搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铷簇同位素效应的量化研究

邸淑红 张阳 杨会静 崔乃忠 李艳坤 刘会媛 李伶利 石凤良 贾玉璇

引用本文:
Citation:

铷簇同位素效应的量化研究

邸淑红, 张阳, 杨会静, 崔乃忠, 李艳坤, 刘会媛, 李伶利, 石凤良, 贾玉璇

Quantitative study on isotope effect of rubidium clusters

Di Shu-Hong, Zhang Yang, Yang Hui-Jing, Cui Nai-Zhong, Li Yan-Kun, Liu Hui-Yuan, Li Ling-Li, Shi Feng-Liang, Jia Yu-Xuan
PDF
HTML
导出引用
  • 针对簇类同位素位移难以测定及其产生原因难以鉴别等问题, 本文运用光磁共振和热离解相结合的技术, 获得了气态Rb同位素原子簇87,85Rbn (n = 1, 2, ···, 13)两系列共振离解光谱、等数簇矩移、塞曼能移. 并对每个簇进行基于巨原子概念模型量化计算, 其结果与实测结果严格一致, 表明铷簇可以作为巨原子分析. 进一步运用铷簇塞曼能级间隔公式计算出87,85Rbn (n = 1, 2, 3, ···, 92) 5s电子壳层能级结构, 发现5s单电子壳层结构主要秩序和步距与钠簇的在球状对称势阱下3s单电子壳层结构相似, 证实铷簇5s单电子壳层结构可以由塞曼能级大能隙决定. 共振离解光谱的奇偶交替特性及其在特殊数(如n = 2)处的反常磁矩特征峰均是由价电子的内在性质和分子结构特性引起. 还发现87Rbn85Rbn的5s单电子壳层结构步调严格一致, 量值大小均有3/2比值关系, 且二者光谱中心频率及展宽存在反常差异, 可能与87, 85Rb的核素处于核壳层闭合面附近直接相关.
    Because of the difficulty in measuring the cluster isotope displacement and identifying its cause, the resonance dissociation spectra, the moment shift and Zeeman energy shift of isotope cluster 87,85Rbn (n = 1, 2, 3, ··· , 13) are obtained by the combination of optical magnetic resonance and thermal dissociation techniques in this study. The quantitative calculation is carried out based on the conceptual model of the giant atom, and the results are in excellent agreement with the measured results, which shows that rubidium clusters can be analyzed as giant atoms. Furthermore, 5s electron shell level structures of the rubidium cluster 87,85Rbn (n = 1, 2, 3, ··· , 92) are calculated by using Zeeman level interval model. It is found that the main order and step distance of the 5s electron shell structure are similar to those of 3s single electron shell structure of sodium cluster in spherical symmetry. It is confirmed that the structure of the 5s electron shell of the rubidium cluster is determined by the largest energy gap in total Zeeman levels and the characteristic peaks of odd and even alternating and anomalous magnetic moments of special numbers such as n = 2 are caused by the intrinsic properties of electrons and molecular structures. It is also found that 87Rbn level shell structure and 85Rbn level shell structure strictly conform to the ratio of 3/2 magnitude relationship, and that there are abnormal differences in spectral center frequency and broadening, which may be directly related to the 85,87Rb nuclei close to the shell closure.
      通信作者: 邸淑红, zhudizhe@163.com ; 张阳, 185540891@qq.com ; 杨会静, yanghj619@126.com
      Corresponding author: Di Shu-Hong, zhudizhe@163.com ; Zhang Yang, 185540891@qq.com ; Yang Hui-Jing, yanghj619@126.com
    [1]

    Makarov V I, Kochubei S A, Khmelinskii I V 2003 Chem. Phys. Lett. 376 230Google Scholar

    [2]

    DE Bievre P J, Debus G H 1965 Nucl. Instrum. Meth. 32 224Google Scholar

    [3]

    Bokhan P A, Buchanov V V, Zakrevskii D E, Kazaryan M A, Kalugin M M, Fateev N V 2003 J. Russ. Laser Res. 24 159

    [4]

    Macadam K B, Steibach A, Wieman C 1992 Am. J. Phys. 60 1098Google Scholar

    [5]

    Patrick H, Wieman C E 1991 Rev. Sci. Instrum. 62 2593Google Scholar

    [6]

    Lapitajs G, Hendrickx 1 F, Verbruggen A, Lamberty A 1996 Int. J. Mass. Spectyom. Ion. Proc. 152 69Google Scholar

    [7]

    Minster J F, Allegre C J 1976 Earth. Planet. Sc. Lett. 32 191Google Scholar

    [8]

    De Bievre P 1990 Fresen. J. Anal. Chem. 337 766Google Scholar

    [9]

    Waight T, Baker J, Willigers B 2002 Chem. Geol. 186 99Google Scholar

    [10]

    Nebel O, Mezger K, Scherer E E, Munker C 2005 Int. J. Mass. Spectrom. 246 10Google Scholar

    [11]

    Knight W D, Clemenger K, Walt A, Heer D, Saunders W A, Chou M Y, Cohen M L 1984 Phys. Rev. Lett. 52 2141Google Scholar

    [12]

    Saito S, Ohnishi S 1987 Physics and Chemistry of Small Clusters (New York: New York and London Published in Cooperation with NATO Scientific Affairs Division Plenum Press) p115

    [13]

    Nozue Y, Kodaira T, Ohwashi S, Togashi N, Terasaki O 1996 Surf. Rev. Lett. 3 701Google Scholar

    [14]

    Igarashi M, Kodaira T, Ikeda T, Itoh M, Shimizu T, Goto A , Nozue Y 2003 Physics B 327 72

    [15]

    邸淑红, 张阳, 杨会静, 伞星原, 刘会媛, 张素恒, 李繁麟, 太军君, 周春丽 2021 物理学报 70 122101Google Scholar

    Di S H, Zhang Y, Yang H J, San X Y, Liu H Y, Zhang S H, Li F L, Tai J J, Zhou C L 2021 Acta Phys. Sin. 70 122101Google Scholar

    [16]

    吴思成, 王祖铨1999近代物理实验 (北京: 北京大学出版社) 第348—358页

    Wu S C, Wang Z Q 1999 Modern Physics Experiment (Beijing: BeijingUniversity Press) pp348–358

    [17]

    格哈德 H (王鼎昌 译) 1983 分子光谱与分子结构(第1卷) (北京: 科学出版社) 第1—272页

    Gerhard H (translated by Wang D C)1983 Molecules Spectroscopy and Molecules Structures (Vol. 1) (Beijing: Science Press) pp1–272

    [18]

    周公度, 叶宪曾2012化学元素综论 (北京: 科学出版社) 第366页

    Zhou G D, Ye X Z 2012 Chemical Elements Survey (Beijing: Science Press) p366

    [19]

    Jahn H A, Teller E 1937 Proc. Roy. Soc. A 161 220

    [20]

    Jahn H A 1938 Proc. Roy. Soc. A 164 117

    [21]

    Kubo R 1962 J. Phys. Soc. Jpn. 17 975Google Scholar

    [22]

    关洪 2000 量子力学基础 (北京: 高等教育出版社) 第168—174页

    Guan H 2000 Basic Quantum Mechanics (Beijing: Higher Education Press) pp168–174

    [23]

    Ekstrom C, Ingelman S, Wannberg G, Skarestad M, 1978 Nucl. Phys. A 311 269Google Scholar

  • 图 1  (a), (b)实验测得的87Rbn, 85Rbn的8种簇粒子的共振频率$ \bar f $与磁场H0的关系曲线(1 G = 10–4 T)

    Fig. 1.  (a), (b) Relationship between the resonant frequency $ \bar f $ of 8 kinds of 87Rbn, 85Rbn cluster particles and the magnetic field H0

    图 2  (a), (b) 两系列同位素原子簇的87Rbn, 85Rbn (n = 1, 2, ···, 13)的共振离解光谱

    Fig. 2.  (a), (b) Resonance dissociation spectra of two series of isotopic atomic clusters 87Rbn, 85Rbn (n = 1, 2, ···, 13).

    图 3  等数簇矩移随n变化的模型值与实验值比较图(实验值用虚线, 模型值用实线)

    Fig. 3.  Comparison of calculated values and experimental values of magnetic moment shift of equal number cluster with n (dashed lines for experimental value, full lines for model value).

    图 4  等数簇超精细结构塞曼能移随n变化的模型值与实验值比较图(实验值用虚线, 模型值用实线)

    Fig. 4.  Comparison of calculated values and experimental values of Zeeman energy shift of equal-number hyperfine structures with n (dashed lines for experimental value, full lines for model value).

    图 5  (a) 87Rbn 5s电子壳层能级结构; (b) 85Rbn 5s电子壳层能级结构

    Fig. 5.   (a) 5s electron shell level structure of 87Rbn; (b) 5s electron shell level structure of 85Rbn.

    图 6  (a), (b) 87Rbn, 85Rbn同位素原子簇的相对频移图

    Fig. 6.  (a), (b) Diagrams of relative frequency shift of equal-number cluster 87Rbn, 85Rbn.

    表 1  实验测量的87Rbn, 85Rbn等数簇平均矩移和塞曼能移及光谱振幅

    Table 1.  Measured mean magnetic moment shifts, Zeeman energy shifts and spectrum amplitudes of 87Rbn, 85Rbn.

    87,85Rbn 5s
    电子数
    磁矩及矩移/μB 塞曼能移
    $ \Delta {\bar E_n}/{\mu _{\text{B}}}{H_0} $
    磁矩比
    $ {\bar \mu _{{87}n}}/{\bar \mu _{{85}n}} $
    塞曼能比
    $ {\bar E_{87 n}}/{\bar E_{85 n}} $
    光谱平均幅度/mV
    $ {\bar \mu _{87 n}} $ $ {\bar \mu _{85 n}} $ $ \Delta {\bar \mu _n} $ ${{{{\bar A}_{87n}}}} $ ${{{{\bar A}_{85n}}}} $ ${{{{\bar A}_{87n}}}}/ {{{{\bar A}_{85n}}}} $
    87,85Rb1 1 0.494337 0.330120 0.164217 0.164217 1.497446 1.497446 1574.50 1008.71 1.56∶1
    87,85Rb2 2 0.246984 0.164773 0.082211 0.082211 1.498935 1.498935 105.75 70.60 1.50∶1
    87,85Rb3 3 0.164598 0.109974 0.054624 0.054624 1.496699 1.496699 883.07 589.49 1.49∶1
    87,85Rb4 4 0 0 0 0 0 0 无共振
    87,85Rb5 5 0.098789 0.066044 0.032745 0.032745 1.495805 1.495805 383.47 354.10 1.08∶1
    87,85Rb6 6 0 0 0 0 0 0 无共振
    87,85Rb7 7 0.070635 0.047180 0.023455 0.023455 1.497139 1.497139 188.70 170.63 1.10∶1
    87,85Rb8 8 0 0 0 0 0 0 无共振
    87,85Rb9 9 0.054953 0.036718 0.018235 0.018235 1.496623 1.496623 84.92 79.59 1.06∶1
    87,85Rb10 10 0 0 0 0 0 0 无共振
    87,85Rb11 11 0.044975 0.030046 0.014929 0.014929 1.496871 1.496871 48.62 39.90 1.18∶1
    87,85Rb12 12 0 0 0 0 0 0 无共振
    87,85Rb13
    13 0.038060 0.025423 0.012637 0.012637 1.497070 1.497070 31.55 23.07 1.34∶1
    下载: 导出CSV

    表 2  87Rbn, 85Rbn双原子分子基态X和最低激发态A的电子组态和分子态项型表

    Table 2.  Electronic configuration and molecular state item type of 8 pairs of diatomic molecule 87Rbn , 85Rbn ground and lowest excited states.

    团簇分子,
    参考分子
    X组态和分子态及其$ {\lambda }_{合} $和s A组态和分子态及其$ {\lambda }_{合} $和s X与A 稳定性比较$ {p_{\text{a}}} - {p_{\text{b}}}$

    87,85Rb1
    $ \begin{array}{c}{\text{KLMNspd(σ}}_{\text{g}}\text{5s}), \\ {}^{2}\text{Σ}{}_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2\end{array} $ $ \begin{array}{c} \text{KLMNspd}({\text{π}}_{\text{u}}4\text{d}), \\ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1/2; \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1/2 \end{array} $
    87,85Rb2[17] $ \begin{array}{c}({\text{σ}}_{\text{g}}\text{5s})^{2}, {}^{1}\Sigma {}_{\text{g}}^{+}, {\lambda }_{合}=0, s=\text{0;}\\({\text{σ}}_{\text{g}}\text{5s)}{\text{(σ}}_{\text{u}}\text{5s)}, {}^{3}\Sigma {}_{\rm u}^{+}, \\{\lambda }_{合}=0, s=1\end{array} $ $ \begin{array}{c}{\text{(σ}}_{\text{g}}{\text{5s)(π}}_{\text{u}}\text{4d)}, {}^{1}\Pi_{\text{u}}, {\lambda }_{合}=1, s=0;\\或\; ({\text{σ}}_{\text{u}}{\text{5s)(π}}_{\text{u}}\text{4d)}, {}^{3}\Pi_{\text{g}},\\ {\lambda }_{合}=1, s=1\end{array} $ $ \begin{array}{l} {}\quad\;{\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1 - 0 = 1; \\ {}\quad\;{\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1 - 0 = 1 \\ 或\; {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1/2 - 1/2 = 0; \\ {}\quad\;{\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1/2 - 1/2 = 0\, \end{array} $
    87,85Rb3 $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{\text{(σ}}_{\text{u}}\text{5s)}, \\ {}^{2}\Sigma_{\text{u}}^{+}, {\lambda}_{合}=0, s=1/2\end{array} $ $ \begin{array}{c}{\text{(σ}}_{\text{g}}\text{5s)}{\text{(σ}}_{\text{u}}\text{5s)}{\text{(π}}_{\text{u}}\text{4d), }\\ {}^{2}\Pi_{\text{g}}^{}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1 - 1/2 = 1/2 \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1 - 1/2 = 1/2 \end{array} $
    87,85Rb5 $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{\text{(σ}}_{\text{g}}\text{4d), }\\ {}^{2}\Sigma_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{\text{(π}}_{\text{u}}\text{4d)}, \\ {}^{2}\Pi_{\text{u}}^{}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1\dfrac{1}{2} - 1 = 1/2 \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 1\dfrac{1}{2} - 1 = 1/2 \end{array} $

    87,85Rb7
    $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{\text{(π}}_{\text{u}}\text{4d)}, \\ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^1{{\text{(π}}_{\text{u}}}{\text{4d)}}^2, \\{}^{2}\Sigma_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2;\\ {}^{2}\Delta_{\text{g}}, {\lambda }_{合}=2, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 2\dfrac{1}{2} - 1 = 1\dfrac{1}{2} \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 2\dfrac{1}{2} - 1 = 1\dfrac{1}{2} \end{array} $

    87,85Rb9
    $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^3, \\ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^1{{\text{(π}}_{\text{u}}}{\text{4d)}}^4, \\ {}^{2}\Sigma_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2;\\ {}^{2}\Delta_{\text{g}}, {\lambda }_{合}=2, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 3\dfrac{1}{2} - 1 = 2\dfrac{1}{2} \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 3\dfrac{1}{2} - 1 = 2\dfrac{1}{2} \end{array} $
    87,85Rb11 $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^4{{\text{(π}}_{\text{g}}}{\text{4d)}}^1, \\ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^1{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^4{{\text{(π}}_{\text{g}}}{\text{4d)}}^2, \\ {}^{2}\Sigma_{\text{g}}^{+}, {\lambda }_{合}=0, s=1/2;\\ {}^{2}\Delta_{\text{g}}, {\lambda }_{合}=2, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 4 - 1\dfrac{1}{2} = 2\dfrac{1}{2} \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 4 - 1\dfrac{1}{2} = 2\dfrac{1}{2} \end{array} $
    87,85Rb13 $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^2{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^4{{\text{(π}}_{\text{g}}}{\text{4d)}}^3, \\ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2\end{array} $ $ \begin{array}{c}{{\text{(σ}}_{\text{g}}}{\text{5s)}}^2{{\text{(σ}}_{\text{u}}}{\text{5s)}}^1{{\text{(σ}}_{\text{g}}}{\text{4d)}}^2{{\text{(π}}_{\text{u}}}{\text{4d)}}^4{{\text{(π}}_{\text{g}}}{\text{4d)}}^4, \\ {}^{2}\Sigma_{\text{u}}, {\lambda }_{合}=0, s=1/2\end{array} $ $ \begin{array}{c} {\text{X:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 4 - 2\dfrac{1}{2} = 1\dfrac{1}{2} \\ {\text{A:}}\, {p_{\text{a}}} - {p_{\text{b}}} = 4 - 2\dfrac{1}{2} = 1\dfrac{1}{2} \end{array} $
    注: 表2中电子组态仅87,85Rb1的基态和激发态标出了闭壳层KLMNspd, 其他粒子没有重复标出闭壳层KLMNspd.
    下载: 导出CSV

    表 3  原子簇87Rbn磁矩和塞曼能级间隔模型与实验结果比较

    Table 3.  Comparison of experiment values and calculated values of magnetic moment and Zeeman energy level interval of 87Rbn atomic cluster.

    87Rbn 5s
    电子数
    分子态及本
    征值$ {\lambda }_{合} $和s
    模型
    F
    $ {\bar \mu _n}/{\mu _{\text{B}}} $ $ {\bar \mu _n} $相对
    误差/‰
    $ {\bar E_n}/{\mu _{\text{B}}}{H_0} $ $ {\bar E_n} $相对
    误差/‰
    模型 实验 模型 实验
    87Rb1 1 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 2 $ 1/2 $ 0.494337 –11.326 $ 1/2 $ 0.494337 –11.326
    87Rb2 2 $ {}^{3}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1 $ 4 $ 1/4 $ 0.246984 –12.064 $ 1/4 $ 0.246984 –12.064
    87Rb3 3 $ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2 $ 6 $ 1/6 $ 0.164598 –12.412 $ 1/6 $ 0.164598 –12.412
    87Rb5 5 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 10 $ 1/10 $ 0.098789 –12.110 $ 1/10 $ 0.098789 –12.110
    87Rb7 7 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 14 $ 1/14 $ 0.070635 –11.110 $ 1/14 $ 0.070635 –11.110
    87Rb9 9 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 18 $ 1/18 $ 0.054953 –10.846 $ 1/18 $ 0.054953 –10.846
    87Rb11 11 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 22 $ 1/22 $ 0.044975 –10.550 $ 1/22 $ 0.044975 –10.550
    87Rb13 13 $ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2 $ 26 $ 1/26 $ 0.038060 –10.440 $ 1/26 $ 0.038060 –10.440
    87Rb4,6,8,10,12 4, 6, 8, 10, 12 [19, 20, 21] 0 0 0 0 0 0
    平均值 –6.989 –6.989
    下载: 导出CSV

    表 4  85Rbn磁矩和塞曼能级间隔模型与实验结果比较

    Table 4.  Comparison of experiment values and calculated values of magnetic moment and Zeeman energy level interval of 85Rbn atomic cluster.

    85Rbn 5s
    电子数
    分子态及本
    征值$ {\lambda }_{合} $和s
    模型
    F
    $ {\bar \mu _n}/{\mu _{\text{B}}} $ $ {\bar \mu _n} $相对
    误差/‰
    $ {\bar E_n}/{\mu _{\text{B}}}{H_0} $ $ {\bar E_n} $相对
    误差/‰
    模型 实验 模型 实验
    85Rb1 1 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 3 1/3 0.330120 –9.640 1/3 0.330120 –9.640
    85Rb2 2 $ {}^{3}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1 $ 6 1/6 0.164773 –11.362 1/6 0.164773 –11.362
    85Rb3 3 $ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2 $ 9 1/9 0.109974 –10.234 1/9 0.109974 –10.234
    85Rb5 5 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 15 1/15 0.066044 –9.340 1/15 0.066044 –9.340
    85Rb7 7 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 21 1/21 0.047180 –9.220 1/21 0.047180 –9.220
    85Rb9 9 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 27 1/27 0.036718 –8.614 1/27 0.036718 –8.614
    85Rb11 11 $ {}^{2}\Pi_{\text{u}}, {\lambda }_{合}=1, s=1/2 $ 33 1/33 0.030046 –8.482 1/33 0.030046 –8.482
    85Rb13 13 $ {}^{2}\Pi_{\text{g}}, {\lambda }_{合}=1, s=1/2 $ 39 1/39 0.025423 –8.503 1/39 0.025423 –8.503
    85Rb4,6,8,10,12 4, 6, 8, 10, 12 [19, 20, 21] 0 0 0 0 0 0
    平均值 –5.800 –5.800
    下载: 导出CSV

    表 5  87Rbn85Rbn等数簇矩移模型与实验结果对比

    Table 5.  Comparison of experiment values and calculated values of magnetic moment shift interval of 87Rbn and 85Rbn.

    n $ {\bar \mu _n}/{\mu _{\text{B}}} $ 模型矩移
    $ \Delta {\bar \mu _n}/{\mu _{\text{B}}} $
    $ {\bar \mu _n}/{\mu _{\text{B}}} $ 实验矩移
    $ \Delta {\bar \mu _n}/{\mu _{\text{B}}} $
    相对误差/‰
    87Rbn 模型 85Rbn 模型 87Rbn 实验 85Rbn 实验
    1 1/2 1/3 1/6 0.494337 0.330120 0.164217 –14.698
    2 1/4 1/6 1/12 0.246984 0.164773 0.082211 –13.468
    3 1/6 1/9 1/18 0.164598 0.109974 0.054624 –16.768
    4 0 0 0 0 0 0 0
    5 1/10 1/15 1/30 0.098789 0.066044 0.032745 –17.65
    6 0 0 0 0 0 0 0
    7 1/14 1/21 1/42 0.070635 0.047180 0.023455 –14.89
    8 0 0 0 0 0 0 0
    9 1/18 1/27 1/54 0.054953 0.036718 0.018235 –15.31
    10 0 0 0 0 0 0 0
    11 1/22 1/33 1/66 0.044975 0.030046 0.014929 –14.686
    12 0 0 0 0 0 0 0
    13 1/26 1/39 1/78 0.038060 0.025423 0.012637 –14.314
    平均值 –9.368
    下载: 导出CSV

    表 6  87Rbn85Rbn等数簇塞曼能移实验与模型结果比较

    Table 6.  Comparison of experiment values and calculated values of Zeeman energy level shiift interval of 87Rbn and 85Rbn.

    n$ {\bar E_n}/{\mu _{\text{B}}}{H_0} $模型能移
    $\Delta {\bar E_n}/{\mu _{\text{B}}}{H_0} $
    $ {\bar E_n}/{\mu _{\text{B}}}{H_0} $实验能移
    $ \Delta{\bar E_n}/{\mu _{\text{B}}}{H_0} $
    相对误差/‰
    87Rbn 模型85Rbn 模型87Rbn 实验85Rbn 实验
    11/21/31/60.4943370.3301200.164217–14.698
    21/41/61/120.2469840.1647730.082211–13.468
    31/61/91/180.1645980.1099740.054624–16.768
    40000000
    51/101/151/300.0987890.0660440.032745–17.65
    60000000
    71/141/211/420.0706350.0471800.023455–14.89
    80000000
    91/181/271/540.0549530.0367180.018235–15.31
    100000000
    111/221/331/660.0449750.0300460.014929–14.686
    120000000
    131/261/391/780.0380600.0254230.012637–14.314
    平均值–9.368
    下载: 导出CSV

    表 7  实验测量 87Rbn, 85Rbn 光谱中心频率宽度与广泛成分平均宽度BC

    Table 7.  Spectral center frequency width CC and average width BC of 87Rbn, 85Rbn measured by experiments.

    n1579
    1/2 CC87/kHz78.5219.227.928.73
    1/2 CC85/kHz98.3424.8417.0612.41
    CC87/CC850.800.770.460.70
    BC87/kHz812.75167.60116.4089.10
    BC85/kHz510.55113.5174.3558.63
    BC87/BC851.591.471.571.48
    注: 实验测量的1/2 CC是共振峰的半峰高处左半部分对应的中心频率的展宽.
    下载: 导出CSV
  • [1]

    Makarov V I, Kochubei S A, Khmelinskii I V 2003 Chem. Phys. Lett. 376 230Google Scholar

    [2]

    DE Bievre P J, Debus G H 1965 Nucl. Instrum. Meth. 32 224Google Scholar

    [3]

    Bokhan P A, Buchanov V V, Zakrevskii D E, Kazaryan M A, Kalugin M M, Fateev N V 2003 J. Russ. Laser Res. 24 159

    [4]

    Macadam K B, Steibach A, Wieman C 1992 Am. J. Phys. 60 1098Google Scholar

    [5]

    Patrick H, Wieman C E 1991 Rev. Sci. Instrum. 62 2593Google Scholar

    [6]

    Lapitajs G, Hendrickx 1 F, Verbruggen A, Lamberty A 1996 Int. J. Mass. Spectyom. Ion. Proc. 152 69Google Scholar

    [7]

    Minster J F, Allegre C J 1976 Earth. Planet. Sc. Lett. 32 191Google Scholar

    [8]

    De Bievre P 1990 Fresen. J. Anal. Chem. 337 766Google Scholar

    [9]

    Waight T, Baker J, Willigers B 2002 Chem. Geol. 186 99Google Scholar

    [10]

    Nebel O, Mezger K, Scherer E E, Munker C 2005 Int. J. Mass. Spectrom. 246 10Google Scholar

    [11]

    Knight W D, Clemenger K, Walt A, Heer D, Saunders W A, Chou M Y, Cohen M L 1984 Phys. Rev. Lett. 52 2141Google Scholar

    [12]

    Saito S, Ohnishi S 1987 Physics and Chemistry of Small Clusters (New York: New York and London Published in Cooperation with NATO Scientific Affairs Division Plenum Press) p115

    [13]

    Nozue Y, Kodaira T, Ohwashi S, Togashi N, Terasaki O 1996 Surf. Rev. Lett. 3 701Google Scholar

    [14]

    Igarashi M, Kodaira T, Ikeda T, Itoh M, Shimizu T, Goto A , Nozue Y 2003 Physics B 327 72

    [15]

    邸淑红, 张阳, 杨会静, 伞星原, 刘会媛, 张素恒, 李繁麟, 太军君, 周春丽 2021 物理学报 70 122101Google Scholar

    Di S H, Zhang Y, Yang H J, San X Y, Liu H Y, Zhang S H, Li F L, Tai J J, Zhou C L 2021 Acta Phys. Sin. 70 122101Google Scholar

    [16]

    吴思成, 王祖铨1999近代物理实验 (北京: 北京大学出版社) 第348—358页

    Wu S C, Wang Z Q 1999 Modern Physics Experiment (Beijing: BeijingUniversity Press) pp348–358

    [17]

    格哈德 H (王鼎昌 译) 1983 分子光谱与分子结构(第1卷) (北京: 科学出版社) 第1—272页

    Gerhard H (translated by Wang D C)1983 Molecules Spectroscopy and Molecules Structures (Vol. 1) (Beijing: Science Press) pp1–272

    [18]

    周公度, 叶宪曾2012化学元素综论 (北京: 科学出版社) 第366页

    Zhou G D, Ye X Z 2012 Chemical Elements Survey (Beijing: Science Press) p366

    [19]

    Jahn H A, Teller E 1937 Proc. Roy. Soc. A 161 220

    [20]

    Jahn H A 1938 Proc. Roy. Soc. A 164 117

    [21]

    Kubo R 1962 J. Phys. Soc. Jpn. 17 975Google Scholar

    [22]

    关洪 2000 量子力学基础 (北京: 高等教育出版社) 第168—174页

    Guan H 2000 Basic Quantum Mechanics (Beijing: Higher Education Press) pp168–174

    [23]

    Ekstrom C, Ingelman S, Wannberg G, Skarestad M, 1978 Nucl. Phys. A 311 269Google Scholar

  • [1] 刘璇, 高腾, 解士杰. 有机半导体中极化子运动的同位素效应. 物理学报, 2020, 69(24): 246701. doi: 10.7498/aps.69.20200789
    [2] 李文涛, 于文涛, 姚明海. 采用量子含时波包方法研究H/D+Li2LiH/LiD+Li反应. 物理学报, 2018, 67(10): 103401. doi: 10.7498/aps.67.20180324
    [3] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江. 聚噻吩单链量子热输运的第一性原理研究. 物理学报, 2018, 67(2): 026501. doi: 10.7498/aps.67.20171198
    [4] 沈勇, 董家齐, 徐红兵. 托卡马克离子温度梯度湍流输运同位素定标修正中杂质的影响. 物理学报, 2018, 67(19): 195203. doi: 10.7498/aps.67.20180703
    [5] 吴宇, 蔡绍洪, 邓明森, 孙光宇, 刘文江, 岑超. 聚乙烯单链量子热输运的同位素效应. 物理学报, 2017, 66(11): 116501. doi: 10.7498/aps.66.116501
    [6] 王茗馨, 王美山, 杨传路, 刘佳, 马晓光, 王立志. 同位素效应对H+NH→N+H2反应的立体动力学性质的影响. 物理学报, 2015, 64(4): 043402. doi: 10.7498/aps.64.043402
    [7] 段志欣, 邱明辉, 姚翠霞. 采用量子波包方法和准经典轨线方法研究S(3P)+HD反应. 物理学报, 2014, 63(6): 063402. doi: 10.7498/aps.63.063402
    [8] 王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋. AsO+同位素离子X2+和A2电子态的多参考组态相互作用方法研究. 物理学报, 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [9] 孙继忠, 张治海, 刘升光, 王德真. 载能氢同位素原子与石墨(001)面碰撞的分子动力学研究. 物理学报, 2012, 61(5): 055201. doi: 10.7498/aps.61.055201
    [10] 夏文泽, 于永江, 杨传路. 同位素取代和碰撞能对N(4S)+H2反应立体动力学性质的影响. 物理学报, 2012, 61(22): 223401. doi: 10.7498/aps.61.223401
    [11] 刘慧, 邢伟, 施德恒, 朱遵略, 孙金锋. 用MRCI方法研究CS+同位素离子X2Σ+和A2Π态的光谱常数与分子常数. 物理学报, 2011, 60(4): 043102. doi: 10.7498/aps.60.043102
    [12] 令狐荣锋, 徐梅, 王晓璐, 吕兵, 杨向东. Ne原子与H2分子碰撞的同位素替代效应研究. 物理学报, 2010, 59(4): 2416-2422. doi: 10.7498/aps.59.2416
    [13] 许燕, 赵娟, 王军, 刘芳, 孟庆田. 碰撞能和同位素取代对H+BrF→HBr+F反应立体动力学影响的理论研究. 物理学报, 2010, 59(6): 3885-3891. doi: 10.7498/aps.59.3885
    [14] 余春日, 汪荣凯, 张杰, 杨向东. He同位素原子与HBr分子碰撞的微分截面. 物理学报, 2009, 58(1): 229-233. doi: 10.7498/aps.58.229
    [15] 圣宗强, 郭建友. 相对论平均场理论对Se,Kr,Sr和Zr同位素链形状共存的系统研究. 物理学报, 2008, 57(3): 1557-1563. doi: 10.7498/aps.57.1557
    [16] 罗文浪, 阮 文, 张 莉, 谢安东, 朱正和. 氢同位素氚水T2O(X1A1)的解析势能函数. 物理学报, 2008, 57(8): 4833-4839. doi: 10.7498/aps.57.4833
    [17] 汪荣凯, 沈光先, 宋晓书, 令狐荣锋, 杨向东. He同位素对He-NO碰撞体系微分截面的影响. 物理学报, 2008, 57(7): 4138-4142. doi: 10.7498/aps.57.4138
    [18] 张 莉, 朱正和, 杨本福, 龙兴贵, 罗顺忠. 氢同位素化合物TiH2,TiD2和TiT2的电子振动近似理论方法. 物理学报, 2006, 55(10): 5418-5423. doi: 10.7498/aps.55.5418
    [19] 郑里平, 张虎勇, 王庭太, 马余刚. PKA原子和SKA原子对同位素(溅射)富集度的贡献分析. 物理学报, 2004, 53(5): 1577-1582. doi: 10.7498/aps.53.1577
    [20] 李文飞, 张丰收, 陈列文. 化学不稳定性和同位素分布的同位旋效应. 物理学报, 2001, 50(6): 1040-1045. doi: 10.7498/aps.50.1040
计量
  • 文章访问数:  2984
  • PDF下载量:  45
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-14
  • 修回日期:  2023-07-02
  • 上网日期:  2023-07-18
  • 刊出日期:  2023-09-20

/

返回文章
返回