搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InP衬底上的双载流子倍增雪崩光电二极管结构设计

赵华良 彭红玲 周旭彦 张建心 牛博文 尚肖 王天财 曹澎

引用本文:
Citation:

InP衬底上的双载流子倍增雪崩光电二极管结构设计

赵华良, 彭红玲, 周旭彦, 张建心, 牛博文, 尚肖, 王天财, 曹澎

Structural design of dual carrier multiplication avalanche photodiodes on InP substrate

Zhao Hua-Liang, Peng Hong-Ling, Zhou Xu-Yan, Zhang Jian-Xin, Niu Bo-Wen, Shang Xiao, Wang Tian-Cai, Cao Peng
PDF
HTML
导出引用
  • 雪崩光电二极管因其具有高的倍增被广泛应用于光通信、激光雷达等各种领域, 为了适应极微弱信号探测应用场合, 需要器件获得更高的增益值. 当前雪崩光电二极管一般采用单载流子倍增方式工作, 其倍增效果有限. 本文设计了一种电子和空穴同时参与倍增的InP/In0.53Ga0.47As/In0.52Al0.48As雪崩光电二极管结构, 其中吸收层采用In0.53Ga0.47As材料, 空穴倍增层采用InP材料, 电子倍增层采用In0.52Al0.48As材料, 两个倍增层分布在吸收层的上下两侧. 采用Silvaco TCAD软件对此结构以及传统单倍增层结构进行了模拟仿真, 对比单InP倍增层结构和单In0.52Al0.48As倍增层结构, 双倍增层结构在95%击穿电压下的增益值分别约为前两者的2.3倍和2倍左右, 由于两种载流子在两个倍增层同时参与了倍增, 所以器件具有更大的增益值, 且暗电流并没有增加, 有望提高系统探测的灵敏度.
    Avalanche photodiodes are widely used in various fields, such as optical communication and laser radar, because of their high multiplication. In order to adapt to very weak signal detection applications, devices are required to have higher gain values. The existing avalanche photodiodes generally use single carrier multiplication mode of operation, its multiplication effect is limited. In this paper is designed an InP/In0.53Ga0.47As/In0.52Al0.48As avalanche photodiode structure with electrons and holes jointly involved in multiplication. In this structure, In0.53Ga0.47As material is used for the absorption layer, InP material is used for the hole multiplication layer, In0.52Al0.48As is used for the electron multiplication layer, and the two multiplication layers are distributed on the upper side and lower side of the absorber layer. Under the reverse bias, the photogenerated electrons and the absorber-layer generated holes can enter into the respective multiplier layers in different directions and create the avalanche multiplication effect, so that the carriers are fully utilized. This structure and the conventional single multiplication layer structure are simulated by Silvaco TCAD software. Comparing the single InP multiplication layer structure with the single In0.52Al0.48As multiplication layer structure, the gain value of the double multiplication layer structure at 95% breakdown voltage is about 2.3 times and about 2 times of the former two, respectively, and the device has a larger gain value because both carriers are involved in multiplication in both multiplication layers at the same time. The structure has a dark current of 1.5 nA at 95% breakdown voltage, which does not increase in comparison with the single multiplication layer structure, owing to the effective control of the electric field inside the structure by multiple charge layers. Therefore, this structure is expected to improve the detection sensitivity of the system.
      通信作者: 彭红玲, hlpeng@semi.ac.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFE0200900)资助的课题.
      Corresponding author: Peng Hong-Ling, hlpeng@semi.ac.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFE0200900).
    [1]

    Mccarthy A, Ren X, Della F A, Gemmell N R, Krichel N J, Scarcella C, Rugger A, Tosi A, Buller G S 2013 Opt. Express 21 22098Google Scholar

    [2]

    Bertone N, Clark W 2007 Laser Focus World 43 69

    [3]

    Mitra P, Beck J D, Skokan M R, Skokan M R, Robinson J E, Antoszewski J, Winchester K J, Keating A J, Nguyen T, Silva K, Musca C A, Dell J M, Faraone L 2006 SPIE Defense Commercial Sensing Orlando, United States, April 14–19, 2006 p70

    [4]

    Tosi A, Calandri N, Sanzaro M, Acerbi F 2014 IEEE J. Sel. Top. Quant. 20 192Google Scholar

    [5]

    Jiang X, Itzler M, O’Donnell K, Entwistle M, Owens M, Slomkowski K, Rangwala S S 2014 IEEE J. Sel. Top. Quant. 21 5Google Scholar

    [6]

    Lee C, Johnson B, Molnar A C 2015 App. Phys. Lett. 106 231105Google Scholar

    [7]

    Nishida K, Taguchi K, Matsumoto Y 1979 App. Phys. Lett. 35 251Google Scholar

    [8]

    Li J, Dehzangi A, Brown G J, Razeghi M 2021 Sci. Rep. 11 7104Google Scholar

    [9]

    Tarof L E 1990 IEEE Photonic. Tech. L. 2 643Google Scholar

    [10]

    Campbell J C, Dentai A G, Holden W S, Kasper B L 1983 Electron. Lett. 19 818Google Scholar

    [11]

    Matsushima Y, Akiba S, Sakai K, Kushiro Y, Noda Y, Utaka K 1982 Electron. Lett. 22 945Google Scholar

    [12]

    Capasso F, Cho A Y, Foy P W 1984 Electron. Lett. 20 635Google Scholar

    [13]

    Forrest S R, Kim O K, Smith R G 1982 App. Phys. Lett. 41 95Google Scholar

    [14]

    Ma C, Deen M J, Tarof L E 1995 IEEE Trans. Electron Devices 42 2070Google Scholar

    [15]

    Emmons R B 1967 J. Appl. Phys. 38 3705Google Scholar

    [16]

    Mcintyre R J 1966 IEEE Trans. Electron Devices 13 164Google Scholar

    [17]

    曾巧玉 2014 博士学位论文 (北京: 中国科学院大学)

    Zeng Q Y 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [18]

    吕粤希 2018 硕士学位论文 (北京: 中国科学院大学)

    Lü Y X 2018 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [19]

    Cook L W, Bulman G E, Stillman G E 1982 App. Phys. Lett. 40 589Google Scholar

    [20]

    Goh Y L, Massey D, Marshall A R, Ng J S, Tan C H, Ng W K, Rees G J, Hopkinson M, David J P, Jones S 2007 IEEE Trans. Electron Devices 54 11Google Scholar

    [21]

    Capasso F, Mohammed K, Alavi K, Cho A Y, Foy P W 1984 App. Phys. Lett. 45 968Google Scholar

    [22]

    Melchior H, Hartman A R, Schinke D P, Seidel T E 1978 Bell Syst. Tech. J. 57 1791Google Scholar

    [23]

    Li X, Bamiedakis N, Wei J L, Penty R V, White I H 2014 Conference on Lasers and Electro-Optics (CLEO)—Laser Science to Photonic Applications San Jose, United States, June 8–13, 2014 p1

    [24]

    Campbell J C 2004 IEEE J. Sel. Top. Quant. 10 777Google Scholar

    [25]

    Miller S L 1955 Phys. Rev. 99 1234Google Scholar

    [26]

    Ma C F, Deen M J, Tarof L E 1997 Adv. Imag. Elect. Phys. 99 65Google Scholar

    [27]

    Jones A H, March S D, Dadey A A, Muhowski A J, Bank S R, Campbell J C 2022 IEEE J. Quantum Electron. 58 1Google Scholar

    [28]

    Woodson M E, Ren M, Maddox S J, Chen Y, Bank S R, Campbell J C 2016 App. Phys. Lett. 108 081102Google Scholar

    [29]

    Huang J, Banerjee K, Ghosh S, Hayat M M 2013 IEEE Trans. Electron Devices 60 2296Google Scholar

    [30]

    Okuto Y, Crowell C R 1974 Phys. Rev. B 10 4284Google Scholar

    [31]

    谢生, 张帆, 毛陆虹 2022 华中科技大学学报(自然科学版) 5 1Google Scholar

    Xie S, Zhang F, Mao L H 2022 J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition) 5 1Google Scholar

    [32]

    Saleh M A, Hayat M M, Sotirelis P, Holmes A L, Campbell J C, Saleh B E, Teich M C 2001 IEEE Trans. Electron Devices 48 2722Google Scholar

    [33]

    李慧梅 2016 硕士学位论文 (北京: 中国科学院大学)

    Li H M 2016 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [34]

    Haško D, Kovác J, Uherek F, Škriniarová J, Jakabovic J, Peternai L 2006 Microelectron. J. 37 483Google Scholar

  • 图 1  双载流子倍增APD结构示意图

    Fig. 1.  Schematic diagram of double carrier multiplication APD structure.

    图 2  双载流子倍增APD能带示意图

    Fig. 2.  Band diagram of the double carrier multiplication APD.

    图 3  结构Ⅰ零偏压能带分布

    Fig. 3.  Energy band distribution under zero bias of structure I.

    图 4  结构Ⅰ在击穿电压下的电场分布

    Fig. 4.  Distribution of electric field at breakdown voltage for structure Ⅰ.

    图 5  结构Ⅰ在击穿电压下的电离系数分布

    Fig. 5.  Distribution of ionization coefficient at breakdown voltage for structure Ⅰ.

    图 6  结构Ⅰ的I-V特性与增益曲线

    Fig. 6.  Currrent-voltage characteristics and gain of the structure Ⅰ.

    图 7  不同反向偏压下结构Ⅰ的电场分布

    Fig. 7.  Electric field distribution of structure Ⅰ under the different reverse bias voltage.

    图 8  I-V特性与增益曲线 (a)结构Ⅱ; (b)结构Ⅲ

    Fig. 8.  Curve of I-V characteristics and gain: (a) Structure Ⅱ; (b) structure Ⅲ.

    图 9  简化的结构Ⅰ电场分布

    Fig. 9.  Electric field distribution of the simplified structure Ⅰ.

    表 1  InAlAs和InP碰撞电离系数的仿真参数

    Table 1.  Simulation parameters for the ionization coefficients of InAlAs and InP.

    材料 an/cm–1 ap/cm–1 bn/(V·cm–1) bp/(V·cm–1)
    InP 1.0×107 9.36×107 3.45×106 2.78×106
    InAlAs 6.2×107 1.00×106 4.00×106 4.00×106
    下载: 导出CSV

    表 2  三种结构特性对比

    Table 2.  Comparison of the characteristics of three structures.

    结构击穿电压/V暗电流/nA增益
    691.5(@66 V)35(@66 V)
    442.0(@42 V)15(@42 V)
    451.5(@43 V)18(@43 V)
    下载: 导出CSV
  • [1]

    Mccarthy A, Ren X, Della F A, Gemmell N R, Krichel N J, Scarcella C, Rugger A, Tosi A, Buller G S 2013 Opt. Express 21 22098Google Scholar

    [2]

    Bertone N, Clark W 2007 Laser Focus World 43 69

    [3]

    Mitra P, Beck J D, Skokan M R, Skokan M R, Robinson J E, Antoszewski J, Winchester K J, Keating A J, Nguyen T, Silva K, Musca C A, Dell J M, Faraone L 2006 SPIE Defense Commercial Sensing Orlando, United States, April 14–19, 2006 p70

    [4]

    Tosi A, Calandri N, Sanzaro M, Acerbi F 2014 IEEE J. Sel. Top. Quant. 20 192Google Scholar

    [5]

    Jiang X, Itzler M, O’Donnell K, Entwistle M, Owens M, Slomkowski K, Rangwala S S 2014 IEEE J. Sel. Top. Quant. 21 5Google Scholar

    [6]

    Lee C, Johnson B, Molnar A C 2015 App. Phys. Lett. 106 231105Google Scholar

    [7]

    Nishida K, Taguchi K, Matsumoto Y 1979 App. Phys. Lett. 35 251Google Scholar

    [8]

    Li J, Dehzangi A, Brown G J, Razeghi M 2021 Sci. Rep. 11 7104Google Scholar

    [9]

    Tarof L E 1990 IEEE Photonic. Tech. L. 2 643Google Scholar

    [10]

    Campbell J C, Dentai A G, Holden W S, Kasper B L 1983 Electron. Lett. 19 818Google Scholar

    [11]

    Matsushima Y, Akiba S, Sakai K, Kushiro Y, Noda Y, Utaka K 1982 Electron. Lett. 22 945Google Scholar

    [12]

    Capasso F, Cho A Y, Foy P W 1984 Electron. Lett. 20 635Google Scholar

    [13]

    Forrest S R, Kim O K, Smith R G 1982 App. Phys. Lett. 41 95Google Scholar

    [14]

    Ma C, Deen M J, Tarof L E 1995 IEEE Trans. Electron Devices 42 2070Google Scholar

    [15]

    Emmons R B 1967 J. Appl. Phys. 38 3705Google Scholar

    [16]

    Mcintyre R J 1966 IEEE Trans. Electron Devices 13 164Google Scholar

    [17]

    曾巧玉 2014 博士学位论文 (北京: 中国科学院大学)

    Zeng Q Y 2014 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences

    [18]

    吕粤希 2018 硕士学位论文 (北京: 中国科学院大学)

    Lü Y X 2018 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [19]

    Cook L W, Bulman G E, Stillman G E 1982 App. Phys. Lett. 40 589Google Scholar

    [20]

    Goh Y L, Massey D, Marshall A R, Ng J S, Tan C H, Ng W K, Rees G J, Hopkinson M, David J P, Jones S 2007 IEEE Trans. Electron Devices 54 11Google Scholar

    [21]

    Capasso F, Mohammed K, Alavi K, Cho A Y, Foy P W 1984 App. Phys. Lett. 45 968Google Scholar

    [22]

    Melchior H, Hartman A R, Schinke D P, Seidel T E 1978 Bell Syst. Tech. J. 57 1791Google Scholar

    [23]

    Li X, Bamiedakis N, Wei J L, Penty R V, White I H 2014 Conference on Lasers and Electro-Optics (CLEO)—Laser Science to Photonic Applications San Jose, United States, June 8–13, 2014 p1

    [24]

    Campbell J C 2004 IEEE J. Sel. Top. Quant. 10 777Google Scholar

    [25]

    Miller S L 1955 Phys. Rev. 99 1234Google Scholar

    [26]

    Ma C F, Deen M J, Tarof L E 1997 Adv. Imag. Elect. Phys. 99 65Google Scholar

    [27]

    Jones A H, March S D, Dadey A A, Muhowski A J, Bank S R, Campbell J C 2022 IEEE J. Quantum Electron. 58 1Google Scholar

    [28]

    Woodson M E, Ren M, Maddox S J, Chen Y, Bank S R, Campbell J C 2016 App. Phys. Lett. 108 081102Google Scholar

    [29]

    Huang J, Banerjee K, Ghosh S, Hayat M M 2013 IEEE Trans. Electron Devices 60 2296Google Scholar

    [30]

    Okuto Y, Crowell C R 1974 Phys. Rev. B 10 4284Google Scholar

    [31]

    谢生, 张帆, 毛陆虹 2022 华中科技大学学报(自然科学版) 5 1Google Scholar

    Xie S, Zhang F, Mao L H 2022 J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition) 5 1Google Scholar

    [32]

    Saleh M A, Hayat M M, Sotirelis P, Holmes A L, Campbell J C, Saleh B E, Teich M C 2001 IEEE Trans. Electron Devices 48 2722Google Scholar

    [33]

    李慧梅 2016 硕士学位论文 (北京: 中国科学院大学)

    Li H M 2016 M. S. Thesis (Beijing: University of Chinese Academy of Sciences

    [34]

    Haško D, Kovác J, Uherek F, Škriniarová J, Jakabovic J, Peternai L 2006 Microelectron. J. 37 483Google Scholar

  • [1] 吴琛怡, 汪琳莉, 施皓天, 王煜蓉, 潘海峰, 李召辉, 吴光. 百微米精度的单光子测距. 物理学报, 2021, 70(17): 174201. doi: 10.7498/aps.70.20210184
    [2] 许锦, 郭洋宁, 罗宁宁, 李淑静, 史久林, 何兴道. 水体参数对受激布里渊散射阈值及增益的影响. 物理学报, 2021, 70(15): 154205. doi: 10.7498/aps.70.20210326
    [3] 张海燕, 汪琳莉, 吴琛怡, 王煜蓉, 杨雷, 潘海峰, 刘巧莉, 郭霞, 汤凯, 张忠萍, 吴光. 高时间稳定性的雪崩光电二极管单光子探测器. 物理学报, 2020, 69(7): 074204. doi: 10.7498/aps.69.20191875
    [4] 王云新, 李虹历, 王大勇, 李静楠, 钟欣, 周涛, 杨登才, 戎路. 基于双平行马赫-曾德尔调制器的大动态范围微波光子下变频方法. 物理学报, 2017, 66(9): 098401. doi: 10.7498/aps.66.098401
    [5] 张余炼, 祁辉荣, 胡碧涛, 温志文, 王海云, 欧阳群, 陈元柏, 张建. 基于复合结构的气体电子倍增器增益模拟和实验研究. 物理学报, 2017, 66(14): 142901. doi: 10.7498/aps.66.142901
    [6] 张逸伦, 蓝天, 高明光, 赵涛, 沈振民. 二级级联式室内可见光通信光学接收天线设计. 物理学报, 2015, 64(16): 164201. doi: 10.7498/aps.64.164201
    [7] 牛德智, 陈长兴, 班斐, 徐浩翔, 李永宾, 王卓, 任晓岳, 陈强. Duffing振子微弱信号检测盲区消除及检测统计量构造. 物理学报, 2015, 64(6): 060503. doi: 10.7498/aps.64.060503
    [8] 沈云, 傅继武, 于国萍. 增益对一维周期结构慢光传输特性影响. 物理学报, 2014, 63(17): 174202. doi: 10.7498/aps.63.174202
    [9] 刘亚青, 张玉萍, 张会云, 吕欢欢, 李彤彤, 任广军. 光抽运多层石墨烯太赫兹表面等离子体增益特性的研究. 物理学报, 2014, 63(7): 075201. doi: 10.7498/aps.63.075201
    [10] 张宣妮, 张淳民, 艾晶晶. 四分束风成像偏振干涉仪信噪比的研究. 物理学报, 2013, 62(3): 030701. doi: 10.7498/aps.62.030701
    [11] 田祥友, 冷永刚, 范胜波. 一阶线性系统的调参随机共振研究. 物理学报, 2013, 62(2): 020505. doi: 10.7498/aps.62.020505
    [12] 李晓莉, 尚雅轩, 孙江. 射频驱动下电磁诱导透明窗口的分裂和增益的出现. 物理学报, 2013, 62(6): 064202. doi: 10.7498/aps.62.064202
    [13] 许雪梅, 戴鹏, 杨兵初, 尹林子, 曹建, 丁一鹏, 曹粲. 光声池中微弱光声信号检测. 物理学报, 2013, 62(20): 204303. doi: 10.7498/aps.62.204303
    [14] 范胜男, 王波, 祁辉荣, 刘梅, 张余炼, 张建, 刘荣光, 伊福廷, 欧阳群, 陈元柏. 高增益型气体电子倍增微网结构探测器的性能研究. 物理学报, 2013, 62(12): 122901. doi: 10.7498/aps.62.122901
    [15] 郑奎松, 吴昌英, 万国宾, 韦高. 复合左右手技术的二元阵天线的计算及测量. 物理学报, 2011, 60(5): 054104. doi: 10.7498/aps.60.054104
    [16] 贺静波, 刘忠, 胡生亮. 基于海杂波散射特性的微弱信号检测方法. 物理学报, 2011, 60(11): 110208. doi: 10.7498/aps.60.110208
    [17] 程楠, 黄刚锋, 王金东, 魏正军, 郭健平, 廖常俊, 刘颂豪. 同轴电缆反射方案单光子探测器的特性研究. 物理学报, 2010, 59(8): 5338-5344. doi: 10.7498/aps.59.5338
    [18] 邵公望, 戴亚军, 金国良. 抽运光与信号光的光强重叠因子和掺铒玻璃波导放大器的增益特性. 物理学报, 2009, 58(4): 2488-2494. doi: 10.7498/aps.58.2488
    [19] 张小东, 杨贺润, 段利敏, 徐瑚珊, 胡碧涛, 李春艳, 李祖玉. Micromegas探测器计数曲线、增益以及能量分辨特性的研究. 物理学报, 2008, 57(4): 2141-2144. doi: 10.7498/aps.57.2141
    [20] 姜永亮, 赵保真, 梁晓燕, 冷雨欣, 李儒新, 徐至展, 胡小鹏, 祝世宁. 基于周期极化LiTaO3晶体的高增益简并啁啾脉冲参量放大. 物理学报, 2007, 56(5): 2709-2713. doi: 10.7498/aps.56.2709
计量
  • 文章访问数:  3145
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-29
  • 修回日期:  2023-07-28
  • 上网日期:  2023-08-02
  • 刊出日期:  2023-10-05

/

返回文章
返回