搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于反铁磁的无外场辅助自旋轨道矩磁隧道结模型分析

王可欣 粟傈 童良乐

引用本文:
Citation:

基于反铁磁的无外场辅助自旋轨道矩磁隧道结模型分析

王可欣, 粟傈, 童良乐

Analysis of spin-orbit torque magnetic tunnel junction model without external magnetic field assistance based on antiferromagnetism

Wang Ke-Xin, Su Li, Tong Liang-Le
PDF
HTML
导出引用
  • 自旋轨道转矩(spin-orbit torque, SOT)为超低功耗自旋电子器件提供新的实现方法, 在反铁磁材料体系中面内交换偏置场可辅助SOT磁化翻转, 同时利用电压调控磁各向异性(voltage-controlled magnetic anisotropy, VCMA)能有效降低翻转势垒, 从而实现无外场辅助的磁隧道结. 本文通过求解修正Landau-Lifshitz-Gilbert (LLG)方程, 建立反铁磁/铁磁/氧化物构成的无外场辅助自旋轨道矩的磁隧道结模型, 并对其磁化动力学过程进行分析. 以IrMn/CoFeB/MgO材料体系为例, 揭示了影响磁化翻转的因素, 包括交换偏置(exchange bias, EB)效应对临界翻转电流$ {I_{{\text{SOT}}}} $的影响, VCMA效应和SOT类场转矩的影响机制; 分析了实际应用中磁隧道结制作工艺偏差的影响. 结果表明: EB效应与VCMA效应共同作用能极大降低临界翻转电流$ {I_{{\text{SOT}}}} $, 从而实现完全无场开关切换; SOT类场转矩对磁化翻转起主导作用, 且一定条件下可实现器件在ps量级的无场翻转; 以及当氧化层厚度偏差$ {\gamma _{{\text{tf}}}} \leqslant 10\% $或自由层厚度偏差$ {\gamma _{{\text{tox}}}} \leqslant 13\% $时MTJ能实现有效切换. 基于反铁磁的无场辅助自旋轨道矩器件将为新一代超低功耗、超高速度和超高集成度器件和电路提供极具前景的解决方案.
    The effect of spin-orbit torque (SOT) provides a new method of implementing ultra-low power spintronic devices. The in-plane exchange bias (EB) field in antiferromagnetic material can effectively assist SOT magnetization switching. Meanwhile, the utilization of voltage-controlled magnetic anisotropy (VCMA) can effectively reduce the switching barrier. Taking advantage of the EB and VCMA effect, it is possible to realize SOT magnetic tunnel junctions without external field assistance. In this work, a spin-orbit torque magnetic tunnel junction model composed of antiferromagnetic/ferromagnetism/oxides without external magnetic field is developed by solving the modified Landau-Lifshitz-Gilbert (LLG) modular equation, and its magnetization dynamics is analyzed and studied. The effective fields in the model include the demagnetization field, thermal noise field, perpendicular magnetic anisotropy field with VCMA effect, and exchange bias field. Taking IrMn/CoFeB/MgO material system for example, the factors affecting the precession of magnetization are investigated, such as the effect of the exchange bias field, the VCMA effect and the mechanism of SOT field-like torque. Considering the practical applications, the effect of the deviation of the fabrication process of magnetic tunnel junctions is also analyzed. The simulation results demonstrate that the combined effect of $ {{\boldsymbol{H}}_{{\text{EB}}}} $ with VCMA effect can greatly reduce the critical ISOT, thus assisting and realizing the complete field-free magnetization reversal; the SOT field-like torque plays a dominant role in realizing the magnetization reversal, and by adjusting the ratio of the SOT field-like torque to the damping-like torque, field free switching can be realized in the device at the ps grade ; and the MTJ can realize effective switching when the deviation of oxide thickness $ {\gamma _{{\text{tf}}}} \leqslant 10{\text{%}} $ or the deviation of free layer thickness $ {\gamma _{{\text{tox}}}} \leqslant 13{\text{%}}$. Spin-orbit torque devices based on the antiferromagnetic without external magnetic field will provide highly promising solutions for a new-generation ultra-low power, ultra-high speed, and ultra-high integration devices and circuits.
      通信作者: 粟傈, li.su@cnu.edu.cn
    • 基金项目: 北京市自然科学基金(批准号: 4194073)、北京市科技计划(批准号: KM202110028010)和北京市优秀人才培养资助青年骨干个人项目(批准号: 2018000020124G124)资助的课题.
      Corresponding author: Su Li, li.su@cnu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 4194073), the Science and Technology Plan General Project of Beijing, China (Grant No. KM202110028010), the Outstanding Talent Cultivation Funding for Young Backbone Individual Project and Organization Department of Beijing Municipal Committee, China (Grant No. 2018000020124G124).
    [1]

    Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S N 2017 Mater. Today 20 530Google Scholar

    [2]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [3]

    Berger L 1992 J. Appl. Phys. 71 2721Google Scholar

    [4]

    Wang Z H, Zhou H C, Wang M X, Cai W L, Zhu D Q, Klein J O, Zhao W S 2019 IEEE Electr. Device L. 40 726Google Scholar

    [5]

    Fong B, Fong A C M, Hong G Y, Ryu H 2005 IEEE Antenn. Wirel. Pr. 4 20Google Scholar

    [6]

    Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garrello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004Google Scholar

    [7]

    粟傈, 童良乐, 李晴, 王可欣 2023 电子元件与材料 42 127Google Scholar

    Su L, Tong L L, Li Q, Wang K X 2023 Electr. Comp. Mater. 42 127Google Scholar

    [8]

    Zhou J, Shu X Y, Liu Y H, Wang X, Lin W N, Chen S H, Liu L, Xie Q D, Hong T, Yang P, Yan B H, Han X F, Chen J S 2020 Phys. Rev. B 101 184403Google Scholar

    [9]

    Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B, Jungwirth T 2011 Nat. Mater. 10 347Google Scholar

    [10]

    Lau Y C, Betto D, Rode K, Coey, J M D, Stamenov P 2016 Nat. Nanotechnol. 11 758Google Scholar

    [11]

    Liu Y, Zhou B, Zhu J G 2019 Sci. Rep. UK 9 325Google Scholar

    [12]

    Wang M X, Zhou J, Xu X G, Zhang T Z, Zhu Z Q, Guo Z X, Deng Y B, Yang M, Meng K K, He B, Li J L, Yu G Q, Zhu T, Li A, Han X D, Jiang Y 2023 Nat. Commun. 14 2871Google Scholar

    [13]

    Lin P H, Yang B Y, Tsai M H, Chen P C, Huang K F, Lin H H, La C H 2019 Nat. Mater. 18 335Google Scholar

    [14]

    Kim H J, Je S G, Jung D H, Lee K S, Hong J I 2019 Appl. Phys. Lett. 115 022401Google Scholar

    [15]

    Amiri P K, Alzate J G, Cai X Q, Ebrahim F, Hu Q, Wong K, Grèzes C, Lee H, Yu G Q, Li X, Akyol M, Shao Q M, Katine J A, Langer J, Ocker B, Wang K L 2015 IEEE T. Magn. 51 1Google Scholar

    [16]

    Wang W G, Li M, Hageman S, Chien C L 2012 Nat. Mater. 11 64Google Scholar

    [17]

    Alzate J G, Amiri P K, Upadhyaya P, Cherepov S S, Zhu J, Lewis M, Dorrance R, Katine J A, Langer J, Galatsis K, Markovic D, Krivorotov I, Wang K L 2012 IEEE IEDM San Francisco, CA, USA, December 10–13, 1999 p29.5. 1

    [18]

    Zhang H, Kang W, Wang L, Wang K L, Zhao W 2017 IEEE T Electron. Dev. 64 4295Google Scholar

    [19]

    Inokuchi T, Yoda H, Kato Y, Shimizu M, Shirotori S, Shimomura N, Koi K, Kamiguchi Y, Sugiyama H, Oikawa S, Ikegami K, Ishikawa M, Altansargai B, Tiwari A, Ohsawa Y, Saito Y, Kurobe A 2017 Appl. Phys. Lett. 110 1

    [20]

    Lee K, Kan J, Kang S H 2017 US Patent 9 589 619

    [21]

    Zhang K L, Zhang D M, Wang C Z, Zeng L, Wang Y, Zhao W S 2020 IEEE Access. 8 50792Google Scholar

    [22]

    Wang Y, Cai H, Naviner L A B, Zhao X X, Zhang Y, Slimani M, Klein J O, Zhao W S 2016 Microelectron. Reliab. 64 26Google Scholar

    [23]

    Meng H, Lum W H, Sbiaa R, Lua S Y H, Tan H K 2011 J. Appl. Phys. 110 033904Google Scholar

    [24]

    Jeong J, Endoh T 2017 Jpn. J. Appl. Phys. 56 04CE09Google Scholar

    [25]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [26]

    Kazemi M, Rowlands G E, Ipek E, Buhrman R A, Friedman E G 2016 IEEE T. Electron. Dev. 63 848Google Scholar

    [27]

    Lee H, Lee A, Wang S D, Ebrahimi F, Gupta P, Amiri P K, Wang K L 2018 IEEE T. Magn. 54 1Google Scholar

    [28]

    Kang W, Ran Y, Zhang Y G, Lü W F, Zhao W S 2017 IEEE T. Nanotechnol. 16 387Google Scholar

    [29]

    王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌 2023 物理学报 72 087202Google Scholar

    Wang R X, Zeng Y H, Zhao J L, Li L, Xiao Y C 2023 Acta Phys. Sin. 72 087202Google Scholar

    [30]

    Legrand W, Ramaswamy R, Mishra R, Yang H 2015 Phys. Rev. Appl. 3 064012Google Scholar

    [31]

    金冬月, 陈虎, 王佑, 张万荣, 那伟聪, 郭斌, 吴玲, 杨绍萌, 孙晟 2020 物理学报 69 198502Google Scholar

    Jin D Y, Chen H, Wang Y, Zhang W R, Na W C, Guo B, Wu L, Yang S M, Sun S 2020 Acta Phys. Sin. 69 198502Google Scholar

    [32]

    金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣 2022 物理学报 71 107501Google Scholar

    Jin D Y, Cao L M, Wang Y, Jia X X, Pan Y A, Zhou Y X, Lei X, Liu Y Y, Yang Y Q, Zhang W R 2022 Acta Phys. Sin. 71 107501Google Scholar

    [33]

    Rata A D, Braak H, Bürgler D E, Schneider C M 2007 Appl. Phys. Lett. 90 162512Google Scholar

    [34]

    Gajek M, Nowak J J, Sun J Z, Trouilloud P L, O’ sullivan E J, Abraham D W, Gaidis M C, Hu G, Brown S, Zhu Y, Robertazzi R P, Gallagher W J, Worledge D C 2012 Appl. Phys. Lett. 100 132408Google Scholar

  • 图 1  (a) VCSOT-MTJ器件基本结构图; (b) 外加电压(Vb)对能量势垒(Eb)的影响

    Fig. 1.  (a) Basic schematic structure of VCSOT-MTJ device; (b) effect of applied voltage (Vb) on energy potential barrier (Eb).

    图 2  (a) AP态切换到P态器件外加电压随时间的变化; (b) $ {t}_{0}<t\leqslant {t}_{1} $磁化翻转示意图; (c) $ {t}_{1}<t\leqslant {t}_{2} $磁化翻转示意图; (d) $ {t}_{2}< $$ t\leqslant {t}_{3} $磁化翻转示意图

    Fig. 2.  (a) Change of the applied voltage of a device from AP state to P state with time; (b) schematic diagram of magnetization reversal during $ {t}_{0}<t\leqslant {t}_{1} $; (c) schematic diagram of magnetization reversal during $ {t}_{1}<t\leqslant {t}_{2} $; (c) schematic diagram of magnetization reversal during $ {t}_{2}<t\leqslant {t}_{3} $

    图 3  (a) AP状态下$ {\boldsymbol{H}}_{{\text{EFF}}}' $在坐标轴的分量; (b)不同$ {{\boldsymbol{H}}_{{\text{EB}}}} $下的临界$ {I_{{\text{SOT}}}} $

    Fig. 3.  (a) Component of $ {\boldsymbol{H}}_{{\text{EFF}}}' $ on the coordinate axis in AP state; (b) critical $ {I_{{\text{SOT}}}} $ under different $ {{\boldsymbol{H}}}_{{\text{EB}}} $.

    图 4  VCSOT-MTJ磁化状态随时间的变化曲线

    Fig. 4.  Magnetization state over time of VCSOT-MTJ.

    图 5  (a) VCSOT-MTJ在不同$ {{\boldsymbol{H}}_{{\text{EB}}}} $下改变V1的临界$ {I_{{\text{SOT}}}} $; (b)截取部分临界$ {I_{{\text{SOT}}}} $下降趋势

    Fig. 5.  (a) Critical $ {I_{{\text{SOT}}}} $ of VCSOT-MTJ under different $ {{\boldsymbol{H}}_{{\text{EB}}}} $ and V1; (b) intercepted part of the critical $ {I_{{\text{SOT}}}} $ downward trend.

    图 6  (a) SOT类场转矩与类阻尼转矩不同比值下mz随时间变化; (b)考虑SOT类场转矩的ps级磁化翻转

    Fig. 6.  (a) Time evolutions of magnetization mz with different damping-like torque and field-like toque; (b) consideration of SOT field-like torque for ps-level magnetization switching.

    图 7  VCSOT-MTJ状态切换的影响因素 (a) V1, V3$ {\gamma _{{\text{tf}}}} $; (b) V1, V3$ {\gamma _{{\text{tox}}}} $

    Fig. 7.  Factors affecting on the state switching of VCSOT-MTJ: (a) V1, V3 and $ {\gamma _{{\text{tf}}}} $; (b) V1, V3 and $ {\gamma _{{\text{tox}}}} $.

    图 8  刻蚀偏差对VCSOT-MTJ磁化翻转的影响

    Fig. 8.  Effect of etching deviation on the magnetization direction switching of VCSOT-MTJ.

    表 1  VCSOT-MTJ模型部分参数

    Table 1.  Partial parameters of the VCSOT-MTJ model.

    参数 符号 默认值
    饱和磁化强度 $ {M_{\text{s}}} $ $ 0.625 \times {10^6}~{\rm A}{\text{/m}} $
    垂直磁各向异性系数 $ {K_{\text{i}}} $ $ 3.2 \times {10^{{{ - }}4}}~{\text{J/}}{{\text{m}}^{2}} $
    MTJ直径 $ D $ 50 nm
    VCMA系数 $ \beta $ $ 60~ {\text{fJ/(V}}{\cdot}{\text{m)}} $
    自旋极化率 $ P $ $ 0.58 $
    温度 $ T $ 300 K
    氧化层厚度值 $ {t_{{\text{ox}}}} $ 1.4 nm
    自由层厚度值 $ {t_{\text{f}}} $ 1.1 nm
    自旋霍尔角 $ {\theta _{{\text{SH}}}} $ $ 0.25 $
    $ H_{{\text{STT}}}^{{\text{FL}}} $与$ H_{{\text{STT}}}^{{\text{DL}}} $比值 $ {\xi _1} $ $ 0 $
    $ H_{{\text{SOT}}}^{{\text{FL}}} $与$ H_{{\text{SOT}}}^{{\text{DL}}} $比值 $ {\xi _2} $ $ 0 $
    AFM材料长, 宽, 高 $ {L_{{\text{AFM}}}}, {W_{{\text{AFM}}}}, {T_{{\text{AFM}}}} $ $ 60\,{\text{nm,}}\;{50}\,{\text{nm,}}\;{3}\,{\text{nm}} $
    AFM电阻率 $ {\rho _{{\text{AFM}}}} $ $ 2.78 \times {10^{{{-}}6}}\;\Omega{\cdot}{\text{m}} $
    下载: 导出CSV
  • [1]

    Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S N 2017 Mater. Today 20 530Google Scholar

    [2]

    Slonczewski J C 1996 J. Magn. Magn. Mater. 159 L1Google Scholar

    [3]

    Berger L 1992 J. Appl. Phys. 71 2721Google Scholar

    [4]

    Wang Z H, Zhou H C, Wang M X, Cai W L, Zhu D Q, Klein J O, Zhao W S 2019 IEEE Electr. Device L. 40 726Google Scholar

    [5]

    Fong B, Fong A C M, Hong G Y, Ryu H 2005 IEEE Antenn. Wirel. Pr. 4 20Google Scholar

    [6]

    Manchon A, Železný J, Miron I M, Jungwirth T, Sinova J, Thiaville A, Garrello K, Gambardella P 2019 Rev. Mod. Phys. 91 035004Google Scholar

    [7]

    粟傈, 童良乐, 李晴, 王可欣 2023 电子元件与材料 42 127Google Scholar

    Su L, Tong L L, Li Q, Wang K X 2023 Electr. Comp. Mater. 42 127Google Scholar

    [8]

    Zhou J, Shu X Y, Liu Y H, Wang X, Lin W N, Chen S H, Liu L, Xie Q D, Hong T, Yang P, Yan B H, Han X F, Chen J S 2020 Phys. Rev. B 101 184403Google Scholar

    [9]

    Park B G, Wunderlich J, Martí X, Holý V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B, Jungwirth T 2011 Nat. Mater. 10 347Google Scholar

    [10]

    Lau Y C, Betto D, Rode K, Coey, J M D, Stamenov P 2016 Nat. Nanotechnol. 11 758Google Scholar

    [11]

    Liu Y, Zhou B, Zhu J G 2019 Sci. Rep. UK 9 325Google Scholar

    [12]

    Wang M X, Zhou J, Xu X G, Zhang T Z, Zhu Z Q, Guo Z X, Deng Y B, Yang M, Meng K K, He B, Li J L, Yu G Q, Zhu T, Li A, Han X D, Jiang Y 2023 Nat. Commun. 14 2871Google Scholar

    [13]

    Lin P H, Yang B Y, Tsai M H, Chen P C, Huang K F, Lin H H, La C H 2019 Nat. Mater. 18 335Google Scholar

    [14]

    Kim H J, Je S G, Jung D H, Lee K S, Hong J I 2019 Appl. Phys. Lett. 115 022401Google Scholar

    [15]

    Amiri P K, Alzate J G, Cai X Q, Ebrahim F, Hu Q, Wong K, Grèzes C, Lee H, Yu G Q, Li X, Akyol M, Shao Q M, Katine J A, Langer J, Ocker B, Wang K L 2015 IEEE T. Magn. 51 1Google Scholar

    [16]

    Wang W G, Li M, Hageman S, Chien C L 2012 Nat. Mater. 11 64Google Scholar

    [17]

    Alzate J G, Amiri P K, Upadhyaya P, Cherepov S S, Zhu J, Lewis M, Dorrance R, Katine J A, Langer J, Galatsis K, Markovic D, Krivorotov I, Wang K L 2012 IEEE IEDM San Francisco, CA, USA, December 10–13, 1999 p29.5. 1

    [18]

    Zhang H, Kang W, Wang L, Wang K L, Zhao W 2017 IEEE T Electron. Dev. 64 4295Google Scholar

    [19]

    Inokuchi T, Yoda H, Kato Y, Shimizu M, Shirotori S, Shimomura N, Koi K, Kamiguchi Y, Sugiyama H, Oikawa S, Ikegami K, Ishikawa M, Altansargai B, Tiwari A, Ohsawa Y, Saito Y, Kurobe A 2017 Appl. Phys. Lett. 110 1

    [20]

    Lee K, Kan J, Kang S H 2017 US Patent 9 589 619

    [21]

    Zhang K L, Zhang D M, Wang C Z, Zeng L, Wang Y, Zhao W S 2020 IEEE Access. 8 50792Google Scholar

    [22]

    Wang Y, Cai H, Naviner L A B, Zhao X X, Zhang Y, Slimani M, Klein J O, Zhao W S 2016 Microelectron. Reliab. 64 26Google Scholar

    [23]

    Meng H, Lum W H, Sbiaa R, Lua S Y H, Tan H K 2011 J. Appl. Phys. 110 033904Google Scholar

    [24]

    Jeong J, Endoh T 2017 Jpn. J. Appl. Phys. 56 04CE09Google Scholar

    [25]

    Wang M X, Cai W L, Zhu D Q, Wang Z H, Kan J, Zhao Z Y, Cao K H, Wang Z L, Zhang Y G, Zhang T R, Park C, Wang J P, Fert A, Zhao W S 2018 Nat. Electron. 1 582Google Scholar

    [26]

    Kazemi M, Rowlands G E, Ipek E, Buhrman R A, Friedman E G 2016 IEEE T. Electron. Dev. 63 848Google Scholar

    [27]

    Lee H, Lee A, Wang S D, Ebrahimi F, Gupta P, Amiri P K, Wang K L 2018 IEEE T. Magn. 54 1Google Scholar

    [28]

    Kang W, Ran Y, Zhang Y G, Lü W F, Zhao W S 2017 IEEE T. Nanotechnol. 16 387Google Scholar

    [29]

    王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌 2023 物理学报 72 087202Google Scholar

    Wang R X, Zeng Y H, Zhao J L, Li L, Xiao Y C 2023 Acta Phys. Sin. 72 087202Google Scholar

    [30]

    Legrand W, Ramaswamy R, Mishra R, Yang H 2015 Phys. Rev. Appl. 3 064012Google Scholar

    [31]

    金冬月, 陈虎, 王佑, 张万荣, 那伟聪, 郭斌, 吴玲, 杨绍萌, 孙晟 2020 物理学报 69 198502Google Scholar

    Jin D Y, Chen H, Wang Y, Zhang W R, Na W C, Guo B, Wu L, Yang S M, Sun S 2020 Acta Phys. Sin. 69 198502Google Scholar

    [32]

    金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣 2022 物理学报 71 107501Google Scholar

    Jin D Y, Cao L M, Wang Y, Jia X X, Pan Y A, Zhou Y X, Lei X, Liu Y Y, Yang Y Q, Zhang W R 2022 Acta Phys. Sin. 71 107501Google Scholar

    [33]

    Rata A D, Braak H, Bürgler D E, Schneider C M 2007 Appl. Phys. Lett. 90 162512Google Scholar

    [34]

    Gajek M, Nowak J J, Sun J Z, Trouilloud P L, O’ sullivan E J, Abraham D W, Gaidis M C, Hu G, Brown S, Zhu Y, Robertazzi R P, Gallagher W J, Worledge D C 2012 Appl. Phys. Lett. 100 132408Google Scholar

  • [1] 姬慧慧, 高兴国, 李枝兰. 铜/锰异质结中维度驱动的交换耦合效应. 物理学报, 2024, 73(21): 216102. doi: 10.7498/aps.73.20240849
    [2] 魏浩铭, 张颖, 张宙, 吴仰晴, 曹丙强. 极性补偿对LaMnO3/LaNiO3超晶格交换偏置场强度的影响. 物理学报, 2022, 71(15): 156801. doi: 10.7498/aps.71.20220365
    [3] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [4] 金冬月, 曹路明, 王佑, 贾晓雪, 潘永安, 周钰鑫, 雷鑫, 刘圆圆, 杨滢齐, 张万荣. 基于工艺偏差的自旋转移矩辅助压控磁各向异性磁隧道结电学模型及其应用研究. 物理学报, 2022, 71(10): 107501. doi: 10.7498/aps.71.20211700
    [5] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211831
    [6] 金冬月, 陈虎, 王佑, 张万荣, 那伟聪, 郭斌, 吴玲, 杨绍萌, 孙晟. 基于工艺偏差的电压调控磁各向异性磁隧道结电学模型及其在读写电路中的应用. 物理学报, 2020, 69(19): 198502. doi: 10.7498/aps.69.20200228
    [7] 汤华莲, 许蓓蕾, 庄奕琪, 张丽, 李聪. 工艺偏差下PMOS器件的负偏置温度不稳定效应分布特性. 物理学报, 2016, 65(16): 168502. doi: 10.7498/aps.65.168502
    [8] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控. 物理学报, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [9] 魏纪周, 张铭, 邓浩亮, 楚上杰, 杜敏永, 严辉. Bi0.8Ba0.2FeO3/La0.7Sr0.3MnO3异质结制备及其交换偏置效应研究. 物理学报, 2015, 64(8): 088101. doi: 10.7498/aps.64.088101
    [10] 罗毅, 赵国平, 杨海涛, 宋宁宁, 任肖, 丁浩峰, 成昭华. 单一晶相氧化锰纳米颗粒的交换偏置效应. 物理学报, 2013, 62(17): 176102. doi: 10.7498/aps.62.176102
    [11] 张洪武, 周文平, 刘恩克, 王文洪, 吴光恒. Heusler合金NiCoMnSn中的磁场驱动马氏体相变、超自旋玻璃和交换偏置. 物理学报, 2013, 62(14): 147501. doi: 10.7498/aps.62.147501
    [12] 闫静, 祁先进, 王寅岗. 退火对IrMn基磁隧道结多层膜热稳定性的影响. 物理学报, 2011, 60(8): 088106. doi: 10.7498/aps.60.088106
    [13] 田宏玉, 胡经国, 许小勇. 铁磁/反铁磁双层膜中冷却场对交换偏置场的影响. 物理学报, 2009, 58(4): 2757-2761. doi: 10.7498/aps.58.2757
    [14] 许小勇, 潘 靖, 胡经国. 交换偏置双层膜中的反铁磁自旋结构及其交换各向异性. 物理学报, 2007, 56(9): 5476-5482. doi: 10.7498/aps.56.5476
    [15] 潘 靖, 马 梅, 周 岚, 胡经国. 外应力场下铁磁/反铁磁双层膜系统的铁磁共振性质. 物理学报, 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [16] 翟中海, 滕 蛟, 李宝河, 王立锦, 于广华, 朱逢吾. 具有垂直各向异性(Pt/Co)n/FeMn多层膜的交换偏置. 物理学报, 2006, 55(4): 2064-2068. doi: 10.7498/aps.55.2064
    [17] 潘 靖, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的交换偏置. 物理学报, 2006, 55(6): 3032-3037. doi: 10.7498/aps.55.3032
    [18] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究. 物理学报, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
    [19] 李明华, 于广华, 何珂, 朱逢吾, 赖武彦. 具有分隔层Bi的反铁磁/铁磁双层薄膜间的短程交换耦合. 物理学报, 2002, 51(12): 2854-2857. doi: 10.7498/aps.51.2854
    [20] 敬 超, 金晓峰, 董国胜, 龚小燕, 郁黎明, 郑卫民. 分子束外延生长Fe/Fe50Mn50双层膜的交换偏置. 物理学报, 2000, 49(10): 2022-2026. doi: 10.7498/aps.49.2022
计量
  • 文章访问数:  3486
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-31
  • 修回日期:  2023-08-07
  • 上网日期:  2023-08-08
  • 刊出日期:  2023-10-05

/

返回文章
返回