搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非简并双光子吸收及其应用研究进展

吴波 王爵 王崴 周国富

引用本文:
Citation:

非简并双光子吸收及其应用研究进展

吴波, 王爵, 王崴, 周国富

Research advances in nondegenerate two-photonabsorption and its applications

Wu Bo, Wang Jue, Wang Wei, Zhou Guo-Fu
PDF
HTML
导出引用
  • 非简并双光子吸收是两个能量不同的光子同时被介质吸收, 产生一次电子从基态经过一个中间虚态向激发态跃迁的非线性光学效应. 非简并双光子吸收与简并双光子吸收相比, 由于中间态共振效应, 吸收系数得到了几十倍甚至几百倍的增大, 因此在多个非线性光学应用中具有极大的潜力. 本文首先介绍双光子吸收的基本原理, 解释了非简并双光子吸收的增强机制; 然后详细介绍双光子吸收的基本测量方法; 接着综述三维半导体材料、有机荧光分子、二维材料与量子点的非简并双光子吸收相关研究; 最后重点总结了其在红外探测与成像、双光子荧光显微成像、全光开关与光调制等领域的应用进展, 并对领域领域的未来发展进行了展望.
    Nondegenerate two-photon absorption is a nonlinear optical effect in which two photons with different energy are absorbed by a medium simultaneously, resulting in a single electron transition from ground state to excited state through an intermediate virtual state. Compared with the degenerate two-photon absorption coefficient, the absorption coefficient of nondegenerate two-photon absorption is increased by tens or even hundreds of times due to the intermediate resonance effect, so it has great potentials in many nonlinear optical applications. Firstly, the basic principle of two-photon absorption is introduced and the enhancement mechanism of non-degenerate two-photon absorption is explained in this paper. Secondly, the basic method of measuring two-photon absorption is introduced in detail. Thirdly, the reports on nondegenerate two-photon absorption of three-dimensional semiconductor materials and two-dimensional materials are reviewed. Finally, the application progress of infrared detection and imaging, two-photon fluorescence microscope, all-optical switch and optical modulation is summarized, and the future research in this field is summarized and prospected.
      通信作者: 吴波, bowu@m.scnu.edu.cn ; 周国富, guofu.zhou@m.scnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62175068)、广东省基础与应用基础研究基金自然科学基金(批准号: 2023B1515020024)、广东省光信息材料与技术重点实验室(批准号: 2017B030301007)和国家绿色光电子国际联合研究中心(批准号: 2016B01018)资助的课题.
      Corresponding author: Wu Bo, bowu@m.scnu.edu.cn ; Zhou Guo-Fu, guofu.zhou@m.scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62175068), the Basic and Applied Basic Research Foundation of Guangdong Province, China (Grant No. 2023B1515020024), the Key Laboratory of Optical Information Materials and Technology of Guangdong Province, China (Grant No. 2017B030301007), and the National Green Optoelectronics International Joint Research Center (Grant No. 2016B01018).
    [1]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118Google Scholar

    [2]

    Ferrando A, Pastor J P M, Suarez I 2018 J. Phys. Chem. Lett. 9 5612Google Scholar

    [3]

    Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M 2010 Nat. Photonics 4 477Google Scholar

    [4]

    Boggess A S, Moss S, Boyd I, Van Stryland E 1985 IEEE J. Quantum Electron. 21 488Google Scholar

    [5]

    Hagan D J, van Stryland E W, Soileau M J, Wu Y Y, Guha S 1988 Opt. Lett. 13 315Google Scholar

    [6]

    Helmchen F, Denk W 2005 Nat. Methods 2 932Google Scholar

    [7]

    Park S H, Yang D Y, Lee K S 2009 Laser Photon. Rev. 3 1Google Scholar

    [8]

    Gu M, Li X P, Cao Y Y 2014 Light Sci. Appl. 3 e177Google Scholar

    [9]

    Gao D, Agayan R R, Xu H, Philbert M A, Kopelman R 2006 Nano Lett. 6 2383Google Scholar

    [10]

    Xu G J, Ren X Y, Miao Q C, Yan M, Pan H F, Chen X L, Wu G, Wu E 2019 IEEE Photon. 31 1944Google Scholar

    [11]

    Pattanaik H S, Reichert M, Hagan D J, Van Stryland E W 2016 Opt. Express 24 1196Google Scholar

    [12]

    Fix B, Jaeck J, Vest B, Verdun M, Beaudoin G, Sagnes I, Pelouard J L, Haidar R 2017 Appl. Phys. Lett. 111 041102Google Scholar

    [13]

    Fang J N, Wang Y Q, Yan M, Wu E, Huang K, Zeng H P 2020 Phys. Rev. Appl. 14 064035Google Scholar

    [14]

    Boitier F, Dherbecourt J B, Godard A, Rosencher E 2009 Appl. Phys. Lett. 94 081112Google Scholar

    [15]

    Apiratikul P, Murphy T E 2010 IEEE Photon. 22 212Google Scholar

    [16]

    Mahou P, Zimmerley M, Loulier K, Matho K S, Labroille G, Morin X, Supatto W, Livet J, Debarre D, Beaurepaire E 2012 Nat. Methods 9 815Google Scholar

    [17]

    Perillo E P, Jarrett J W, Liu Y L, Hassan A, Fernee D C, Goldak J R, Bonteanu A, Spence D J, Yeh H C, Dunn A K 2017 Light Sci. Appl. 6 e17095Google Scholar

    [18]

    Stringari C, Abdeladim L, Malkinson G, Mahou P, Solinas X, Lamarre I, Brizion S, Galey J B, Supatto W, Legouis R, Pena A M, Beaurepaire E 2017 Sci. Rep. 7 3792Google Scholar

    [19]

    Quentmeier S, Denicke S, Gericke K H 2009 J. Fluoresc. 19 1037Google Scholar

    [20]

    Liang T K, Nunes L R, Tsuchiya M, Abedin K S, Miyazaki T, Van Thourhout D, Bogaerts W, Dumon P, Baets R, Tsang H K 2006 Opt. Commun. 265 171Google Scholar

    [21]

    Shen L, Healy N, Mitchell C J, Penades J S, Nedeljkovic M, Mashanovich G Z, Peacock A C 2015 Opt. Lett. 40 2213Google Scholar

    [22]

    Liang T K, Nunes L R, Sakamoto T, Sasagawa K, Kawanishi T, Tsuchiya M, Priem G R A, van Thourhout D, Dumon P, Baets R, Tsang H K 2005 Opt. Express 13 7298Google Scholar

    [23]

    Wang W, Wei Q, Gong Y Y, Xing G C, Wu B, Zhou G F 2022 Adv. Opt. Mater. 10 2200400Google Scholar

    [24]

    Pascal S, David S, Andraud C, Maury O 2021 Chem. Soc. Rev. 50 6613Google Scholar

    [25]

    Pawlicki M, Collins H A, Denning R G, Anderson H L 2009 Angew. Chem. Int. Ed. 48 3244Google Scholar

    [26]

    Sheik-Bahae M, Hutchings D C, Hagan D J, Member, Van Stryland E W 1991 IEEE J. Quantum Electron. 27 1296Google Scholar

    [27]

    Fishman D A, Cirloganu C M, Webster S, Padilha L A, Monroe M, Hagan D J, Van Stryland E W 2011 Nat. Photonics 5 561Google Scholar

    [28]

    Kriso C, Stein M, Haeger T, Pourdavoud N, Gerhard M, Rahimi-Iman A, Riedl T, Koch M 2020 Opt. Lett. 45 2431Google Scholar

    [29]

    Chen S, Zheng M L, Dong X Z, Zhao Z S, Duan X M 2013 J. Opt. Soc. Am. B 30 3117Google Scholar

    [30]

    Said A A, Sheik-Bahae M, Hagan D J, Wei T H, Wang J, Young Y, Van Stryland E W 1992 J. Opt. Soc. Am. B 9 405

    [31]

    Wherrett B S 1984 J. Opt. Soc. Am. B 1 67Google Scholar

    [32]

    Rumi M, Perry J W 2010 Adv. Opt. Photonics 2 451Google Scholar

    [33]

    Negres R A, Hales J M, Kobyakov A, Hagan D J, van Stryland E W 2002 Opt. Lett. 27 270Google Scholar

    [34]

    Cirloganu C M, Padilha L A , Fishman D A, Webster S, Hagan D J, Van Stryland E W 2011 Opt. Express 19 22951Google Scholar

    [35]

    Reichert M, Smirl A L, Salamo G, Hagan D J, Van Stryland E W 2016 Phys. Rev. Lett. 117 073602Google Scholar

    [36]

    Olszak P D, Cirloganu C M, Webster S, Padilha L A, Guha S, Gonzalez L P, Krishnamurthy S, Hagan D J, Van Stryland E W 2010 Phys. Rev. B 82 235207Google Scholar

    [37]

    Knez D, Hanninen A M, Prince R C, Potma E O, Fishman D A 2020 Light Sci. Appl. 9 125Google Scholar

    [38]

    Bolger J A, Kar A . K, Wherrett B S 1993 Opt. Commun. 97 203Google Scholar

    [39]

    Olson B V, Gehlsen M P, Boggess T F 2013 Opt. Commun. 304 54Google Scholar

    [40]

    Krauss-Kodytek L, Ruppert C, Betz M 2021 Opt. Express 29 34522Google Scholar

    [41]

    Wagner T J, Bohn M J, Coutu R A, et al. 2010 J. Opt. Soc. Am. B 27 2122Google Scholar

    [42]

    Liang H J, Ma Q C, Liu J, Shi X W, Yang G J, Chen S, Liang E 2019 J. Nonlinear Opt. Phys. Mater. 28 1950015Google Scholar

    [43]

    Walters G, Sutherland B R, Hoogland S, Shi D, Comin R, Sellan D P, Bakr O M, Sargent E H 2015 ACS Nano 9 9340Google Scholar

    [44]

    Cox N, Wei J, Pattanaik H, Tabbakh T, Gorza S-P, Hagan D, Van Stryland E W 2020 Phys. Re. Res. 2 013376Google Scholar

    [45]

    Cui Q N, Li Y Y, Chang J H, Zhao H, Xu C X 2019 Laser Photon. Rev. 13 1800225Google Scholar

    [46]

    Grinblat G, Abdelwahab I, Nielsen M P, Dichtl P, Leng K, Oulton R F, Loh K P, Maier S A 2019 ACS Nano 13 9504Google Scholar

    [47]

    Lin Q, Zhang J, Piredda G, Boyd R W, Fauchet P M, Agrawal G P 2007 Appl. Phys. Lett. 91 021111Google Scholar

    [48]

    Wang G, Mei S L, Liao J F, Wang W, Tang Y X, Zhang Q, Tang Z K, Wu B, Xing G C 2021 Small 17 2100809Google Scholar

    [49]

    Lee C, Fan H 1974 Phys. Rev. B 9 3502Google Scholar

    [50]

    Li Y X, Dong N N, Zhang S F, Zhang X Y, Feng Y Y, Wang KP, Zhang L, Wang J 2015 Laser Photon. Rev. 9 427Google Scholar

    [51]

    Liu W W, Xing J, Zhao J X, Wen X L, Wang K, Lu P X, Xiong Q 2017 Adv. Opt. Mater. 5 1601045Google Scholar

    [52]

    Zhang S F, Dong N N, McEvoy N, O’Brien M, Winters S, Berner N C, Yim C Y, Li Y X, Zhang X Y, Chen Z H, Zhang L, Duesberg G S, Wang J 2015 ACS Nano 9 7142Google Scholar

    [53]

    Yang H Z, Feng X B, Wang Q, Huang H, Chen W, Wee A T S, Ji W 2011 Nano Lett. 11 2622Google Scholar

    [54]

    Zhou F, Abdelwahab I, Leng K, Loh K P, Ji W 2019 Adv. Mater. 31 e1904155Google Scholar

    [55]

    Sadegh S, Yang M H, Ferri C G L, Thunemann M, Saisan P A, Devor A, Fainman Y 2019 Opt. Express 27 8335Google Scholar

    [56]

    Sadegh S, Yang M H, Ferri C G L, Thunemann M, Saisan P A, Wei Z, Rodriguez E A, Adams S R, Kilic K, Boas D A, Sakadzic S, Devor A, Fainman Y 2019 Opt. Express 27 28022Google Scholar

    [57]

    Xue B, Katan C, Bjorgaard J, Kobayashi T 2015 AIP Adv. 5 127138Google Scholar

    [58]

    Xu C, Webb W W 1996 JOSA B 13 481Google Scholar

    [59]

    Makarov N S, Drobizhev M, Rebane A 2008 Opt. Express 16 4029Google Scholar

    [60]

    Chen S, Zheng Y C, Zheng M L, Dong X Z, Jin F, Zhao Z S, Duan X M 2017 J. Mater. Chem. C 5 470Google Scholar

    [61]

    Elayan I A, Brown A 2023 Phys. Chem. Chem. Phys. DOI: 10.1039/D3CP00723E

    [62]

    Wolleschensky R, Feurer T, Sauerbrey R, Simon U 1998 Appl. Phys. B-Lasers O. 67 87Google Scholar

    [63]

    Pascal S, Chi S H, Grichine A, Martel-Frachet V, Perry J W, Maury O, Andraud C 2022 Dyes Pigm. 203 110369Google Scholar

    [64]

    Rogalski A, Martyniuk P, Kopytko M 2016 Rep. Prog. Phys. 79 046501Google Scholar

    [65]

    Adiyan U, Larsen T, Zarate J J, Villanueva L G, Shea H 2019 Nat. Commun. 10 4518Google Scholar

    [66]

    Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Peña C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nat. Photonics 14 250Google Scholar

    [67]

    Hu W D, Ye Z H, Liao L, Chen H L, Chen L, Ding R J, He L, Chen X S, Lu W 2014 Opt. Lett. 39 5184Google Scholar

    [68]

    Martyniuk P, Rogalski A 2015 Infrared Phys. Technol. 70 125Google Scholar

    [69]

    Dam J S, Tidemand-Lichtenberg P, Pedersen C 2012 Nat. Photonics 6 788Google Scholar

    [70]

    Kuo P S, Slattery O, Kim Y S, Pelc J S, Fejer M M, Tang X 2013 Opt. Express 21 22523Google Scholar

    [71]

    Barh A, Rodrigo P J, Meng L, Pedersen C, Tidemand-Lichtenberg P 2019 Adv. Opt. Photon. 11 952Google Scholar

    [72]

    Pelc J S, Ma L, Phillips C R, Zhang Q, Langrock C, Slattery O, Tang X, Fejer M M 2011 Opt. Express 19 21445Google Scholar

    [73]

    Bristow A D, Rotenberg N, Van Driel H M 2007 Appl. Phys. Lett. 90 191104Google Scholar

    [74]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73Google Scholar

    [75]

    Niesner R, Andresen V, Neumann J, Spiecker H, Gunzer M 2007 Biophys. J. 93 2519Google Scholar

    [76]

    Weissleder R, Ntziachristos V 2003 Nat. Med. 9 123Google Scholar

    [77]

    Xu H T, Chen S, Mu K J, Wang J Q, Tian Y Z, Su S L, Mao Y C, Liang E J 2018 J. Nonlinear Opt. Phys. Mater. 27 1850027Google Scholar

    [78]

    Hales J M, Hagan D J, Van Stryland E W, Schafer K J, Morales A R, Belfield K D, Pacher P, Kwon O, Zojer E, Bredas J L 2004 J. Chem. Phys. 121 3152Google Scholar

    [79]

    Lakowicz J R, Gryczynski I, Malak H, Gryczynski Z 1996 Photochem. Photobiol. 64 632Google Scholar

    [80]

    Robinson T, Valluri P, Kennedy G, Sardini A, Dunsby C, Neil M A, Baldwin G S, French P M, de Mello A J 2014 Anal. Chem. 86 10732Google Scholar

    [81]

    Quentmeier S, Denicke S, Ehlers J E, Niesner R A, Gericke K H 2008 J. Phys. Chem. B 112 5768Google Scholar

    [82]

    Yang M H, Abashin M, Saisan P A, Tian P, Ferri C G, Devor A, Fainman Y 2016 Opt. Express 24 30173Google Scholar

    [83]

    Cambaliza M O, Saloma C 2000 Opt. Commun. 184 25Google Scholar

    [84]

    Ibanez-Lopez C, Escobar I, Saavedra G, Martinez-Corral M 2004 Microsc. Res. Techniq. 64 96Google Scholar

    [85]

    Blanca C M, Saloma C 2001 Appl. Opt. 40 2722Google Scholar

    [86]

    Lim M, Saloma C 2003 Appl. Opt. 42 3398Google Scholar

    [87]

    Garini Y, Young I T, McNamara G 2006 Cytom. Part A 69 735

    [88]

    Almeida V R, Barrios C A, Panepucci R R, Lipson M, Foster M A, Ouzounov D G, Gaeta A L 2004 Opt. Lett. 29 2867Google Scholar

    [89]

    Abdalla S, Ng S, Barrios P, Celo D, Delage A, El-Mougy S, Golub I, He J J, Janz S, McKinnon R 2004 IEEE Photon. 16 1038Google Scholar

    [90]

    Först M, Niehusmann J, Plötzing T, Bolten J, Wahlbrink T, Moormann C, Kurz H 2007 Opt. Lett. 32 2046Google Scholar

    [91]

    Li C F, Dou N 2009 Chin. Phys. Lett. 26 054203Google Scholar

    [92]

    Mukherjee K, Kumbhakar D 2012 Optik 123 489Google Scholar

    [93]

    Mehta P, Healy N, Day T, Sparks J, Sazio P, Badding J, Peacock A 2011 Opt. Express 19 19078Google Scholar

    [94]

    Yu S, Wu X, Wang Y, Guo X, Tong L 2017 Adv. Mater. 29 1606128Google Scholar

    [95]

    Wang C, Gao L, Chen H, Xu Y, Ma C, Yao H, Song Y, Zhang H 2021 Nanophotonics 10 2617Google Scholar

    [96]

    Chai Z, Hu X Y, Wang F F, Niu X X, Xie J Y, Gong Q H 2017 Adv. Opt. Mater. 5 1600665Google Scholar

  • 图 1  (a) 简并双光子吸收能级示意图; (b) 非简并双光子吸收能级示意图[23]

    Fig. 1.  Schematics of (a) D-TPA and (b) ND-TPA processes[23] .

    图 2  泵浦-探测实验装置

    Fig. 2.  Schematics of a typical pump-probe setup.

    图 3  典型三维半导体的ND-TPA (a) CdTe和(b) ZnO时间分辨归一化透射率曲线[34]; (c)—(e) ZnSe, ZnO, CdTe和GaAs的ND-TPA和D-TPA系数与泵浦-探测光子的能量依赖图[34]; (f) 泵浦-探测偏振方向对闪锌矿型ZnS的ND-TPA的影响, 其中探测光偏振方向平行于z轴, 泵浦偏振平行或者垂直于探测偏振方向[29]

    Fig. 3.  The ND-TPA of typical 3D semiconductors: Normalized transmission dynamics of (a) CdTe and (b) ZnO single crystals[34]; (c)–(e) ND-TPA and D-TPA coefficients of ZnSe, ZnO, CdTe and GaAs[34]; (f) pump-probe polarization-dependent ND-TPA coefficients for ZnS single crystal. The polarization of the probe beam is along the z axis, while that for the pump beam is either parallel or perpendicular to the probe polarization[29].

    图 4  典型二维材料的ND-TPA (a)单层WS2的瞬态透射动力学曲线与功率依赖关系, 激发波长 776 nm, 功率0.23—2.96 mW, 0 fs之前负信号归因为ND-TPA[45]; (b)单层WS2的瞬态透射动力学曲线分解为ND-TPA部分和D-TPA部分贡献, 黑点为原始数据, 蓝点源于D-TPA, 红点源于ND-TPA[45]; (c) 8 nm GaAs/12 nm Al0.32Ga0.68As 量子阱的ND-TPA系数及理论预测曲线, 此处泵浦与探测偏振均为TM[44]; (d) (BA)2(MA)n–1PbnX3n+1钙钛矿薄片的超快光透射调控, 泵浦波长760—980 nm, 功率3.5 μW; 探测波长705 nm, 实线为Lorentz拟合的调制宽度为13 fs[54]

    Fig. 4.  The ND-TPA of typical 2D semiconductors: (a) Power-dependent transient transmission dynamics of monolayer WS2, the pump wavelength is 776 nm and power in the range of 0.23–2.96 mW, the dip before time zero is attributed to ND-TPA[45]; (b) the decoupling of transient transmission dynamics for monolayer WS2, black squares are original data, blue dots are due to D-TPA and red triangles are attributed to ND-TPA[45]; (c) ND-TPA coefficients of 8 nm GaAs/12 nm Al0.32Ga0.68As quantum well as a function of sum wavelength and its theoretical prediction, and the polarizations of both the pump and probe beams are TM[44]; (d) ultrafast modulation of light using exfoliated (BA)2(A)n–1PbnX3n+1 flakes. Pump beam: 760–980 nm, power: 3.5 μW. Probe beam: 705 nm. Solid line is a fit using Lorentzian function and 13 fs is obtained for the ultrafast modulation[54].

    图 5  ND-TPA用于红外光子计数与探测 (a) GaAs红外光子计数示意图[14]; (b) GaAs红外光子计数与信号光功率及泵浦强度的依赖关系[14]; (c) GaN探测器用于中红外光探测示意图[27]; (d) GaN探测器输出电压与输入红外信号光能量及泵浦功率依赖关系, 信号波长5.6 μm, 门脉冲390 nm[27]; (e) Si-APD红外计数速率与输入脉冲能量关系, 泵浦光波长3.07 μm, 能量为0.32 nJ[13]; (f) MAPbBr3单晶与Si探头组合对1.7 μm红外光探测[23]

    Fig. 5.  ND-TPA for infrared photon counting and detection: (a) Schematics of infrared photon counting using GaAs photodetector[14]; (b) ND-TPA photon counts as a function of the signal power for different pump intensities using GaAs photodetector; (c) schematics of mid-infrared photodetection using a GaN photodiode[27]; (d) output voltage of a GaN diode versus 5.6 μm input signal energy in the presence of temporally overlapped 390 nm gating pulses of various energies[27]; (e) recorded count rates by the SiAPD as a function of input pulse energy, pump pulse wavelength of 3.07 μm, energy of 0.32 nJ[13]; (f) 1.7 μm infrared photodetection using a combination of MAPbBr3 single crystal and Si photodiode[23].

    图 6  ND-TPA用于中红外成像 (a)用于三维红外成像的GaAs半导体孔状结构[11]; (b)基于GaN的ND-TPA对该结构的三维成像图[11]; (c)图(b)中A、B两点对应的泵浦探测光互相关信号[11]; (d)基于硅基CCD相机的ND-TPA中红外振动成像系统示意图[37]; (e)印有黑色字母的醋酸纤维素薄膜的中红外选择性成像. b, c, d点分别对应的是成像激光远离振动吸收、接近振动吸收峰和与在振动吸收峰上3种波长对应的成像效果图[37]

    Fig. 6.  ND-TPA for mid-infrared imaging: (a) GaAs semiconductor structure used for the 3D imaging[11]; (b) 3D imaging of the GaAs structure using the ND-TPA of a GaN photodiode[11]; (c) the cross-correlation curves of points A and B in Fig. (b)[11]; (d) schematics of the vibration imaging method based on the ND-TPA of a Si CCD[37]; (e) imaging a cellulose acetate film with printed letters at selected wavelengths, wavelength b: far away from the absorption of C-H vibration, c: near the absorption peak; d: at the absorption peak[37].

    图 7  ND-TPA用于双光子荧光显微生物成像 (a)常用的基于ND-TPA的双光子生物成像的原理示意图[16]; (b)由脑虹构建的mCerulean (CFP)、mEYFP、tdTomato和/或mCherry编码的荧光蛋白的双光子激发光谱[16]; (c)小鼠皮层450 μm厚的z堆叠中提取的多色图像(左), 不同深度(z = 50, 250, 400 μm)的成像截面(右)[16]; (d)基于双色激发(λ1 = 1055 nm, λ2 = 1240 nm)的小鼠脑部三维成像图[17]; (e)小鼠脑部双色双光子激发荧光信号与深度的依赖关系, 1C2P为D-TPA激发(λ1 = 1055 nm), 2C2P为双色激发(λ1 = 1055 nm, λ2 = 1240 nm), τ = –600 fs, 0 fs为两种激发光的时间差[17]

    Fig. 7.  ND-TPA for two-color two-phonon fluorescence imaging: (a) A typical setup of multicolor two-photon imaging using synchronized pulses[16]; (b) two-photon excitation spectra of the fluorescent proteins encoded by the Brainbow constructs mCerulean (CFP), mEYFP, tdTomato and/or mCherry, arrows indicate the excitation wavelengths[16]; (c) multicolor images of a mouse cortex extracted from a 450-μm-thick z stack (left), image slices at different depth (z = 50, 250, 400 μm) (right)[16]; (d) the 3D image of a mouse brain using the two-color (λ1 = 1055 nm, λ2 = 1240 nm) two-phonon fluorescence imaging technique[17]; (e) two-photon excited fluorescence signal intensity versus tissue depth in a mouse brain. 1C2P: D-TPA excitation (λ1 = 1055 nm), 2C2P: ND-TPA excitation (λ1 = 1055 nm, λ2 = 1240 nm), τ = –600 fs, 0 fs: the time intervals between the excitation pulses[17].

    图 8  (a) 用于全光开关的实验装置, EDFA: 掺铒光纤放大器, OBF: 光带通滤波器, PD: 光电二极管, DSO: 数字采样示波器[22]; (b) 1552 nm泵浦脉冲和(c) 1536 nm处的交叉吸收调制连续波信号[22]; (d) NOR门操作原理和真值表[20]; (e) P1和P2信号及其逻辑NOR操作的输出信号[20]

    Fig. 8.  (a) Experimental setup of a typical all-optical switch, EDFA: erbium-doped fiber amplifier, OBF: optical bandpass filter, PD: photodiode, DSO: digital sampling oscilloscope[22]; (b) pump pulses at 1552 nm and (c) cross-absorption modulated CW signal at 1536 nm[22]; (d) operation principle and truth table of NOR gate[20]; (e) signal P1, P2 and the output cross-modulated CW probe with logic NOR operation[20].

    表 1  已报道的无机半导体材料的ND-TPA系数

    Table 1.  Reported ND-TPA coefficients for different inorganic semiconductors.

    材料 λ1/nm λ2/nm βND/(cm·GW–1) 测试条件 βD/(cm·GW–1)
    CdTe[34] 870 8840 ~1000 10 Hz, 30 ps ~20
    ZnS[34] ~390 ~1760 ~15 1 kHz, 140 fs ~1
    ZnSe[34] ~480 5600 ~270 1 kHz, 140 fs ~2
    ZnO[34] 420 2000 ~40 1 kHz, 140 fs ~2.5
    GaAs[34] 870 8840 ~800 10 Hz, 30 ps ~10
    GaSb[39] 1720 3550 140 1 kHz, 130 fs 64[41]
    Cu2O[42] 800 1494 88 1 kHz, 120 fs 27
    MAPbBr3[23] 577 1700 53 1 kHz, 100 fs 8[43]
    GaAs/Al0.32Ga0.68As QW[44] 1120 1960 ~15 82 MHz, 156 fs
    WS2[45] 620 776 250 80.48 MHz, 250 fs 100
    MoSe2[45] 790 1500 650 80.48 MHz, 250 fs 80—800
    (BA)2(MA)3Pb4X13[46] 705 760—980 10 100 kHz, 7 fs
    Si[40] 1904 1350 0.97 250 kHz, 160 fs 0.5[47]
    下载: 导出CSV

    表 2  已报道的有机荧光探针分子的ND-TPA截面

    Table 2.  Reported ND-TPA cross section for different organic fluorescence probe materials.

    材料 λ1/nm λ2/nm σND/GM 测试条件 σD/GM
    罗丹明6 G[57] 800 691 596 溶剂: 甲醇; 浓度: 16.2 mmol/L; 脉宽: 103 fs 38—150[58,59]
    罗丹明 123[57] 800 660 776 溶剂: 甲醇; 浓度: 4.2 mmol/L; 脉宽: 103 fs 80[62]
    香豆素6[57] 800 652 1015 溶剂: 甲醇; 浓度: 23.7 mmol/L; 脉宽: 103 fs
    香豆素343[57] 800 651 49 溶剂: 氯仿; 浓度: 27.3 mmol/L; 脉宽: 103 fs
    尼罗红[57] 800 669 3270 溶剂: 氯仿; 浓度: 0.75 mmol/L; 脉宽: 103 fs
    尼罗蓝A[57] 800 626 1407 溶剂: 氯仿; 浓度: 0.68 mmol/L; 脉宽: 103 fs
    咔唑衍生物BEMC[60] 800 650 220 溶剂: 甲醇; 浓度: 10 mmol/L; 脉宽: 140 fs 34
    氨基七甲噻吩[63] 925 1020 1860 溶剂: 甲醇; 浓度: 1.3 mmol/L; 脉宽: 75 fs 940
    下载: 导出CSV
  • [1]

    Franken P A, Hill A E, Peters C W, Weinreich G 1961 Phys. Rev. Lett. 7 118Google Scholar

    [2]

    Ferrando A, Pastor J P M, Suarez I 2018 J. Phys. Chem. Lett. 9 5612Google Scholar

    [3]

    Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M 2010 Nat. Photonics 4 477Google Scholar

    [4]

    Boggess A S, Moss S, Boyd I, Van Stryland E 1985 IEEE J. Quantum Electron. 21 488Google Scholar

    [5]

    Hagan D J, van Stryland E W, Soileau M J, Wu Y Y, Guha S 1988 Opt. Lett. 13 315Google Scholar

    [6]

    Helmchen F, Denk W 2005 Nat. Methods 2 932Google Scholar

    [7]

    Park S H, Yang D Y, Lee K S 2009 Laser Photon. Rev. 3 1Google Scholar

    [8]

    Gu M, Li X P, Cao Y Y 2014 Light Sci. Appl. 3 e177Google Scholar

    [9]

    Gao D, Agayan R R, Xu H, Philbert M A, Kopelman R 2006 Nano Lett. 6 2383Google Scholar

    [10]

    Xu G J, Ren X Y, Miao Q C, Yan M, Pan H F, Chen X L, Wu G, Wu E 2019 IEEE Photon. 31 1944Google Scholar

    [11]

    Pattanaik H S, Reichert M, Hagan D J, Van Stryland E W 2016 Opt. Express 24 1196Google Scholar

    [12]

    Fix B, Jaeck J, Vest B, Verdun M, Beaudoin G, Sagnes I, Pelouard J L, Haidar R 2017 Appl. Phys. Lett. 111 041102Google Scholar

    [13]

    Fang J N, Wang Y Q, Yan M, Wu E, Huang K, Zeng H P 2020 Phys. Rev. Appl. 14 064035Google Scholar

    [14]

    Boitier F, Dherbecourt J B, Godard A, Rosencher E 2009 Appl. Phys. Lett. 94 081112Google Scholar

    [15]

    Apiratikul P, Murphy T E 2010 IEEE Photon. 22 212Google Scholar

    [16]

    Mahou P, Zimmerley M, Loulier K, Matho K S, Labroille G, Morin X, Supatto W, Livet J, Debarre D, Beaurepaire E 2012 Nat. Methods 9 815Google Scholar

    [17]

    Perillo E P, Jarrett J W, Liu Y L, Hassan A, Fernee D C, Goldak J R, Bonteanu A, Spence D J, Yeh H C, Dunn A K 2017 Light Sci. Appl. 6 e17095Google Scholar

    [18]

    Stringari C, Abdeladim L, Malkinson G, Mahou P, Solinas X, Lamarre I, Brizion S, Galey J B, Supatto W, Legouis R, Pena A M, Beaurepaire E 2017 Sci. Rep. 7 3792Google Scholar

    [19]

    Quentmeier S, Denicke S, Gericke K H 2009 J. Fluoresc. 19 1037Google Scholar

    [20]

    Liang T K, Nunes L R, Tsuchiya M, Abedin K S, Miyazaki T, Van Thourhout D, Bogaerts W, Dumon P, Baets R, Tsang H K 2006 Opt. Commun. 265 171Google Scholar

    [21]

    Shen L, Healy N, Mitchell C J, Penades J S, Nedeljkovic M, Mashanovich G Z, Peacock A C 2015 Opt. Lett. 40 2213Google Scholar

    [22]

    Liang T K, Nunes L R, Sakamoto T, Sasagawa K, Kawanishi T, Tsuchiya M, Priem G R A, van Thourhout D, Dumon P, Baets R, Tsang H K 2005 Opt. Express 13 7298Google Scholar

    [23]

    Wang W, Wei Q, Gong Y Y, Xing G C, Wu B, Zhou G F 2022 Adv. Opt. Mater. 10 2200400Google Scholar

    [24]

    Pascal S, David S, Andraud C, Maury O 2021 Chem. Soc. Rev. 50 6613Google Scholar

    [25]

    Pawlicki M, Collins H A, Denning R G, Anderson H L 2009 Angew. Chem. Int. Ed. 48 3244Google Scholar

    [26]

    Sheik-Bahae M, Hutchings D C, Hagan D J, Member, Van Stryland E W 1991 IEEE J. Quantum Electron. 27 1296Google Scholar

    [27]

    Fishman D A, Cirloganu C M, Webster S, Padilha L A, Monroe M, Hagan D J, Van Stryland E W 2011 Nat. Photonics 5 561Google Scholar

    [28]

    Kriso C, Stein M, Haeger T, Pourdavoud N, Gerhard M, Rahimi-Iman A, Riedl T, Koch M 2020 Opt. Lett. 45 2431Google Scholar

    [29]

    Chen S, Zheng M L, Dong X Z, Zhao Z S, Duan X M 2013 J. Opt. Soc. Am. B 30 3117Google Scholar

    [30]

    Said A A, Sheik-Bahae M, Hagan D J, Wei T H, Wang J, Young Y, Van Stryland E W 1992 J. Opt. Soc. Am. B 9 405

    [31]

    Wherrett B S 1984 J. Opt. Soc. Am. B 1 67Google Scholar

    [32]

    Rumi M, Perry J W 2010 Adv. Opt. Photonics 2 451Google Scholar

    [33]

    Negres R A, Hales J M, Kobyakov A, Hagan D J, van Stryland E W 2002 Opt. Lett. 27 270Google Scholar

    [34]

    Cirloganu C M, Padilha L A , Fishman D A, Webster S, Hagan D J, Van Stryland E W 2011 Opt. Express 19 22951Google Scholar

    [35]

    Reichert M, Smirl A L, Salamo G, Hagan D J, Van Stryland E W 2016 Phys. Rev. Lett. 117 073602Google Scholar

    [36]

    Olszak P D, Cirloganu C M, Webster S, Padilha L A, Guha S, Gonzalez L P, Krishnamurthy S, Hagan D J, Van Stryland E W 2010 Phys. Rev. B 82 235207Google Scholar

    [37]

    Knez D, Hanninen A M, Prince R C, Potma E O, Fishman D A 2020 Light Sci. Appl. 9 125Google Scholar

    [38]

    Bolger J A, Kar A . K, Wherrett B S 1993 Opt. Commun. 97 203Google Scholar

    [39]

    Olson B V, Gehlsen M P, Boggess T F 2013 Opt. Commun. 304 54Google Scholar

    [40]

    Krauss-Kodytek L, Ruppert C, Betz M 2021 Opt. Express 29 34522Google Scholar

    [41]

    Wagner T J, Bohn M J, Coutu R A, et al. 2010 J. Opt. Soc. Am. B 27 2122Google Scholar

    [42]

    Liang H J, Ma Q C, Liu J, Shi X W, Yang G J, Chen S, Liang E 2019 J. Nonlinear Opt. Phys. Mater. 28 1950015Google Scholar

    [43]

    Walters G, Sutherland B R, Hoogland S, Shi D, Comin R, Sellan D P, Bakr O M, Sargent E H 2015 ACS Nano 9 9340Google Scholar

    [44]

    Cox N, Wei J, Pattanaik H, Tabbakh T, Gorza S-P, Hagan D, Van Stryland E W 2020 Phys. Re. Res. 2 013376Google Scholar

    [45]

    Cui Q N, Li Y Y, Chang J H, Zhao H, Xu C X 2019 Laser Photon. Rev. 13 1800225Google Scholar

    [46]

    Grinblat G, Abdelwahab I, Nielsen M P, Dichtl P, Leng K, Oulton R F, Loh K P, Maier S A 2019 ACS Nano 13 9504Google Scholar

    [47]

    Lin Q, Zhang J, Piredda G, Boyd R W, Fauchet P M, Agrawal G P 2007 Appl. Phys. Lett. 91 021111Google Scholar

    [48]

    Wang G, Mei S L, Liao J F, Wang W, Tang Y X, Zhang Q, Tang Z K, Wu B, Xing G C 2021 Small 17 2100809Google Scholar

    [49]

    Lee C, Fan H 1974 Phys. Rev. B 9 3502Google Scholar

    [50]

    Li Y X, Dong N N, Zhang S F, Zhang X Y, Feng Y Y, Wang KP, Zhang L, Wang J 2015 Laser Photon. Rev. 9 427Google Scholar

    [51]

    Liu W W, Xing J, Zhao J X, Wen X L, Wang K, Lu P X, Xiong Q 2017 Adv. Opt. Mater. 5 1601045Google Scholar

    [52]

    Zhang S F, Dong N N, McEvoy N, O’Brien M, Winters S, Berner N C, Yim C Y, Li Y X, Zhang X Y, Chen Z H, Zhang L, Duesberg G S, Wang J 2015 ACS Nano 9 7142Google Scholar

    [53]

    Yang H Z, Feng X B, Wang Q, Huang H, Chen W, Wee A T S, Ji W 2011 Nano Lett. 11 2622Google Scholar

    [54]

    Zhou F, Abdelwahab I, Leng K, Loh K P, Ji W 2019 Adv. Mater. 31 e1904155Google Scholar

    [55]

    Sadegh S, Yang M H, Ferri C G L, Thunemann M, Saisan P A, Devor A, Fainman Y 2019 Opt. Express 27 8335Google Scholar

    [56]

    Sadegh S, Yang M H, Ferri C G L, Thunemann M, Saisan P A, Wei Z, Rodriguez E A, Adams S R, Kilic K, Boas D A, Sakadzic S, Devor A, Fainman Y 2019 Opt. Express 27 28022Google Scholar

    [57]

    Xue B, Katan C, Bjorgaard J, Kobayashi T 2015 AIP Adv. 5 127138Google Scholar

    [58]

    Xu C, Webb W W 1996 JOSA B 13 481Google Scholar

    [59]

    Makarov N S, Drobizhev M, Rebane A 2008 Opt. Express 16 4029Google Scholar

    [60]

    Chen S, Zheng Y C, Zheng M L, Dong X Z, Jin F, Zhao Z S, Duan X M 2017 J. Mater. Chem. C 5 470Google Scholar

    [61]

    Elayan I A, Brown A 2023 Phys. Chem. Chem. Phys. DOI: 10.1039/D3CP00723E

    [62]

    Wolleschensky R, Feurer T, Sauerbrey R, Simon U 1998 Appl. Phys. B-Lasers O. 67 87Google Scholar

    [63]

    Pascal S, Chi S H, Grichine A, Martel-Frachet V, Perry J W, Maury O, Andraud C 2022 Dyes Pigm. 203 110369Google Scholar

    [64]

    Rogalski A, Martyniuk P, Kopytko M 2016 Rep. Prog. Phys. 79 046501Google Scholar

    [65]

    Adiyan U, Larsen T, Zarate J J, Villanueva L G, Shea H 2019 Nat. Commun. 10 4518Google Scholar

    [66]

    Korzh B, Zhao Q Y, Allmaras J P, Frasca S, Autry T M, Bersin E A, Beyer A D, Briggs R M, Bumble B, Colangelo M, Crouch G M, Dane A E, Gerrits T, Lita A E, Marsili F, Moody G, Peña C, Ramirez E, Rezac J D, Sinclair N, Stevens M J, Velasco A E, Verma V B, Wollman E E, Xie S, Zhu D, Hale P D, Spiropulu M, Silverman K L, Mirin R P, Nam S W, Kozorezov A G, Shaw M D, Berggren K K 2020 Nat. Photonics 14 250Google Scholar

    [67]

    Hu W D, Ye Z H, Liao L, Chen H L, Chen L, Ding R J, He L, Chen X S, Lu W 2014 Opt. Lett. 39 5184Google Scholar

    [68]

    Martyniuk P, Rogalski A 2015 Infrared Phys. Technol. 70 125Google Scholar

    [69]

    Dam J S, Tidemand-Lichtenberg P, Pedersen C 2012 Nat. Photonics 6 788Google Scholar

    [70]

    Kuo P S, Slattery O, Kim Y S, Pelc J S, Fejer M M, Tang X 2013 Opt. Express 21 22523Google Scholar

    [71]

    Barh A, Rodrigo P J, Meng L, Pedersen C, Tidemand-Lichtenberg P 2019 Adv. Opt. Photon. 11 952Google Scholar

    [72]

    Pelc J S, Ma L, Phillips C R, Zhang Q, Langrock C, Slattery O, Tang X, Fejer M M 2011 Opt. Express 19 21445Google Scholar

    [73]

    Bristow A D, Rotenberg N, Van Driel H M 2007 Appl. Phys. Lett. 90 191104Google Scholar

    [74]

    Denk W, Strickler J H, Webb W W 1990 Science 248 73Google Scholar

    [75]

    Niesner R, Andresen V, Neumann J, Spiecker H, Gunzer M 2007 Biophys. J. 93 2519Google Scholar

    [76]

    Weissleder R, Ntziachristos V 2003 Nat. Med. 9 123Google Scholar

    [77]

    Xu H T, Chen S, Mu K J, Wang J Q, Tian Y Z, Su S L, Mao Y C, Liang E J 2018 J. Nonlinear Opt. Phys. Mater. 27 1850027Google Scholar

    [78]

    Hales J M, Hagan D J, Van Stryland E W, Schafer K J, Morales A R, Belfield K D, Pacher P, Kwon O, Zojer E, Bredas J L 2004 J. Chem. Phys. 121 3152Google Scholar

    [79]

    Lakowicz J R, Gryczynski I, Malak H, Gryczynski Z 1996 Photochem. Photobiol. 64 632Google Scholar

    [80]

    Robinson T, Valluri P, Kennedy G, Sardini A, Dunsby C, Neil M A, Baldwin G S, French P M, de Mello A J 2014 Anal. Chem. 86 10732Google Scholar

    [81]

    Quentmeier S, Denicke S, Ehlers J E, Niesner R A, Gericke K H 2008 J. Phys. Chem. B 112 5768Google Scholar

    [82]

    Yang M H, Abashin M, Saisan P A, Tian P, Ferri C G, Devor A, Fainman Y 2016 Opt. Express 24 30173Google Scholar

    [83]

    Cambaliza M O, Saloma C 2000 Opt. Commun. 184 25Google Scholar

    [84]

    Ibanez-Lopez C, Escobar I, Saavedra G, Martinez-Corral M 2004 Microsc. Res. Techniq. 64 96Google Scholar

    [85]

    Blanca C M, Saloma C 2001 Appl. Opt. 40 2722Google Scholar

    [86]

    Lim M, Saloma C 2003 Appl. Opt. 42 3398Google Scholar

    [87]

    Garini Y, Young I T, McNamara G 2006 Cytom. Part A 69 735

    [88]

    Almeida V R, Barrios C A, Panepucci R R, Lipson M, Foster M A, Ouzounov D G, Gaeta A L 2004 Opt. Lett. 29 2867Google Scholar

    [89]

    Abdalla S, Ng S, Barrios P, Celo D, Delage A, El-Mougy S, Golub I, He J J, Janz S, McKinnon R 2004 IEEE Photon. 16 1038Google Scholar

    [90]

    Först M, Niehusmann J, Plötzing T, Bolten J, Wahlbrink T, Moormann C, Kurz H 2007 Opt. Lett. 32 2046Google Scholar

    [91]

    Li C F, Dou N 2009 Chin. Phys. Lett. 26 054203Google Scholar

    [92]

    Mukherjee K, Kumbhakar D 2012 Optik 123 489Google Scholar

    [93]

    Mehta P, Healy N, Day T, Sparks J, Sazio P, Badding J, Peacock A 2011 Opt. Express 19 19078Google Scholar

    [94]

    Yu S, Wu X, Wang Y, Guo X, Tong L 2017 Adv. Mater. 29 1606128Google Scholar

    [95]

    Wang C, Gao L, Chen H, Xu Y, Ma C, Yao H, Song Y, Zhang H 2021 Nanophotonics 10 2617Google Scholar

    [96]

    Chai Z, Hu X Y, Wang F F, Niu X X, Xie J Y, Gong Q H 2017 Adv. Opt. Mater. 5 1600665Google Scholar

  • [1] 胡生润, 季学强, 王进进, 阎结昀, 张天悦, 李培刚. 基于Ga2O3-SiC-Ag多层结构的介电常数近零超低开关阈值光学双稳态器件. 物理学报, 2024, 73(5): 054201. doi: 10.7498/aps.73.20231534
    [2] 熊霄, 曹启韬, 肖云峰. 铌酸锂集成光子器件的发展与机遇. 物理学报, 2023, 72(23): 234201. doi: 10.7498/aps.72.20231295
    [3] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [4] 郭绮琪, 陈溢杭. 基于介电常数近零模式与间隙表面等离激元强耦合的增强非线性光学效应. 物理学报, 2021, 70(18): 187303. doi: 10.7498/aps.70.20210290
    [5] 李庚霖, 贾曰辰, 陈峰. 绝缘体上铌酸锂薄膜片上光子学器件的研究进展. 物理学报, 2020, 69(15): 157801. doi: 10.7498/aps.69.20200302
    [6] 郭少波, 闫世光, 曹菲, 姚春华, 王根水, 董显林. 红外探测用无铅铁电陶瓷的热释电特性研究进展. 物理学报, 2020, 69(12): 127708. doi: 10.7498/aps.69.20200303
    [7] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [8] 侯国辉, 罗腾, 陈秉灵, 刘杰, 林子扬, 陈丹妮, 屈军乐. 双光子荧光与相干反斯托克斯拉曼散射显微成像技术的实验研究. 物理学报, 2017, 66(10): 104204. doi: 10.7498/aps.66.104204
    [9] 陈卫军, 卢克清, 惠娟利, 张宝菊. 饱和非线性介质中艾里-高斯光束的传输与交互作用. 物理学报, 2016, 65(24): 244202. doi: 10.7498/aps.65.244202
    [10] 张龙, 韩海年, 侯磊, 于子蛟, 朱政, 贾玉磊, 魏志义. 基于光子晶体光纤和拉锥式单模光纤的超连续光谱产生的实验研究. 物理学报, 2014, 63(19): 194208. doi: 10.7498/aps.63.194208
    [11] 刘伟, 陈丹妮, 刘双龙, 牛憨笨. 超衍射极限相干反斯托克斯拉曼散射显微成像技术及其探测极限分析. 物理学报, 2013, 62(16): 164202. doi: 10.7498/aps.62.164202
    [12] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [13] 吉选芒, 姜其畅, 刘劲松. 光折变非相干耦合空间孤子族统一理论. 物理学报, 2012, 61(7): 074205. doi: 10.7498/aps.61.074205
    [14] 吉选芒, 姜其畅, 刘劲松. 含分压电阻的非相干耦合光折变屏蔽光伏空间孤子对. 物理学报, 2010, 59(7): 4701-4706. doi: 10.7498/aps.59.4701
    [15] 龚华平, 吕志伟, 林殿阳, 刘松江. 非聚焦条件下CS2介质中受激布里渊散射光限幅特性的研究. 物理学报, 2007, 56(9): 5263-5268. doi: 10.7498/aps.56.5263
    [16] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [17] 张明昕, 吴克琛, 刘彩萍, 韦永勤. 密度泛函交换关联势与过渡金属化合物光学非线性的计算研究. 物理学报, 2005, 54(4): 1762-1770. doi: 10.7498/aps.54.1762
    [18] 苏 燕, 王传奎, 王彦华, 陶丽敏. 二苯乙烯衍生物分子双光子吸收截面:官能团对称性的影响. 物理学报, 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [19] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究. 物理学报, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
    [20] 马瑾怡, 邱锡钧. 强光场中电子系统与多光子的相互作用. 物理学报, 2001, 50(3): 416-421. doi: 10.7498/aps.50.416
计量
  • 文章访问数:  5304
  • PDF下载量:  160
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-01
  • 修回日期:  2023-07-13
  • 上网日期:  2023-07-26
  • 刊出日期:  2023-10-20

/

返回文章
返回