Yuan Z S, Pan J W 2021 Nat. Phys. 17 990Google Scholar

    [59]

    Wu C 2006 Mod. Phys. Lett. B 20 1707Google Scholar

    [60]

    Mobarak M, Pelster A 2013 Laser Phys. Lett. 10 115501Google Scholar

    [61]

    Trefzger C, Menotti C, Capogrosso-Sansone B, Lewenstein M 2011 J. Phys. B: At., Mol. Opt. Phys. 44 193001Google Scholar

    [62]

    De’Bell K, MacIsaac A B, Whitehead J P 2000 Rev. Mod. Phys. 72 225Google Scholar

    [63]

    Baumann K, Guerlin C, Brennecke F, Esslinger T 2010 Nature 464 1301Google Scholar

    [64]

    Maschler C, Mekhov I B, Ritsch H 2008 Eur. Phys. J. D 46 545Google Scholar

    [65]

    Ritsch H, Domokos P, Brennecke F, Esslinger T 2013 Rev. Mod. Phys. 85 553Google Scholar

    [66]

    Mivehvar F, Piazza F, Donner T, Ritsch H 2021 Adv. Phys. 70 1Google Scholar

    [67]

    Griesmaier A, Werner J, Hensler S, Stuhler J, Pfau T 2005 Phys. Rev. Lett. 94 160401Google Scholar

    [68]

    Ni K K, Ospelkaus S, de Miranda M H G, et al. 2008 Science 322 231Google Scholar

    [69]

    Zhang X, Chen Y, Wu Z, Wang J, Fan J, Deng S, Wu H 2021 Science 373 1359Google Scholar

    [70]

    Wu C 2009 Mod. Phys. Lett. B 23 1

    [71]

    Liu W V, Wu C 2006 Phys. Rev. A 74 013607Google Scholar

    [72]

    Wu C, Liu W V, Moore J, Sarma S D 2006 Phys. Rev. Lett. 97 190406Google Scholar

    [73]

    Isacsson A, Girvin S 2005 Phys. Rev. A 72 053604Google Scholar

    [74]

    Kock T, Hippler C, Ewerbeck A, Hemmerich A 2016 J. Phys. B: At., Mol. Opt. Phys. 49 042001Google Scholar

    [75]

    Soltan-Panahi P, Lühmann D S, Struck J, Windpassinger P, Sengstock K 2012 Nat. Phys. 8 71Google Scholar

    [76]

    Zhou Q, Porto J V, Das Sarma S 2011 Phys. Rev. A 84 031607Google Scholar

    [77]

    Li X, Liu W V 2016 Rep. Prog. Phys. 79 116401Google Scholar

    [78]

    Liu B, Zhang P, Gao H, Li F 2018 Phys. Rev. Lett. 121 015303Google Scholar

    [79]

    Pinheiro F, Bruun G M, Martikainen J P, Larson J 2013 Phys. Rev. Lett. 111 205302Google Scholar

    [80]

    Müller T, Fölling S, Widera A, Bloch I 2007 Phys. Rev. Lett. 99 200405Google Scholar

    [81]

    Wirth G, Ölschläger M, Hemmerich A 2011 Nat. Phys. 7 147Google Scholar

    [82]

    Kock T, Ölschläger M, Ewerbeck A, Huang W M, Mathey L, Hemmerich A 2015 Phys. Rev. Lett. 114 115301Google Scholar

    [83]

    Hachmann M, Kiefer Y, Riebesehl J, Eichberger R, Hemmerich A 2021 Phys. Rev. Lett. 127 033201Google Scholar

    [84]

    Kiefer Y, Hachmann M, Hemmerich A 2023 Nat. Phys. 19 794Google Scholar

    [85]

    Jin S, Zhang W, Guo X, Chen X, Zhou X, Li X 2021 Phys. Rev. Lett. 126 035301Google Scholar

    [86]

    Jin S, Chen X, Zhou X 2022 Front. Phys. 10 957151Google Scholar

    [87]

    Wang X Q, Luo G Q, Liu J Y, Liu W V, Hemmerich A, Xu Z F 2021 Nature 596 227Google Scholar

    [88]

    Wang X Q, Luo G Q, Liu J Y, et al. 2022 arXiv: 2211.05578 [cond-mat.quant-gas

    [89]

    Huang G H, Xu Z F, Wu Z 2022 Phys. Rev. Lett. 129 185301Google Scholar

    [90]

    Georgescu I M, Ashhab S, Nori F 2014 Rev. Mod. Phys. 86 153Google Scholar

    [91]

    Metzner W, Vollhardt D 1989 Phys. Rev. Lett. 62 324Google Scholar

    [92]

    Müller-Hartmann E 1989 Z. Phys. B: Condens. Matter 74 507

    [93]

    Müller-Hartmann E 1989 Z. Phys. B: Condens. Matter 76 211

    [94]

    Janiš V 1991 Z. Phys. B: Condens. Matter 83 227

    [95]

    Georges A, Kotliar G 1992 Phys. Rev. B 45 6479

    [96]

    Byczuk K, Vollhardt D 2008 Phys. Rev. B 77 235106Google Scholar

    [97]

    Georges A, Kotliar G, Krauth W, Rozenberg M J 1996 Rev. Mod. Phys. 68 13Google Scholar

    [98]

    Limelette P, Wzietek P, Florens S, et al. 2003 Phys. Rev. Lett. 91 016401Google Scholar

    [99]

    Vollhardt D 1993 Correlated Electron Systems (Singapore: World Scientific) pp57–117

    [100]

    Vollhardt D 2010 AIP Conf. Proc. 1297 339

    [101]

    Negele J, Orland H 1998 Quantum Many-Particle System (Boca Raton: CRC Press) pp47–68

    [102]

    Snoek M, Hofstetter W 2013 Quantum Gases: Finite Temperature and Non-Equilibrium Dynamics (Singapore: World Scientific) pp355–365

    [103]

    Hubener A, Snoek M, Hofstetter W 2009 Phys. Rev. B 80 245109Google Scholar

    [104]

    Li Y 2012 Ph. D. Dissertation (Frankfurt am Main: Johann Wolfgang Goethe-Universität

    [105]

    Caffarel M, Krauth W 1994 Phys. Rev. Lett. 72 1545Google Scholar

    [106]

    Rozenberg M, Kotliar G, Kajueter H, Thomas G, Rapkine D, Honig J, Metcalf P 1995 Phys. Rev. Lett. 75 105Google Scholar

    [107]

    Hirsch J E, Fye R M 1986 Phys. Rev. Lett. 56 2521Google Scholar

    [108]

    Wilson K G 1975 Rev. Mod. Phys. 47 773Google Scholar

    [109]

    Helmes R W, Costi T A, Rosch A 2008 Phys. Rev. Lett. 100 056403Google Scholar

    [110]

    Snoek M, Titvinidze I, Tőke C, Byczuk K, Hofstetter W 2008 New J. Phys. 10 093008Google Scholar

    [111]

    Demler E, Zhou F 2002 Phys. Rev. Lett. 88 163001Google Scholar

    [112]

    Imambekov A, Lukin M, Demler E 2003 Phys. Rev. A 68 063602Google Scholar

    [113]

    Snoek M, Zhou F 2004 Phys. Rev. B 69 094410Google Scholar

    [114]

    Tsuchiya S, Kurihara S, Kimura T 2004 Phys. Rev. A 70 043628Google Scholar

    [115]

    Ashhab S 2005 J. Low Temp. Phys. 140 51Google Scholar

    [116]

    Pai R V, Sheshadri K, Pandit R 2008 Phys. Rev. B 77 014503Google Scholar

    [117]

    Kimura T, Tsuchiya S, Kurihara S 2005 Phys. Rev. Lett. 94 110403Google Scholar

    [118]

    Natu S S, Pixley J H, Das Sarma S 2015 Phys. Rev. A 91 043620Google Scholar

    [119]

    Li Y, He L, Hofstetter W 2016 Phys. Rev. A 93 033622Google Scholar

    [120]

    Lang G, Witkowska E 2014 Phys. Rev. A 90 043609Google Scholar

    [121]

    Isoshima T, Ohmi T, Machida K 2000 J. Phys. Soc. Jpn. 69 3864Google Scholar

    [122]

    Zhang W, Yi S, You L 2003 New J. Phys. 5 77Google Scholar

    [123]

    Zhang W, Yi S, You L 2004 Phys. Rev. A 70 043611Google Scholar

    [124]

    Kis-Szabó K, Szépfalusy P, Szirmai G 2007 Phys. Lett. A 364 362Google Scholar

    [125]

    Phuc N T, Kawaguchi Y, Ueda M 2011 Phys. Rev. A 84 043645Google Scholar

    [126]

    Liu Y, Jung S, Maxwell S E, Turner L D, Tiesinga E, Lett P D 2009 Phys. Rev. Lett. 102 125301Google Scholar

    [127]

    Jiang J, Zhao L, Webb M, Liu Y 2014 Phys. Rev. A 90 023610Google Scholar

    [128]

    Frapolli C, Zibold T, Invernizzi A, Jiménez-García K, Dalibard J, Gerbier F 2017 Phys. Rev. Lett. 119 050404Google Scholar

    [129]

    Zan X, Liu J, Han J, Wu J, Li Y 2018 Sci. Rep. 8 9143Google Scholar

    [130]

    Li X, Zhu B, He X, Wang F, Guo M, Xu Z F, Zhang S, Wang D 2015 Phys. Rev. Lett. 114 255301Google Scholar

    [131]

    Barbé V, Ciamei A, Pasquiou B, Reichsöllner L, Schreck F, Żuchowski P S, Hutson J M 2018 Nat. Phys. 14 881Google Scholar

    [132]

    Ciamei A, Szczepkowski J, Bayerle A, et al. 2018 Phys. Chem. Chem. Phys. 20 26221Google Scholar

    [133]

    Tan H, Han J, Yuan J, Li Y 2020 Phys. Rev. A 101 063611Google Scholar

    [134]

    Moses S A, Covey J P, Miecnikowski M T, Yan B, Gadway B, Ye J, Jin D S 2015 Science 350 659Google Scholar

    [135]

    Deiglmayr J, Grochola A, Repp M, Mörtlbauer K, Glück C, Lange J, Dulieu O, Wester R, Weidemüller M 2008 Phys. Rev. Lett. 101 133004Google Scholar

    [136]

    Takekoshi T, Reichsöllner L, Schindewolf A, et al. 2014 Phys. Rev. Lett. 113 205301Google Scholar

    [137]

    Molony P K, Gregory P D, Ji Z, et al. 2014 Phys. Rev. Lett. 113 255301Google Scholar

    [138]

    Park J W, Will S A, Zwierlein M W 2015 Phys. Rev. Lett. 114 205302Google Scholar

    [139]

    Capogrosso-Sansone B, Trefzger C, Lewenstein M, Zoller P, Pupillo G 2010 Phys. Rev. Lett. 104 125301Google Scholar

    [140]

    Pollet L, Picon J D, Büchler H P, Troyer M 2010 Phys. Rev. Lett. 104 125302Google Scholar

    [141]

    Lu M, Burdick N Q, Youn S H, Lev B L 2011 Phys. Rev. Lett. 107 190401Google Scholar

    [142]

    Henkel N, Cinti F, Jain P, Pupillo G, Pohl T 2012 Phys. Rev. Lett. 108 265301Google Scholar

    [143]

    Mattioli M, Dalmonte M, Lechner W, Pupillo G 2013 Phys. Rev. Lett. 111 165302Google Scholar

    [144]

    Dalmonte M, Lechner W, Cai Z, Mattioli M, Läuchli A M, Pupillo G 2015 Phys. Rev. B 92 045106Google Scholar

    [145]

    Iskin M, Freericks J K 2009 Phys. Rev. A 79 053634Google Scholar

    [146]

    Angelone A, Mezzacapo F, Pupillo G 2016 Phys. Rev. Lett. 116 135303Google Scholar

    [147]

    Baier S, Mark M J, Petter D, Aikawa K, Chomaz L, Cai Z, Baranov M, Zoller P, Ferlaino F 2016 Science 352 201Google Scholar

    [148]

    Cinti F, Macr T, Lechner W, Pupillo G, Pohl T 2014 Nat. Commun. 5 3235Google Scholar

    [149]

    Seo B, Huang M, Chen Z, Parit M K, He Y, Chen P, Jo G B 2022 arXiv: 2210.01586 [cond-mat.quant-gas

    [150]

    Wu X, Wang Z, Yang F, Gao R, Liang C, Tey M K, Li X, Pohl T, You L 2023 arXiv: 2305.20070 [cond-mat.quant-gas

    [151]

    Li Y, Geißler A, Hofstetter W, Li W 2018 Phys. Rev. A 97 023619Google Scholar

    [152]

    Pupillo G, Micheli A, Boninsegni M, Lesanovsky I, Zoller P 2010 Phys. Rev. Lett. 104 223002Google Scholar

    [153]

    Guo Y, Kroeze R M, Marsh B P, Gopalakrishnan S, Keeling J, Lev B L 2021 Nature 599 211Google Scholar

    [154]

    Kroeze R M, Marsh B P, Lin K Y, Keeling J, Lev B L 2023 PRX Quantum 4 020326Google Scholar

    [155]

    Masalaeva N, Ritsch H, Mivehvar F 2023 arXiv: 2305.16244 [cond-mat.quant-gas

    [156]

    Gao P, Zhou Z W, Guo G C, Luo X W 2023 Phys. Rev. A 107 023311Google Scholar

    [157]

    Nie X, Zheng W 2023 Phys. Rev. A 107 033311Google Scholar

    [158]

    Fraxanet J, Dauphin A, Lewenstein M, et al. 2023 arXiv: 2305.03409 [cond-mat.quant-gas

    [159]

    Li H, Wu H, Zheng W, Yi W 2023 arXiv: 2305.03891 [cond-mat.quant-gas

    [160]

    Mivehvar F, Ritsch H, Piazza F 2016 Phys. Rev. Lett. 118 073602

    [161]

    Griesser T, Ritsch H 2011 Opt. Express 19 11242Google Scholar

    [162]

    Keßler H, Cosme J G, Hemmerling M, Mathey L, Hemmerich A 2019 Phys. Rev. A 99 053605Google Scholar

    [163]

    Kongkhambut P, Skulte J, Mathey L, Cosme J G, Hemmerich A, Keßler H 2022 Science 377 670Google Scholar

    [164]

    Dreon D, Baumgärtner A, Li X, Hertlein S, Esslinger T, Donner T 2022 Nature 608 494Google Scholar

    [165]

    Zupancic P, Dreon D, Li X, Baumgärtner A, et al. 2019 Phys. Rev. Lett. 123 233601Google Scholar

    [166]

    Li X, Dreon D, Zupancic P, et al. 2021 Phys. Rev. Research 3 L012024Google Scholar

    [167]

    Tan H, Han J, Zheng W, Yuan J, Li Y 2022 Phys. Rev. A 106 023315Google Scholar

    [168]

    Liu X J, Borunda M F, Liu X, Sinova J 2009 Phys. Rev. Lett. 102 046402Google Scholar

    [169]

    Liu X J, Law K T, Ng T K 2014 Phys. Rev. Lett. 112 086401Google Scholar

    [170]

    Liu X J, Liu Z X, Cheng M 2013 Phys. Rev. Lett. 110 076401Google Scholar

    [171]

    Dalibard J, Gerbier F, Juzeliūnas G, Öhberg P 2011 Rev. Mod. Phys. 83 1523Google Scholar

    [172]

    Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301Google Scholar

    [173]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302Google Scholar

    [174]

    DeMarco M, Pu H 2015 Phys. Rev. A 91 033630Google Scholar

    [175]

    Chen H R, Lin K Y, Chen P K, et al. 2018 Phys. Rev. Lett. 121 113204Google Scholar

    [176]

    Zhang D, Gao T, Zou P, et al. 2019 Phys. Rev. Lett. 122 110402Google Scholar

    [177]

    Chiu N C, Kawaguchi Y, Yip S K, Lin Y J 2020 New J. Phys. 22 093017Google Scholar

    [178]

    Chen X L, Peng S G, Zou P, Liu X J, Hu H 2020 Phys. Rev. Res. 2 033152Google Scholar

    [179]

    Chen K J, Wu F, Peng S G, Yi W, He L 2020 Phys. Rev. Lett. 125 260407Google Scholar

    [180]

    Chen K J, Wu F, Hu J, He L 2020 Phys. Rev. A 102 013316Google Scholar

    [181]

    Chen L, Pu H, Zhang Y 2016 Phys. Rev. A 93 013629Google Scholar

    [182]

    Wang L L, Ji A C, Sun Q, Li J 2021 Phys. Rev. Lett. 126 193401Google Scholar

    [183]

    Chen K J, Wu F, He L, Yi W 2022 Phys. Rev. Res. 4 033023Google Scholar

    [184]

    Cao R, Han J, Wu J, Yuan J, He L, Li Y 2022 Phys. Rev. A 105 063308Google Scholar

    [185]

    Zhai H 2015 Rep. Prog. Phys. 78 026001Google Scholar

    [186]

    Zhang L, Liu X J 2018 Synthetic Spin-Orbit Coupling in Cold Atoms (Singapore: World Scientific) pp1–87

    [187]

    Galitski V, Spielman I B 2013 Nature 494 49Google Scholar

    [188]

    Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, Pan J W 2016 Science 354 83Google Scholar

    [189]

    Huang L, Meng Z, Wang P, Peng P, Zhang S L, Chen L, Li D, Zhou Q, Zhang J 2016 Nat. Phys. 12 540Google Scholar

    [190]

    Wang Z Y, Cheng X C, Wang B Z, et al. 2021 Science 372 271Google Scholar

    [191]

    Ji Q, Zhang R, Zhang W 2020 Phys. Rev. A 102 063313Google Scholar

    [192]

    You J S, Liu I K, Wang D W, Gou S C, Wu C 2016 Phys. Rev. A 93 053623Google Scholar

    [193]

    Li X, Nan J, Pan X 2020 Phys. Rev. Lett. 125 263002Google Scholar

    [194]

    Li Y, Yuan J, Hemmerich A, Li X 2018 Phys. Rev. Lett. 121 093401Google Scholar

    [195]

    Semeghini G, Levine H, Keesling A, et al 2021 Science 374 1242Google Scholar

    [196]

    Balents L 2010 Nature 464 199Google Scholar

    [197]

    Nisoli C, Moessner R, Schiffer P 2013 Rev. Mod. Phys. 85 1473Google Scholar

    [198]

    Keselman A, Balents L, Starykh O A 2020 Phys. Rev. Lett. 125 187201Google Scholar

    [199]

    Hébert F, Cai Z, Rousseau V G, Wu C, Scalettar R T, Batrouni G G 2013 Phys. Rev. B 87 224505Google Scholar

    [200]

    Lewenstein M, Liu W V 2011 Nat. Phys. 7 101Google Scholar

    [201]

    Struck J, Ölschläger C, Targat R L, et al. 2011 Science 333 996Google Scholar

    [202]

    Li Y, Yuan J, Zhou X, Li X 2021 Phys. Rev. Res. 3 033274

  • [1] 冯曦曦, 陈文, 高先龙. 量子信息中的度量空间方法在准周期系统中的应用. 物理学报, 2024, 73(4): 040501. doi: 10.7498/aps.73.20231605
    [2] 赵秀琴, 张文慧, 王红梅. 非线性相互作用引起的双模Dicke模型的新奇量子相变. 物理学报, 2024, 73(16): 160302. doi: 10.7498/aps.73.20240665
    [3] 赵秀琴, 张文慧. 双模光机械腔中冷原子的量子相变和超辐射相塌缩. 物理学报, 2024, 73(24): 240301. doi: 10.7498/aps.73.20241103
    [4] 许霄琰. 强关联电子体系的量子蒙特卡罗计算. 物理学报, 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [5] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2022, 71(3): 030302. doi: 10.7498/aps.71.20211433
    [6] 尤冰凌, 刘雪莹, 成书杰, 王晨, 高先龙. Jaynes-Cummings晶格模型和Rabi晶格模型的量子相变. 物理学报, 2021, 70(10): 100201. doi: 10.7498/aps.70.20202066
    [7] 陈西浩, 夏继宏, 李孟辉, 翟福强, 朱广宇. 自旋-1/2量子罗盘链的量子相与相变. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211433
    [8] 刘彪, 周晓凡, 陈刚, 贾锁堂. 交错跃迁Hofstadter梯子的量子流相. 物理学报, 2020, 69(8): 080501. doi: 10.7498/aps.69.20191964
    [9] 陈爱民, 刘东昌, 段佳, 王洪雷, 相春环, 苏耀恒. 含有Dzyaloshinskii-Moriya相互作用的自旋1键交替海森伯模型的量子相变和拓扑序标度. 物理学报, 2020, 69(9): 090302. doi: 10.7498/aps.69.20191773
    [10] 陈西浩, 王秀娟. 一维扩展量子罗盘模型的拓扑序和量子相变. 物理学报, 2018, 67(19): 190301. doi: 10.7498/aps.67.20180855
    [11] 黄珊, 刘妮, 梁九卿. 光腔中两组分玻色-爱因斯坦凝聚体的受激辐射特性和量子相变. 物理学报, 2018, 67(18): 183701. doi: 10.7498/aps.67.20180971
    [12] 苏耀恒, 陈爱民, 王洪雷, 相春环. 一维自旋1键交替XXZ链中的量子纠缠和临界指数. 物理学报, 2017, 66(12): 120301. doi: 10.7498/aps.66.120301
    [13] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变. 物理学报, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [14] 俞立先, 梁奇锋, 汪丽蓉, 朱士群. 双模Dicke模型的一级量子相变. 物理学报, 2014, 63(13): 134204. doi: 10.7498/aps.63.134204
    [15] 刘妮. 激光驱动下腔与玻色-爱因斯坦凝聚中的量子相变. 物理学报, 2013, 62(1): 013402. doi: 10.7498/aps.62.013402
    [16] 单传家. 具有三体相互作用的自旋链系统中的几何相位与量子相变. 物理学报, 2012, 61(22): 220302. doi: 10.7498/aps.61.220302
    [17] 赵建辉, 王海涛. 应用多尺度纠缠重整化算法研究量子自旋系统的量子相变和基态纠缠. 物理学报, 2012, 61(21): 210502. doi: 10.7498/aps.61.210502
    [18] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. Co(S1-xSex)2系统中的铁磁量子相变. 物理学报, 2009, 58(2): 1195-1199. doi: 10.7498/aps.58.1195
    [19] 杨金虎, 王杭栋, 杜建华, 张瞩君, 方明虎. NiS2-xSex在x=1.00附近的反铁磁量子相变. 物理学报, 2008, 57(4): 2409-2414. doi: 10.7498/aps.57.2409
    [20] 石筑一, 童 红, 石筑亚, 张春梅, 赵行知, 倪绍勇. 转动诱发原子核量子相变的一种可能途径. 物理学报, 2007, 56(3): 1329-1333. doi: 10.7498/aps.56.1329
计量
  • 文章访问数:  5224
  • PDF下载量:  210
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-29
  • 修回日期:  2023-06-17
  • 上网日期:  2023-07-06
  • 刊出日期:  2023-09-20

/

返回文章
返回