搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HADAR实验对Fermi-LAT伽马射线源观测的预期研究

孙惠英 钱祥利 陈天禄 单增罗布 冯有亮 高启 苟全补 郭义庆 胡红波 康明铭 厉海金 刘成 刘茂元 刘伟 乔冰强 王旭 王振 辛广广 姚玉华 袁强 张毅

引用本文:
Citation:

HADAR实验对Fermi-LAT伽马射线源观测的预期研究

孙惠英, 钱祥利, 陈天禄, 单增罗布, 冯有亮, 高启, 苟全补, 郭义庆, 胡红波, 康明铭, 厉海金, 刘成, 刘茂元, 刘伟, 乔冰强, 王旭, 王振, 辛广广, 姚玉华, 袁强, 张毅

Expectation on observations of Fermi-LAT gamma-ray sources using the HADAR experiment

Sun Hui-Ying, Qian Xiang-Li, Chen Tian-Lu, Danzengluobu, Feng You-Liang, Gao Qi, Gou Quan-Bu, Guo Yi-Qing, Hu Hong-Bo, Kang Ming-Ming, Li Hai-Jin, Liu Cheng, Liu Mao-Yuan, Liu Wei, Qiao Bing-Qiang, Wang Xu, Wang Zhen, Xin Guang-Guang, Yao Yu-Hua, Yuan Qiang, Zhang Yi
PDF
HTML
导出引用
  • 高海拔天体辐射探测(high altitude detection of astronomical radiation, HADAR)实验是一个新型的采用纯水作为介质的大气切伦科夫望远镜实验阵列, 其采用大口径半球型透镜来收集大气切伦科夫光, 以实现对10 GeV—10 TeV能量段的伽马射线和宇宙线的探测. HADAR具有低阈能、高灵敏度和传统成像大气切伦科夫望远镜所不具备的大视场优势, 可以对天区进行连续扫描观测, 因此将成为全天伽马源的理想观测仪器和爆发源、时变源的理想搜寻探测器. 本文基于Fermi-LAT的最新伽马射线源表, 详细研究了HADAR实验对这些源的观测能力. 对银河系外的源, 将这些源的能谱加入河外背景光吸收效应外推至甚高能段. 通过对这些源的显著性进行模拟研究, 结果显示HADAR运行一年预期有93个伽马射线源以大于5倍的显著性标准偏差被观测到, 其中包括45个银河系内的源, 39个银河系外的源, 3个未知类型的源和6个未关联类型的源.
    High altitude detection of astronomical radiation (HADAR) is an innovative array of atmospheric Cherenkov telescopes that employs pure water as its medium. By utilizing large-aperture hemispherical lenses, HADAR can capture atmospheric Cherenkov light, enabling the detection of gamma rays and cosmic rays in the energy range of 10 GeV to 10 TeV. Compared to traditional Imaging Atmospheric Cherenkov telescopes, HADAR offers distinct advantages such as a low energy threshold, high sensitivity, and a wide field of view. The telescope mainly consists of a hemispherical lens with a diameter of 5 m acting as a Cherenkov light collector, a cylindrical metal tank with a 4 m radius and 7 m height, and an imaging system at the bottom of the tank. The sky region covered by HADAR is much larger than the current generation of Imaging Atmospheric Cherenkov Telescopes. The field of view of HADAR can reach up to 60 degrees. Its continuous scanning capability allows for comprehensive observations of gamma-ray sources throughout the entire celestial sphere, making it an ideal instrument for studying transient and variable sources. In this study, the observational capabilities of HADAR are thoroughly investigated using the latest 4FGL-DR3 and 4LAC-DR3 gamma-ray source catalogs from Fermi-LAT. For extragalactic sources, the energy spectra in the high energy range have been extrapolated to the very high energy range, taking into account the absorption effect caused by extragalactic background light. By comparing the extrapolated results with existing VHE experimental data, the feasibility of this extrapolation method has been demonstrated. Through simulated analyses of the significance of these sources, it is anticipated that HADAR will detect a total of 93 gamma-ray sources with a significance exceeding 5 standard deviations during one year of operation. These sources comprise 45 galactic sources, 39 extragalactic sources, 3 sources of unknown type, and 6 unassociated sources.
      通信作者: 钱祥利, qianxl@sdmu.edu.cn ; 郭义庆, guoyq@ihep.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 12263005, 12005120, 12147218, U1831208, U2031110)和西藏大学宇宙线教育部重点实验室(批准号: KLCR-202201)资助的课题
      Corresponding author: Qian Xiang-Li, qianxl@sdmu.edu.cn ; Guo Yi-Qing, guoyq@ihep.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12263005, 12005120, 12147218, U1831208, U2031110) and the Key Laboratory of Cosmic Ray of the Ministry of Education of China, Tibet University (Grant No. KLCR-202201)
    [1]

    Hinton J A 2004 New Astron. Rev. 48 331Google Scholar

    [2]

    Albert J, Aliu E, Anderhub H 2008 Astrophys. J. 674 1037Google Scholar

    [3]

    Holder J, Acciari V, Aliu E 2008 4th International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, July 7–11, p657

    [4]

    CTA Consortium 2018 Science with the Cherenkov Telescope Array (Singapore: World Scientific) pp11–26

    [5]

    Ellison D C, Drury L O’C, Meyer J P 1997 Astrophys. J. 487 197Google Scholar

    [6]

    Gaensler B M, Slane P O 2006 Annu. Rev. Astron. Astr. 44 17Google Scholar

    [7]

    Abdalla H, Abramowski A, Aharonian F 2018 Astron. Astrophys. 612 A1Google Scholar

    [8]

    Abeysekara A U, Archer A, Aune T 2018 Astrophys. J. 861 134Google Scholar

    [9]

    Albert A, Alfaro R, Alvarez C 2020 Astrophys. J. 905 76Google Scholar

    [10]

    Antonucci R 1993 Annu. Rev. Astron. Astr. 31 473Google Scholar

    [11]

    Urry C M, Padovani P 1995 Publ. Astron. Soc. Pac. 107 803Google Scholar

    [12]

    Sikora M, Begelman M C, Rees M J 1994 Astrophys. J. 421 153Google Scholar

    [13]

    Aharonian F 2000 New. Astron. 5 377Google Scholar

    [14]

    Mücke A, Protheroe R J, Engel R, Rachen J P, Stanev T 2003 Astropart. Phys. 18 593Google Scholar

    [15]

    Mannheim K, Biermann P L 1989 Astron. Astrophys. 221 211

    [16]

    Mannheim K 1998 Science 279 684Google Scholar

    [17]

    Böttcher M, Reimer A, Sweeney K, Prakash A 2013 Astrophys. J. 768 54Google Scholar

    [18]

    Urry C M 1999 Astropart. Phys. 11 159Google Scholar

    [19]

    Abdo A A, Ackermann M, Agudo I 2010 Astrophys. J. 716 30Google Scholar

    [20]

    Abdo A A, Ackermann M, Ajello M 2010 Astrophys. J. 715 429Google Scholar

    [21]

    Xin G G, Yao Y H, Qian X L 2021 Astrophys. J. 923 112Google Scholar

    [22]

    Qian X L, Sun H Y, Chen T L 2022 Front. Phys.-Beijing 17 64602Google Scholar

    [23]

    Qian X L, Sun H Y, Chen T L 2023 Acta Phys. Sin. 72 049501 [钱祥利, 孙惠英, 陈天禄 2023 物理学报 72 049501Google Scholar

    Qian X L, Sun H Y, Chen T L 2023 Acta Phys. Sin. 72 049501Google Scholar

    [24]

    Ajello M, Atwood W B, Baldini L 2017 Astrophys. J. Suppl. S. 232 18Google Scholar

    [25]

    Aleksić J, Ansoldi S, Antonelli L A 2016 Astropart. Phys. 72 76Google Scholar

    [26]

    Bartoli B, Bernardini P, Bi X J 2013 Astrophys. J. 779 27Google Scholar

    [27]

    Abeysekara A U, Alfaro R, Alvarez C 2013 Astropart. Phys. 50 26

    [28]

    Amenomori M, Bi X J, Chen D 2009 Astrophys. J. 692 61Google Scholar

    [29]

    Ma X H, Bi Y J, Cao Z 2022 Chin. Phys. C 46 030001Google Scholar

    [30]

    Cai H, Zhang Y, Liu C 2017 J. Instrum. 12 09023

    [31]

    Chen T L, Liu C, Gao Q 2019 Nucl. Instrum. Meth. A 927 46Google Scholar

    [32]

    Atwood W B, Abdo A A, Ackermann M 2009 Astrophys. J. 697 1071Google Scholar

    [33]

    Abdollahi S, Acero F, Baldini L 2022 Astrophys. J. Suppl. S. 260 53Google Scholar

    [34]

    Ajello M, Baldini L, Ballet J 2022 Astrophys. J. Suppl. S. 263 24Google Scholar

    [35]

    Abdollahi S, Acero F, Ackermann M 2020 Astrophys. J. Suppl. S. 247 33Google Scholar

    [36]

    Ajello M, Angioni R, Axelsson M 2020 Astrophys. J. 892 105Google Scholar

    [37]

    Gilmore R C, Somerville R S, Primack J R, Domínguez A 2012 Mon. Not. R. Astron. Soc. 422 3189Google Scholar

    [38]

    Domínguez A, Primack J R, Rosario D J 2011 Mon. Not. R. Astron. Soc. 410 2556Google Scholar

    [39]

    Patel S, Maier G, Kaaret P 2021 arXiv: 210806424 [astro-ph.HE

    [40]

    Ghisellini G, Righi C, Costamante L, Tavecchio F 2017 Mon. Not. R. Astron. Soc. 469 255Google Scholar

    [41]

    Abdalla H, Abe H, Acero F 2021 J. Cosmol. Astropart. P. 2021 048Google Scholar

    [42]

    Amenomori M, Ayabe S, Chen D 2005 Astrophys. J. 633 1005Google Scholar

    [43]

    Aliu E, Archambault S, Arlen T 2012 Astrophys. J. 750 94Google Scholar

    [44]

    Abramowski A, Acero F, Aharonian F 2012 Astron. Astrophys. 538 A103Google Scholar

    [45]

    Abramowski A, Acero F, Aharonian F 2013 Mon. Not. R. Astron. Soc. 434 1889Google Scholar

    [46]

    Aleksić J, Antonelli L A, Antoranz P 2011 Astrophys. J. Lett. 730 L8Google Scholar

    [47]

    Aharonian F, Akhperjanian A G, Bazer-Bachi A R 2007 Astron. Astrophys. 470 475Google Scholar

    [48]

    Aharonian F, Akhperjanian A G, de Almeida U B 2007 Astron. Astrophys. 475 L9Google Scholar

    [49]

    Aleksić J, Ansoldi S, Antonelli L A 2014 Science 346 1080Google Scholar

    [50]

    H.E.S.S. Collaboration 2020 Nature 582 356Google Scholar

    [51]

    VERITAS Collaboration, VLBA 43 GHz M87 Monitoring Team, H.E.S.S. Collaboration, MAGIC Collaboration 2009 Science 325 444Google Scholar

    [52]

    Acero F, Aharonian F, Akhperjanian A G 2009 Science 326 1080Google Scholar

    [53]

    Abdalla H, Aharonian F, Benkhali F A 2018 Astron. Astrophys. 617 A73Google Scholar

    [54]

    Acciari V A, Aliu E, Arlen T 2009 Nature 462 770Google Scholar

    [55]

    Abdo A A, Ackermann M, Ajello M 2010 Astrophys. J. Lett. 709 L152Google Scholar

  • 图 1  HADAR阵列示意图 (a)阵列分布图; (b)单个水透镜详细结构图[21]

    Fig. 1.  Schematic of HADAR: (a) Layout of the HADAR experiment; (b) detailed design of a water-lens telescope[21].

    图 2  HADAR及其他伽马射线实验的灵敏度曲线对比图[23]

    Fig. 2.  Comparisons of the sensitivity of HADAR with other γ-ray instruments[23]

    图 3  伽马射线衰减因子与能量的关系图, 分别对应红移为0.03, 0.1, 0.25, 0.5和1.0处的源. 实线代表基于威尔金森微波各向异性探测器卫星(WMAP5)数据的模型, 作为对比, 基于固定参数的WMAP5模型(紫色点划线)和Domínguez模型[38] (红色点划线)也分别画出. 可以看出伽马射线的衰减主要集中在甚高能段, 随着红移的增加吸收效应逐渐变强, 且衰减逐渐向低能段发展. 低红移时在1—10 TeV能量区间存在一个较平缓的变化[37]

    Fig. 3.  Attenuation ${\rm{e}}^{-\tau}$ of gamma-rays versus gamma-ray energy, for sources at z = 0.03, 0.1, 0.25, 0.5 and 1.0. Results are compared for Wilkinson microwave anisotropy probe 5-year (WMAP5, solid) and WMAP5 + fixed (dash-dotted violet) models, as well as the model of Domínguez[38] (dash-dotted red). Increasing distance causes absorption features to increase in magnitude and appear at lower energies. A plateau can be seen between 1–10 TeV at low redshift[37]

    图 4  外推得到的源3C 66A, 1ES 1218+304, PKS 1424+240和PG 1553+113的宽能量段伽马射线谱能量分布图, 可以看出, 采用内禀谱函数加EBL吸收的谱模型能较好地描述能谱的实验观测数据. 其中低能段为Fermi-LAT 4FGL的实验数据(蓝色菱形), VHE能段为VERITAS的实验数据(黄色圆圈代表低态, 黄色圆点代表不同耀发态的数据). 三种不同的红色虚线分别代表不同的谱函数模型, 实线代表Fermi-LAT采用的谱函数. 纵坐标代表观测的流强, 其中包含了EBL的吸收效应

    Fig. 4.  Gamma-ray spectral energy distribution for the sources 3C 66A, 1ES 1218+304, PKS 1424+240, and PG 1553+113 obtained over a wide energy range by extrapolation. The resulting data show that the spectral models using the intrinsic spectral function and EBL absorption fit the experimental data well. The Fermi-LAT 4FGL data is represented by blue diamonds in the low-energy band, while in the VHE band the VERITAS data is depicted by yellow circles for the low state and yellow dots for the different flaring states. Three different red dashed lines represent different spectral function models, while the solid line represents the Fermi-LAT preferred function. The y-axis represents the flux, which includes the absorption effect of EBL

    图 5  河外源的预期能谱图, 图中蓝色实线为BL Lacs, 红色虚线为FSRQs, 绿色实线为BCUs, 黑色虚线为Nonblazar AGN, 黑色实线为HADAR运行1 a的灵敏度曲线

    Fig. 5.  Expected energy spectrum for extragalactic sources. The blue solid line represents BL Lacs, the red dashed line represents FSRQs, the green solid line represents BCUs, the black dashed line represents Nonblazar AGN, and the black solid line indicates the sensitivity of HADAR operating for 1 a

    图 6  赤道坐标系(J2000 坐标)下HADAR对Fermi-LAT源的观测显著性预期天图, 上面标注为河外源, 下面标注为河内源及未知类型和未关联的源, 显著性显示范围为–3—15

    Fig. 6.  Expected significance sky map of HADAR observations with respect to Fermi-LAT sources in the equatorial coordinates (J2000 epoch). The map is annotated with extragalactic sources above, and with galactic sources, unknown sources, and unassociated sources below. Significance levels are displayed in the range of –3 to 15

    表 1  HADAR及其他IACT和EAS实验的性能对比, 表中列出了各实验的名称、覆盖天区、视场、能量阈值、角分辨、观测点源的灵敏度和参考文献

    Table 1.  Comparison of the performance of HADAR and other IACT/EAS experiments. For each experiment, the name, spatial coverage, field of view, energy threshold, angular resolution, point-source ssensitivity and reference are given.

    Experiment Hemisphere/(N, S) FOV/sr Energy threshold Angular resolution/(°) Sensitivity/Crab Ref.
    Fermi-LAT 2FHL space 2.7 10 GeV–2 TeV 0.1°(30 GeV) 3%–4% [24]
    LHAASO-WCDA N 1.5 100 GeV–30 TeV 0.4°(2 TeV) < 10% [29]
    HAWC N 1.5 100 sGeV–10 sTeV ~0.5° 5%–10% [9]
    H.E.S.S. S 0.006 30 GeV–100 TeV 0.08° 0.4%–2.0% [7]
    MAGIC N 0.003 50 GeV–10 TeV ~0.1° ~0.7% [25]
    CTA N, S 0.0048–0.015 20 GeV–300 TeV 0.07°(1 TeV) 0.2%–0.4% [4]
    HADAR N 0.84 10 GeV–10 TeV 0.4°(100 GeV) 1.3%–2.4% [22]
    下载: 导出CSV

    表 2  HADAR视场内4个AGN源的性质参数, 谱的模型参数从4LAC/4FGL导出. 表中从左到右分别为: 4FGL源名称、源对应体、AGN类型、SED分类、红移、模型, 该谱模型下的能量参考值、对应在能量$ E_0 $处的微分流强、谱指数Γ和曲率参数β

    Table 2.  Property parameters for four AGN sources, where the spectral model parameters are based on 4LAC or 4FGL. Columns from left to right are as follows: 4FGL source name, counterpart, type, class, redshift, model, $ E_0 $, differential flux at $ E_0 $ with the fit model, spectral index Γ, curvature parameter β

    4FGL Name Counterpart Type Class Redshift Model E0/GeV F0 /(TeV–1·cm–2·s–1) Γ β
    J0222.6+4301 3C 66A BLL ISP 0.444 LP 1.197 1.03 × 10–5 1.89 0.04
    J1221.3+3010 1ES 1218+304 BLL EHSP 0.184 PL 4.501 1.83 × 10–7 1.71
    J1427.0+2348 PKS 1424+240 BLL HSP 0.604 LP 1.205 7.03 × 10–6 1.71 0.06
    J1555.7+1111 PG 1553+113 BLL HSP 0.360 LP 1.802 3.84 × 10–6 1.54 0.07
    下载: 导出CSV

    表 3  HADAR预期观测到的Fermi-LAT源的种类和数目

    Table 3.  Types and numbers of Fermi-LAT sources that HADAR is expected to detect

    4FGL-DR3 source classes Number of sources in 4FGL-DR3 Number of sources in HADAR FOV Expected to be observed by HADAR in 1 a Expected to be observed by HADAR in 5 a
    Young / Millisecond pulsars 292 106 34 52
    PWNe, SNR 63 22 10 13
    SNR / PWNe 114 26 0 1
    Globular cluster 35 5 0 0
    Star-forming region 5 2 1 1
    High-mass Binary, Low-mass Binary, Binary, Nova 30 6 0 0
    BL Lacs 1458 492 34 66
    FSRQs 792 376 2 5
    Blazar candidate of uncertain type 1493 88 0 2
    Nonblazar AGN (RDG, AGN, SSRQ, CSS, NLSY1, SEY) 71 36 3 8
    Starburst galaxy 8 3 0 0
    Normal galaxy 6 3 0 0
    Unkown 134 48 3 7
    Unassociated 2157 592 6 25
    Total 6658 1805 93 180
    下载: 导出CSV

    表 4  HADAR视场内Fermi-LAT河外源的能谱参数及观测信息, 谱的参数从4LAC-DR3导出. 表中从左到右分别为: 4FGL源名称, 源对应体, 赤经, 赤纬, SED分类, 红移, 拟合模型, 该谱模型下的能量参考值, 对应在能量$ E_0 $处的微分流强, 谱指数Γ, 曲率参数β, 有效观测时间, 观测显著性

    Table 4.  Property parameters for extragalactic sources in HADAR FOV, where the spectral model parameters are derived from 4LAC-DR3. Columns from left to right are as follows: 4FGL source name, counterpart, right ascension, declination, class, redshift, model, $ E_0 $, differential flux at $ E_0 $ with the fit model, spectral index Γ, curvature parameter β, live time and significance

    4FGL name Counterpart R.A. Dec. Type Redshift Model E0/GeV F0/(TeV–1·cm–2·s–1) Γ β Time/h S/σ
    J0112.1+2245 S2 0109+22 18.03 22.75 BLL 0.265 LP 0.769 1.46 × 10–5 1.99 0.060 277.8 9.05
    J0211.2+1051 MG1J021114+1051 32.81 10.86 BLL 0.200 LP 0.922 7.51 × 10–6 2.02 0.042 196.3 6.47
    J0222.6+4302 3C 66A 35.67 43.04 BLL 0.444 LP 1.246 8.40 × 10–6 1.89 0.046 264.2 17.9
    J0319.8+4130 NGC 1275 49.96 41.51 RDG 0.018 LP 0.918 4.36 × 10–5 2.05 0.069 271.9 54.6
    J0521.7+2112 TXS 0518+211 80.44 21.21 bll 0.108 LP 1.541 4.64 × 10–6 1.86 0.045 271.0 50.2
    J0620.7+2643 RX J0620.6+2644 95.18 26.73 bll 0.134 PL 17.415 1.22 × 10–9 1.55 290.3 5.1
    J0648.7+1516 RX J0648.7+1516 102.19 15.28 bll 0.179 LP 3.248 1.22 × 10–7 1.60 0.056 234.3 10.9
    J0650.7+2503 1ES 0647+250 102.7 25.05 bll 0.203 LP 2.067 8.44 × 10–7 1.65 0.041 286.0 32.9
    J0738.1+1742 PKS 0735+17 114.54 17.71 bll 0.424 LP 1.623 2.25 × 10–6 1.97 0.067 251.3 5.2
    J0809.8+5218 1ES 0806+524 122.46 52.31 BLL 0.138 LP 1.342 1.91 × 10–6 1.83 0.023 193.9 15.1
    J0915.9+2933 Ton 0396 138.99 29.55 bll 0.190 LP 1.390 9.28 × 10–7 1.74 0.081 294.7 7.4
    J1015.0+4926 1H 1013+498 153.77 49.43 bll 0.212 LP 1.044 6.00 × 10–6 1.75 0.044 220.0 27.9
    J1058.6+5627 TXS 1055+567 164.67 56.46 BLL 0.143 LP 1.102 2.38 × 10–6 1.86 0.050 149.4 6.1
    J1104.4+3812 Mkn 421 166.12 38.21 BLL 0.030 PLEC 1.258 1.79 × 10–5 1.74 284.9 519.6
    J1117.0+2013 RBS 0958 169.27 20.23 bll 0.139 PL 1.964 3.12 × 10–7 1.95 266.1 5.0
    J1120.8+4212 RBS 0970 170.20 42.20 bll 0.124 LP 2.416 2.11 × 10–7 1.55 0.046 268.6 23.9
    J1150.6+4154 RBS 1040 177.66 41.91 bll 0.320 LP 1.949 4.71 × 10–7 1.55 0.135 270.0 7.2
    J1217.9+3007 B2 1215+30 184.48 30.12 BLL 0.130 LP 1.248 5.77 × 10–6 1.87 0.043 295.1 37.7
    J1221.3+3010 PG 1218+304 185.34 30.17 bll 0.184 LP 2.590 5.27 × 10–7 1.65 0.029 295.2 37.4
    J1221.5+2814 W Comae 185.38 28.24 bll 0.102 LP 0.781 6.00 × 10–6 2.11 0.024 293.1 5.5
    J1230.2+2517 ON 246 187.56 25.30 bll 0.135 LP 0.800 6.66 × 10–6 2.02 0.056 286.7 5.8
    J1230.8+1223 M 87 187.71 12.39 rdg 0.004 LP 1.124 1.30 × 10–6 2.00 0.036 210.5 5.3
    J1417.9+2543 1E 1415.6+2557 214.49 25.72 bll 0.237 LP 8.155 6.13 × 10–9 1.28 0.138 287.9 5.1
    J1427.0+2348 PKS 1424+240 216.76 23.80 BLL 0.604 LP 1.254 5.70 × 10–6 1.71 0.057 281.8 21.7
    J1428.5+4240 H 1426+428 217.13 42.68 bll 0.129 PL 5.135 2.69 × 10–8 1.65 266.1 10.3
    J1449.5+2746 B2 1447+27 222.40 27.77 rdg 0.031 PL 14.614 5.37 × 10–10 1.46 292.4 6.8
    J1555.7+1111 PG 1553+113 238.93 11.19 BLL 0.360 LP 3.802 1.16 × 10–6 1.57 0.095 199.5 56.4
    J1653.8+3945 Mkn 501 253.47 39.76 BLL 0.033 LP 1.508 3.78 × 10–6 1.75 0.018 279.5 125.1
    J1725.0+1152 1H 1720+117 261.27 11.87 bll 0.180 LP 2.216 7.55 × 10–7 1.76 0.056 205.9 14.5
    J1728.3+5013 I Zw 187 262.08 50.23 bll 0.055 PL 2.983 1.82 × 10–7 1.79 213.2 21.1
    J1838.8+4802 GB6J1838+4802 279.71 48.04 bll 0.300 LP 1.631 8.39 × 10–7 1.78 0.040 231.3 6.7
    J1904.1+3627 MG2J190411+3627 286.03 36.45 bll 0.078 PL 5.074 2.01 × 10–8 1.80 289.7 5.8
    J2116.2+3339 B2 2114+33 319.06 33.66 bll 0.350 LP 1.653 1.10 × 10–6 1.75 0.095 294.4 7.1
    J2202.7+4216 BL Lac 330.69 42.28 BLL 0.069 LP 0.871 4.07 × 10–5 2.12 0.059 268.2 27.4
    J2232.6+1143 CTA 102 338.15 11.73 FSRQ 1.037 PLEC 1.082 4.34 × 10–5 2.27 204.5 5.9
    J2250.0+3825 B3 2247+381 342.51 38.42 bll 0.119 PL 5.338 2.55 × 10–8 1.74 284.2 7.9
    J2253.9+1609 3C 454.3 343.50 16.15 FSRQ 0.859 PLEC 0.892 1.32 × 10–4 2.38 240.7 10.9
    J2323.8+4210 1ES 2321+419 350.97 42.18 bll 0.059 LP 1.857 5.31 × 10–7 1.80 0.068 268.7 11.0
    J2347.0+5141 1ES 2344+514 356.77 51.70 bll 0.044 LP 1.911 7.15 × 10–7 1.74 0.039 199.8 29.2
    下载: 导出CSV

    表 5  HADAR视场内Fermi-LAT河内源的能谱参数及观测信息, 谱的参数从4FGL-DR3导出. 表中从左到右分别为: 4FGL源名称, 源对应体, 赤经, 赤纬, SED分类, 拟合模型, 该谱模型下的能量参考值, 对应在能量$ E_0 $处的微分流强, 谱指数Γ, 曲率参数β, 有效观测时间, 观测显著性

    Table 5.  Property parameters for galactic sources in HADAR FOV, where the spectral model parameters are derived from 4FGL-DR3. Columns from left to right are as follows: 4FGL source name, counterpart, right ascension, declination, class, model, $ E_0 $, differential flux at $ E_0 $ with the fit model, spectral index Γ, curvature parameter β, live time and significance

    4FGL Name Counterpart R.A. Dec. Type Model $ E_0 $/GeV F0/(TeV–1·cm–2·s–1) Γ β Time/h S/σ
    J0030.4+0451PSR J0030+04517.614.86MSPPLEC1.3607.36 × 10–62.08130.140.6
    J0102.8+4839PSR J0102+483915.7148.66MSPPLEC1.3781.42 × 10–62.18226.46.0
    J0106.4+4855PSR J0106+485516.6148.93PSRPLEC1.5781.66 × 10–62.11224.214.2
    J0218.1+4232PSR J0218+423234.5342.55MSPPLEC0.8201.20 × 10–52.35266.86.2
    J0220.1+115535.0411.92PL16.6223.98 × 10–101.57206.25.6
    J0340.3+4130PSR J0340+413055.1041.51MSPPLEC1.6591.38 × 10–62.03271.924.6
    J0357.8+3204PSR J0357+320559.4632.08PSRPLEC1.1041.26 × 10–52.30295.519.3
    J0425.6+5522eSNR G150.3+04.566.4255.37SNRLP7.2401.19 × 10–71.640.047161.8123.6
    J0534.5+2201iCrab Nebula83.6322.02PWNLP10.0005.50 × 10–71.750.080274.7639.6
    J0540.3+2756eSim 14785.1027.94SNRLP1.1925.50 × 10–62.070.081292.711.1
    J0554.1+3107PSR J0554+310788.5531.12PSRPLEC1.0664.06 × 10–62.34295.55.1
    J0605.1+3757PSR J0605+375791.2837.96MSPPLEC1.5077.88 × 10–72.18285.75.3
    J0617.2+2234eIC 44394.3122.58SNRLP4.5512.58 × 10–62.280.123277.137.6
    J0620.9+220195.2322.02PL20.9136.45 × 10–101.61274.75.7
    J0631.5+1036PSR J0631+103697.8810.60PSRPLEC1.5402.52 × 10–62.20193.811.1
    J0631.8+0645PSR J0631+064697.966.76PSRPLEC2.2587.60 × 10–72.22152.95.9
    J0633.7+0632PSR J0633+063298.446.54PSRPLEC1.5278.13 × 10–62.22150.426.3
    J0633.9+1746PSR J0633+174698.4817.77PSRPLEC1.6703.19 × 10–42.10251.7575.7
    J0650.6+2055NVSS J065035+205556102.6620.93unkLP3.6434.42 × 10–81.630.096269.69.5
    J0751.2+1808PSR J0751+1807117.8018.14MSPPLEC1.6439.45 × 10–72.06254.113.1
    J1312.7+0050PSR J1312+0051198.190.84MSPPLEC1.3012.01 × 10–62.1576.35.7
    J1554.2+2008238.5520.15PL4.6191.14 × 10–81.82265.65.0
    J1816.5+4510PSR J1816+4510274.1545.17MSPPLEC1.1711.48 × 10–62.14251.66.1
    J1836.2+5925PSR J1836+5925279.0659.43PSRPLEC1.4286.64 × 10–52.07112.6388.8
    J1846.3+0919PSR J1846+0919281.609.33PSRPLEC1.4583.78 × 10–62.19181.014.9
    J1854.5+2050283.6420.84PL103.2332.68 × 10–111.01269.234.8
    J1857.7+0246eHESS J1857+026284.452.77PWNPL6.0632.25 × 10–72.13103.119.5
    J1907.9+0602PSR J1907+0602286.986.04PSRPLEC1.8981.39 × 10–52.37144.431.3
    J1910.8+2856NVSS J191052+285621287.7228.94unkPL7.2436.08 × 10–91.80294.17.1
    J1911.0+0905W 49B287.769.09snrLP4.5527.74 × 10–72.280.112178.68.5
    J1918.0+0331NVSS J191803+033032289.513.52unkPL12.6472.39 × 10–91.72113.06.2
    J1923.2+1408eW 51C290.8214.14SNRLP2.7685.08 × 10–62.210.109225.425.9
    J1924.3+1628291.1016.48PL22.8937.99 × 10–101.76243.17.7
    J1952.9+3252PSR J1952+3252298.2532.88PSRPLEC1.6189.92 × 10–62.29295.139.3
    J1954.3+2836PSR J1954+2836298.5928.60PSRPLEC1.5198.08 × 10–62.32293.723.1
    J1958.7+2846PSR J1958+2846299.6828.77PSRPLEC1.3561.13 × 10–52.35293.921.1
    J2017.4+0602PSR J2017+0603304.356.05MSPPLEC1.8002.20 × 10–61.98144.643.2
    J2017.9+3625PSR J2017+3625304.4936.43PSRPLEC1.4676.99 × 10–62.53289.85.7
    J2021.0+4031egamma Cygni305.2740.52SNRLP7.7582.07 × 10–71.880.060276.495.9
    J2021.1+3651PSR J2021+3651305.2836.86PSRPLEC1.8422.62 × 10–52.32288.8114.0
    J2028.3+3331PSR J2028+3332307.0833.53PSRPLEC1.4676.57 × 10–62.32294.617.5
    J2028.6+4110eCygnus X307.1741.17SFRLP2.0362.90 × 10–52.040.033273.5368.3
    J2030.0+3641PSR J2030+3641307.5136.69PSRPLEC1.6503.92 × 10–62.33289.212.6
    J2030.9+4416PSR J2030+4415307.7344.27PSRPLEC1.2846.77 × 10–62.47257.25.4
    J2032.2+4127PSR J2032+4127308.0641.46PSRPLEC2.9183.31 × 10–62.26272.247.2
    J2035.0+3632PSR J2034+3632308.7636.54MSPPLEC2.4565.99 × 10–72.17289.511.3
    J2043.3+1711PSR J2043+1711310.8417.19MSPPLEC1.2223.47 × 10–62.10247.920.9
    J2055.8+2540PSR J2055+2539313.9625.67PSRPLEC1.2798.39 × 10–62.18287.726.6
    J2111.4+4606PSR J2111+4606317.8646.10PSRPLEC1.3054.84 × 10–62.26245.411.9
    J2214.6+3000PSR J2214+3000333.6730.01MSPPLEC1.0905.97 × 10–62.06295.128.8
    J2301.9+5855eCTB 109345.4958.92SNRLP3.4611.57 × 10–71.910.054119.26.8
    J2302.7+4443PSR J2302+4442345.6944.72MSPPLEC2.0492.04 × 10–62.02254.555.8
    J2304.0+5406e346.0154.11LP14.0341.58 × 10–81.760.127175.618.0
    J2323.4+5849Cas A350.8658.82snrLP2.2321.38 × 10–61.870.076120.520.9
    下载: 导出CSV
  • [1]

    Hinton J A 2004 New Astron. Rev. 48 331Google Scholar

    [2]

    Albert J, Aliu E, Anderhub H 2008 Astrophys. J. 674 1037Google Scholar

    [3]

    Holder J, Acciari V, Aliu E 2008 4th International Symposium on High Energy Gamma-Ray Astronomy, Heidelberg, Germany, July 7–11, p657

    [4]

    CTA Consortium 2018 Science with the Cherenkov Telescope Array (Singapore: World Scientific) pp11–26

    [5]

    Ellison D C, Drury L O’C, Meyer J P 1997 Astrophys. J. 487 197Google Scholar

    [6]

    Gaensler B M, Slane P O 2006 Annu. Rev. Astron. Astr. 44 17Google Scholar

    [7]

    Abdalla H, Abramowski A, Aharonian F 2018 Astron. Astrophys. 612 A1Google Scholar

    [8]

    Abeysekara A U, Archer A, Aune T 2018 Astrophys. J. 861 134Google Scholar

    [9]

    Albert A, Alfaro R, Alvarez C 2020 Astrophys. J. 905 76Google Scholar

    [10]

    Antonucci R 1993 Annu. Rev. Astron. Astr. 31 473Google Scholar

    [11]

    Urry C M, Padovani P 1995 Publ. Astron. Soc. Pac. 107 803Google Scholar

    [12]

    Sikora M, Begelman M C, Rees M J 1994 Astrophys. J. 421 153Google Scholar

    [13]

    Aharonian F 2000 New. Astron. 5 377Google Scholar

    [14]

    Mücke A, Protheroe R J, Engel R, Rachen J P, Stanev T 2003 Astropart. Phys. 18 593Google Scholar

    [15]

    Mannheim K, Biermann P L 1989 Astron. Astrophys. 221 211

    [16]

    Mannheim K 1998 Science 279 684Google Scholar

    [17]

    Böttcher M, Reimer A, Sweeney K, Prakash A 2013 Astrophys. J. 768 54Google Scholar

    [18]

    Urry C M 1999 Astropart. Phys. 11 159Google Scholar

    [19]

    Abdo A A, Ackermann M, Agudo I 2010 Astrophys. J. 716 30Google Scholar

    [20]

    Abdo A A, Ackermann M, Ajello M 2010 Astrophys. J. 715 429Google Scholar

    [21]

    Xin G G, Yao Y H, Qian X L 2021 Astrophys. J. 923 112Google Scholar

    [22]

    Qian X L, Sun H Y, Chen T L 2022 Front. Phys.-Beijing 17 64602Google Scholar

    [23]

    Qian X L, Sun H Y, Chen T L 2023 Acta Phys. Sin. 72 049501 [钱祥利, 孙惠英, 陈天禄 2023 物理学报 72 049501Google Scholar

    Qian X L, Sun H Y, Chen T L 2023 Acta Phys. Sin. 72 049501Google Scholar

    [24]

    Ajello M, Atwood W B, Baldini L 2017 Astrophys. J. Suppl. S. 232 18Google Scholar

    [25]

    Aleksić J, Ansoldi S, Antonelli L A 2016 Astropart. Phys. 72 76Google Scholar

    [26]

    Bartoli B, Bernardini P, Bi X J 2013 Astrophys. J. 779 27Google Scholar

    [27]

    Abeysekara A U, Alfaro R, Alvarez C 2013 Astropart. Phys. 50 26

    [28]

    Amenomori M, Bi X J, Chen D 2009 Astrophys. J. 692 61Google Scholar

    [29]

    Ma X H, Bi Y J, Cao Z 2022 Chin. Phys. C 46 030001Google Scholar

    [30]

    Cai H, Zhang Y, Liu C 2017 J. Instrum. 12 09023

    [31]

    Chen T L, Liu C, Gao Q 2019 Nucl. Instrum. Meth. A 927 46Google Scholar

    [32]

    Atwood W B, Abdo A A, Ackermann M 2009 Astrophys. J. 697 1071Google Scholar

    [33]

    Abdollahi S, Acero F, Baldini L 2022 Astrophys. J. Suppl. S. 260 53Google Scholar

    [34]

    Ajello M, Baldini L, Ballet J 2022 Astrophys. J. Suppl. S. 263 24Google Scholar

    [35]

    Abdollahi S, Acero F, Ackermann M 2020 Astrophys. J. Suppl. S. 247 33Google Scholar

    [36]

    Ajello M, Angioni R, Axelsson M 2020 Astrophys. J. 892 105Google Scholar

    [37]

    Gilmore R C, Somerville R S, Primack J R, Domínguez A 2012 Mon. Not. R. Astron. Soc. 422 3189Google Scholar

    [38]

    Domínguez A, Primack J R, Rosario D J 2011 Mon. Not. R. Astron. Soc. 410 2556Google Scholar

    [39]

    Patel S, Maier G, Kaaret P 2021 arXiv: 210806424 [astro-ph.HE

    [40]

    Ghisellini G, Righi C, Costamante L, Tavecchio F 2017 Mon. Not. R. Astron. Soc. 469 255Google Scholar

    [41]

    Abdalla H, Abe H, Acero F 2021 J. Cosmol. Astropart. P. 2021 048Google Scholar

    [42]

    Amenomori M, Ayabe S, Chen D 2005 Astrophys. J. 633 1005Google Scholar

    [43]

    Aliu E, Archambault S, Arlen T 2012 Astrophys. J. 750 94Google Scholar

    [44]

    Abramowski A, Acero F, Aharonian F 2012 Astron. Astrophys. 538 A103Google Scholar

    [45]

    Abramowski A, Acero F, Aharonian F 2013 Mon. Not. R. Astron. Soc. 434 1889Google Scholar

    [46]

    Aleksić J, Antonelli L A, Antoranz P 2011 Astrophys. J. Lett. 730 L8Google Scholar

    [47]

    Aharonian F, Akhperjanian A G, Bazer-Bachi A R 2007 Astron. Astrophys. 470 475Google Scholar

    [48]

    Aharonian F, Akhperjanian A G, de Almeida U B 2007 Astron. Astrophys. 475 L9Google Scholar

    [49]

    Aleksić J, Ansoldi S, Antonelli L A 2014 Science 346 1080Google Scholar

    [50]

    H.E.S.S. Collaboration 2020 Nature 582 356Google Scholar

    [51]

    VERITAS Collaboration, VLBA 43 GHz M87 Monitoring Team, H.E.S.S. Collaboration, MAGIC Collaboration 2009 Science 325 444Google Scholar

    [52]

    Acero F, Aharonian F, Akhperjanian A G 2009 Science 326 1080Google Scholar

    [53]

    Abdalla H, Aharonian F, Benkhali F A 2018 Astron. Astrophys. 617 A73Google Scholar

    [54]

    Acciari V A, Aliu E, Arlen T 2009 Nature 462 770Google Scholar

    [55]

    Abdo A A, Ackermann M, Ajello M 2010 Astrophys. J. Lett. 709 L152Google Scholar

  • [1] 钱祥利, 孙惠英, 陈天禄, 单增罗布, 冯有亮, 高启, 苟全补, 郭义庆, 胡红波, 康明铭, 厉海金, 刘成, 刘茂元, 刘伟, 乔冰强, 王旭, 王振, 辛广广, 姚玉华, 袁强, 张毅. HADAR实验对活动星系核伽马射线辐射观测的预期研究. 物理学报, 2023, 72(4): 049501. doi: 10.7498/aps.72.20221976
    [2] 熊俊, 安红海, 王琛, 张振驰, 矫金龙, 雷安乐, 王瑞荣, 胡广月, 王伟, 孙今人. 长短脉冲联合驱动双层结构靶优化伽马射线的产生. 物理学报, 2022, 71(21): 215201. doi: 10.7498/aps.71.20212042
    [3] 任杰, 阮锡超, 陈永浩, 蒋伟, 鲍杰, 栾广源, 张奇玮, 黄翰雄, 王朝辉, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 顾旻皓, 韩长材, 韩子杰, 贺国珠, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 解立坤, 羊奕伟, 易晗, 于莉, 余滔, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏. 中国散裂中子源反角白光中子源束内伽马射线研究. 物理学报, 2020, 69(17): 172901. doi: 10.7498/aps.69.20200718
    [4] 强鹏飞, 盛立志, 李林森, 闫永清, 刘哲, 周晓红. X射线聚焦望远镜光学设计. 物理学报, 2019, 68(16): 160702. doi: 10.7498/aps.68.20190709
    [5] 王瑞荣, 安红海, 熊俊, 谢志勇, 王伟. 准单色近平行光束的X射线源. 物理学报, 2018, 67(24): 240701. doi: 10.7498/aps.67.20180861
    [6] 王研, 刘鑫, 黄万霞, 易明皓, 郭金川, 朱佩平. 更正:线焦斑X射线源成像[物理学报2016,65,219501]. 物理学报, 2017, 66(8): 089901. doi: 10.7498/aps.66.089901
    [7] 朱玥, 张子良, 杨彦佶, 薛荣峰, 崔苇苇, 陆波, 王娟, 陈田祥, 王于仨, 李炜, 韩大炜, 霍嘉, 胡渭, 李茂顺, 张艺, 祝宇轩, 刘苗, 赵晓帆, 陈勇. 硬X射线调制望远镜低能探测器量子效率标定. 物理学报, 2017, 66(11): 112901. doi: 10.7498/aps.66.112901
    [8] 牟欢, 李保权, 曹阳. 基于空间应用的透射式微型微束调制X射线源. 物理学报, 2016, 65(14): 140703. doi: 10.7498/aps.65.140703
    [9] 颜召军, 陈欣扬, 郑立新, 丁媛媛, 朱能鸿. 基于色散干涉图像的拼接望远镜共相零位标定方法研究. 物理学报, 2016, 65(19): 199501. doi: 10.7498/aps.65.199501
    [10] 刘鑫, 易明皓, 郭金川. 线焦斑X射线源成像. 物理学报, 2016, 65(21): 219501. doi: 10.7498/aps.65.219501
    [11] 于树海, 董磊, 刘欣悦, 凌剑勇. 傅里叶望远镜重构图像虚像分析. 物理学报, 2015, 64(18): 184205. doi: 10.7498/aps.64.184205
    [12] 颜召军, 陈欣扬, 杨朋千, 周丹, 郑立新, 朱能鸿. 基于光栅色散干涉条纹的菲佐光干涉望远镜共相检测方法研究. 物理学报, 2015, 64(14): 149501. doi: 10.7498/aps.64.149501
    [13] 廖宏宇, 马晓燠, 郭友明, 饶长辉, 魏凯. 基于AR模型搜索迭代算法的望远镜跟踪误差分析. 物理学报, 2014, 63(17): 179501. doi: 10.7498/aps.63.179501
    [14] 欧建文, 张皓晶, 郑永刚, 张雄. 耀变体S5 0716+714的混沌特性研究. 物理学报, 2014, 63(4): 049801. doi: 10.7498/aps.63.049801
    [15] 黄开, 闫文超, 李明华, 陶孟泽, 陈燕萍, 陈洁, 远晓辉, 赵家瑞, 马勇, 李大章, 高杰, 陈黎明, 张杰. kHz激光与固体靶相互作用产生的X射线源. 物理学报, 2013, 62(20): 205204. doi: 10.7498/aps.62.205204
    [16] 王剑, 赵宗清, 蔡达锋, 黄文忠, 何颖玲, 谷渝秋. Kα射线源半影成像研究. 物理学报, 2009, 58(10): 7074-7078. doi: 10.7498/aps.58.7074
    [17] 徐光, 钱列加, 王韬, 朱鹤元, 范滇元. 用于超短脉冲扩展的时间望远镜. 物理学报, 2004, 53(1): 93-98. doi: 10.7498/aps.53.93
    [18] 孙可煦, 易荣清, 杨家敏, 王红斌, 马洪良, 陈正林, 黄天暄, 崔延莉, 郑志坚, 唐道源, 丁永坤, 温树槐, 江文勉, 赵永宽, 崔明启, 黎刚, 崔聪悟, 唐鄂生. 同步辐射软X射线源用于软X射线探测元件定标. 物理学报, 1997, 46(4): 650-655. doi: 10.7498/aps.46.650
    [19] 吴承伟, 郭杏林. 直流电场中电流变体单链的电学行为及剪切强度. 物理学报, 1997, 46(8): 1500-1507. doi: 10.7498/aps.46.1500
    [20] 张毅波. 切伦科夫自由电子激光中自发辐射与受激辐射的关系. 物理学报, 1987, 36(10): 1344-1348. doi: 10.7498/aps.36.1344
计量
  • 文章访问数:  1945
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-13
  • 修回日期:  2023-07-28
  • 上网日期:  2023-08-02
  • 刊出日期:  2023-10-05

/

返回文章
返回