搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“针尖下的实验室”—扫描探针探测与调控铁电畴及其微观物性

田国 樊贞 陈德杨 侯志鹏 刘俊明 高兴森

引用本文:
Citation:

“针尖下的实验室”—扫描探针探测与调控铁电畴及其微观物性

田国, 樊贞, 陈德杨, 侯志鹏, 刘俊明, 高兴森

Laboratory experiments based on tip probe - Scanning probe detection and regulation of ferroelectric domains and their microscopic physical properties

Tian Guo, Fan Zhen, Chen De-Yang, Hou Zhi-Peng, Liu Jun-Ming, Gao Xing-Sen
PDF
HTML
导出引用
  • 铁电和多铁材料作为未来高性能信息媒介引起广泛关注. 其中铁电畴的形态及演化特征可显著影响材料电导、光伏、磁电耦合等诸多物理性能以及器件功能, 尤其是新奇拓扑畴带来诸多新颖物性, 使得通过畴调控方法设计材料及器件性能成为可能. 深入理解铁电畴及其微观物性调控规律有望为后摩尔时代信息技术带来新的器件设计方案. 本文主要介绍通过多功能扫描探针显微镜研究铁电和多铁材料的微观畴结构和相关物理性能, 及其调控规律和机制, 并在此基础上构筑新原理信息器件.
    Ferroelectric and multiferroic materials have gained significant attention due to their potential applications in investigating emergent cross-coupling phenomena among spin, charge, orbit, and lattice in correlated electron systems, as well as promising candidates for prospective applications in advanced industries, e.g. data memory/processing, sensors, actuators, and energy-relevant devices. The structure and dynamic characteristics of ferroelectric domains can significantly affect the physical properties and device functions of materials, such as electrical conductivity, photovoltaics, and magnetoelectric coupling, particularly, novel topological domains can bring many new physical properties. These make it possible to design materials and devices through domain engineering methods. Therefore, exploring the microdomain structures and related physical property is expected to bring new material and device solutions for post-Moore's era information technology.Accurate understanding of domain structures and their corresponding functionalities pose challenges to characterization techniques. In particular, it remains challenging to investigate the dynamics and cross-coupling behaviors on a nanoscale in situ. Nowadays, it is worthwhile to pay more attention to the multifunctional scanning probe microscopy technique, as it serves as a versatile and powerful nanoscale probe capable of exploring multifunctionalities. Multi-field stimulation such as electric field, magnetic field, light illumination, strain field, and thermal field can be combined with the advanced scanning probe microscopy technique, making it an ideal platform for in-situ manipulation of domain structure and its related functional response on a nano-scale.In this study, we give a brief overview on the recent advances in our research group in detection and manipulation of ferroelectric domains and microscopic physical properties through multifunctional scanning probe microscopy technique. Special attention is paid to those topological domain structures such as vortex, center domain state and bubble domain in size-confined systems (ultrathin films/multilayers and nanodots/nanoislands) and their associated novel physical phenomena. In addition, the controllability of electric field driven magnetic switching in multiferroic heterostructures is also studied through size effect, interfacial coupling and domain engineering. Finally, we present some suggestions for future directions. Most of these studies are conducted by using the tip probe, so it is named the “Laboratory experiments based on tip probe”.
      通信作者: 高兴森, xingsengao@scnu.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2022YFB3807603)、国家自然科学基金 (批准号: U22A20117, 52002134, 92163210)、广东省科技计划 (批准号: 202201000008)和“香江学者”计划 (批准号: XJ2022004)资助的课题.
      Corresponding author: Gao Xing-Sen, xingsengao@scnu.edu.cn
    • Funds: Project supported by the National Key Research and Development Programs of China (Grant No. 2022YFB3807603), the Natural Science Foundation of China (Grant Nos. U22A20117, 52002134, 92163210), the Science and Technology Planning Project of Guangdong Province, China (Grant No. 202201000008), and the Hong Kong Scholar Program, China (Grant No. XJ2022004).
    [1]

    Scott J F 2007 Science 315 954Google Scholar

    [2]

    Nan C W, Bichurin M I, Dong S X, Vieland D, Srinivasan G 2008 J. Appl. Phys. 103 031101Google Scholar

    [3]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519Google Scholar

    [4]

    Polking M J, Han M G, Yourdkhani A, Petkov V, Kisielowski C F, Volkov V V, Zhu Y, Caruntu G, Alivisatos A P, Ramesh R 2012 Nat. Mater. 11 700Google Scholar

    [5]

    Hu J M, Chen L Q, Nan C W 2016 Adv. Mater. 28 15Google Scholar

    [6]

    Hu J M, Li Zheng, Chen L Q, Nan C W 2011 Nat. Commun. 2 553Google Scholar

    [7]

    Seidel J, Vasudevan R K, Nagarajan V 2016 Adv. Electron. Mater. 2 1500292Google Scholar

    [8]

    Seidel J 2019 Nat. Mater. 18 188Google Scholar

    [9]

    Das S, Hong Z, McCarter M, Shafer P, Shao Y T, Muller D A, Martin L W, Ramesh R 2020 APL Mater. 8 120902Google Scholar

    [10]

    Tang Y L, Zhu Y L, Ma X L 2021 J. Appl. Phys. 129 200904Google Scholar

    [11]

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547Google Scholar

    [12]

    Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schleputz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W, Ramesh R 2016 Nature 530 198Google Scholar

    [13]

    Li Z W, Wang Y J, Tian G, Li P L, Zhao L N, Zhang F Y, Yao J X, Fan H, Song X, Chen D Y, Fan Z, Qin M H, Zeng M, Zhang Z, Lu X B, Hu S J, Lei C H, Zhu Q F, Li J Y, Gao X S, Liu J M 2017 Sci Adv 3 e1700919Google Scholar

    [14]

    Das S, Tang Y L, Hong Z, et al. 2019 Nature 568 368Google Scholar

    [15]

    Rodriguez B J, Gao X S, Liu L F, Lee W, Naumov I I, Bratkovsky A M, Hesse D, Alexe M 2009 Nano Lett. 9 1127Google Scholar

    [16]

    Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych, Yu P, Gajek M, Balke N, Kalinin S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J, Ramesh R 2009 Nat. Mater. 8 229Google Scholar

    [17]

    Gao F, Chen X Y, Yin K B, Dong S, Ren Z F, Yuan F, Yu T, Zou Z G, Liu J-M 2007 Adv. Mater. 19 2889Google Scholar

    [18]

    Seidel J, Fu D, Yang S Y, Alarcon-Llado E, Wu J, Ramesh R, Ager III J W 2011 Phys. Rev. Lett. 107 126805Google Scholar

    [19]

    He Q, Yeh C H, Yang J C, Singh-Bhalla G, Liang C W, Chiu P W, Catalan G, Martin L W, Chu Y H, Scott J F, Ramesh R 2012 Phys. Rev. Lett. 108 067203Google Scholar

    [20]

    Park T J, Papaefthymiou G C, Viescas A J, Moodenbaugh A R, Wong S S 2007 Nano Lett. 7 766Google Scholar

    [21]

    Vasudevan R K, Bogle K A, Kumar A, Jesse S, Magaraggia R, Stamps R, Ogale S B, Potdar H S, Nagarajan V 2011 Appl. Phys. Lett. 99 252905Google Scholar

    [22]

    Tsymbal E Y, Kohlstedt 2006 Science 313 181Google Scholar

    [23]

    Lin Y B, Yan Z B, Lu X B, Lu Z X, Zeng M, Chen Y, Gao X S, Wan J G, Dai J Y, Liu J-M 2014 Appl. Phys. Lett. 104 143503Google Scholar

    [24]

    Yan F, Xing G Z, Li L 2014 Appl. Phys. Lett. 104 132904Google Scholar

    [25]

    Wang C, Jin K J, Xu Z T, Wang L, Ge C, Lu H-B, Guo H-Z, He M, Yang G Z 2011 Appl. Phys. Lett. 98 192901Google Scholar

    [26]

    Banerjee W, Kashir A, Kamba S 2022 Samll 18 2107575

    [27]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S-W 2009 Science 324 63Google Scholar

    [28]

    Guo R, You L, Zhou Y, Lim Z S, Zou X, Chen L, Ramesh R, Wang J L 2013 Nat. Commun. 4 1990Google Scholar

    [29]

    Hu W J, Wang Z H, Yu W L, Wu T 2016 Nat. Commun. 7 10808Google Scholar

    [30]

    Yi H T, Choi T, Choi S G, Oh Y S, Cheong S W 2011 Adv. Mater. 23 3403Google Scholar

    [31]

    Chang K, Liu J W, Lin H C, Wang N, Zhao K, Zhang A M, Jin F, Zhong Y, Hu X P, Duan W H, Zhang Q M, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [32]

    Gou J, Bai H, Zhang X L, Huang Y L, Duan S S, Ariando A, Yang S A, Chen L, Lu Y H, Wee A T S 2023 Nature 617 67

    [33]

    Gao X S, Liu J-M, Au K, Dai J Y 2012 Appl. Phys. Lett. 101 142905Google Scholar

    [34]

    Zhang F Y, Miao Q, Tian G, Lu Z X, Zhao L N, Fan H, Song X, Li Z W, Zeng M, Gao X S, Liu J M 2016 Nanotechnology 27 015703Google Scholar

    [35]

    Chen D Y, Chen Z H, He Q, Clarkson J D, Serrao C R, Yadav A K, Nowakowski M E, Fan Z, You L, Gao X S, Zeng D H, Chen L, Borisevich A Y, Salahuddin S, Liu J-M, Bokor J 2017 Nano Lett. 17 486Google Scholar

    [36]

    Lu Z X, Fan Z, Li P L, Fan H, Tian G, Song X, Li Z W, Zhao L N, Huang K R, Zhang F Y, Zhang Z, Zeng M, Gao X S, Feng J J, Wan J G, Liu J M 2016 ACS Appl. Mater. Interfaces 8 23963Google Scholar

    [37]

    Miao Q, Zeng M, Zhang Z, Lu X B, Dai J Y, Gao X S, Liu J M 2014 Appl. Phys. Lett. 104 182903Google Scholar

    [38]

    Lu Z X, Li P L, Wan J G, Huang Z F, Tian G, Pan D F, Fan Z, Gao X S, Liu J M 2021 ACS Appl. Mater. Interfaces 9 27284

    [39]

    Fan H, Fan Z, Li P L, Zhang F Y, Tian G, Yao J X, Li Z W, Song X, Chen D Y, Han B, Zeng M, Wu S J, Zhang Z, Qin M H, Lu X B, Gao J W, Lu Z X, Zhang Z, Dai J Y, Gao X S, Liu J-M 2017 J. Mater. Chem. C 5 3323Google Scholar

    [40]

    Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J, Li R W 2019 ACS Nano 13 2634Google Scholar

    [41]

    Tan H, Ni Z Y, Peng W B, Du S C, Liu X K, Zhao S Y, Li W, Ye Z, Xu M S, Xu Y, Pi X D, Yang D R 2018 Nano Energy 52 422Google Scholar

    [42]

    Zhao L, Fan Z, Chen S L, Hong L Q, Li Y Q, Tian G, Chen D Y, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J M 2020 Adv. Electron. Mater. 6 201900858

    [43]

    Cui B Y, Fan Z, Li W J, Chen Y H, Dong S, Tan Z W, Chen S L, Tian B B, Tao R Q, Tian G, Chen D Y, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J-M 2022 Nat. Commun. 13 1707Google Scholar

    [44]

    Li W J, Fan Z, Huang Q C, Rao J J, Cui B Y, Chen Z W, Lin Z S, Yan X B, Tian G, Tao R Q, Chen D Y, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J M 2023 Phys. Rev. Appl. 19 014054Google Scholar

    [45]

    Chen Z W, Li W J, Fan Z, Dong S, Chen Y H, Qin M H, Zeng M , Lu X B, Zhou G F, Gao S X, Liu J M 2023 Nat. Commun. 14 3585

    [46]

    Zhang Y, Wang Z R, Zhu J D, Yang Y C, Rao M Y, Song W H, Zhuo Y, Zhang X M, Cui M L, Shen L L, Huang R, Yang J 2020 Appl. Phys. Rev. 7 011308Google Scholar

    [47]

    Liao F Y, Zhou F C, Chai Y 2021 J. Semicond. 42 013105Google Scholar

    [48]

    Ma J, Ma J, Zhang Q H, Peng R C, Wang J, Liu C, Wang M, Li N, Chen M F, Chen X X, Gao P, Gu L, Chen L Q, Yu P, Nan C W, Zhang J X 2018 Nat. Nanotech. 13 947Google Scholar

    [49]

    Han M J, Wang Y J, Tang Y L, Zhu Y L, Ma J Y, Geng W R, Zou M J, Feng Y P, Zhang N B, Ma X L 2019 J. Phys. Chem. C 123 2557Google Scholar

    [50]

    Wang Y J, Feng Y P, Zhu Y L, Tang Y L, Yang L X, Zou M J, Geng W R, Han M J, Guo X W, Wu B, Ma X L 2020 Nat. Mater. 19 881Google Scholar

    [51]

    Naumov I I, Bellaiche L, Fu H X 2004 Nature 432 737Google Scholar

    [52]

    Kalinin S V, Gruverman A 2006 J. Mater. Sci. 41 107Google Scholar

    [53]

    Tian G, Chen D Y, Fan H, Li P L, Fan Z, Qin M H, Zeng M, Dai J Y, Gao X S, Liu J M 2017 ACS Appl. Mater. Interfaces 9 37219Google Scholar

    [54]

    Tian G, Yi X, Song Z Q, et al. 2023 Appl. Phys. Rev. 10 021413Google Scholar

    [55]

    Chen H Y, Tian G, Yang W D, Mo Z H, Zhang L Y, Chen Y Y, Chen C, Hou Z P, Chen D Y, Fan Z, Gao X S, Liu J-M 2020 J. Appl. Phys. 128 224103Google Scholar

    [56]

    Yang W D, Tian G, Zhang Y, Xue F, Zheng D F, Zhang L Y, Wang Y D, Chen C, Fan Z, Hou Z P, Chen D Y, Gao J W, Zeng M, Qin M H, Chen L Q, Gao X S, Liu J M 2021 Nat. Commun. 12 1306Google Scholar

    [57]

    Zhang X C, Chen H Y, Tian Guo, Yang W D, Fan Z, Hou Z P, Chen D Y, Zeng M, Qin M H, Gao J W, Gao X S, Liu J-M 2023 Journal of Materiomics 9 626Google Scholar

    [58]

    Tian G, Yang W D, Song X, Zheng D F, Zhang L Y, Chen C, Li P L, Fan H, Yao J X, Chen D Y, Fan Z, Hou Z P, Zhang Z, Wu S J, Zeng M, Gao X S, Liu J M 2019 Adv. Funct. Mater. 19 1807276

    [59]

    Zheng D F, Tian G, Wang Y D, Yang W D, Zhang L Y, Chen Z F, Fan Z, Chen D Y, Hou Z P, Gao X S, Li Q L, Liu J M 2022 J. Materiomics 8 2022

    [60]

    Yang W D, Tian G, Fan H, Zhao Y, Chen H Y, Zhang L Y, Wang Y D, Fan Z, Hou Z P, Chen D Y, Gao J W, Zeng M, Lu X B, Qin M H, Gao X S, Liu J M 2022 Adv. Mater. 34 2107711Google Scholar

    [61]

    Bibes M, Barthelemy 2008 Nat. Mater. 7 425Google Scholar

    [62]

    Amiri P K, Alzate J G, Cai X Q, Ebrahimi F, Hu Q, Wong K, Grezes C, Lee H, Yu G Q, Li X, Akyol M, Shao Q, Katine J A, Langer J, Ocker B, Wang K L 2015 IEEE Trans. Magn 5 1

    [63]

    Zhou W, Xiong Y Q, Zhang Z M, Wang D H, Tan W S, Cao Q Q, Qian Z H, Du Y W 2016 ACS Appl. Mater. Interfaces 8 5424Google Scholar

    [64]

    郑仁奎, 李晓光2013 物理学进展33 359

    Zheng R K, Li X G 2013 Prog. Phys. 33 359

    [65]

    宋骁, 高兴森, 刘俊明 2018 物理学报 67 157512Google Scholar

    Song X, Gao X S, Liu J-M 2018 Acta Phys. Sin. 67 157512Google Scholar

    [66]

    Kosub T, Kopte M, Hühne R, Appel P, Shields B, Maletinsky P, Hühne R, Liedke M O, Fassbender J, Schmidt O G, Makarov D 2017 Nat. Commun. 8 13985Google Scholar

    [67]

    Tian G, Zhang F Y, Yao J X, Fan H, Li P L, Li Z W, Song X, Zhang X Y, Qin M H, Zeng M, Zhang Z, Yao J X, Gao X S, Liu J-M 2016 ACS Nano 10 1025Google Scholar

    [68]

    Tian G, Ojha S, Ning S, Gao X S, Ross C A 2019 Adv. Electron. Mater. 5 1900012Google Scholar

    [69]

    Zhong X, Tian G, Song X, Wang Y D, Yang W D, Li P L, Luo Q Y, Hou Z P, Fan Z, Chen D Y, Qin M H, Zeng M, Gao X S, Liu J M 2019 Appl. Phys. Lett. 114 012901Google Scholar

    [70]

    Yao J X, Song X, Gao X S, Tian G, Li P L, Fan H, Huang Z F, Yang W D, Chen D Y, Fan Z, Zeng M, Liu J-M 2018 ACS Nano 12 6767Google Scholar

    [71]

    Wiesendanger R 2016 Nat. Rev. Mater. 1 16044Google Scholar

    [72]

    Zhou Y 2019 Natl. Sci. Rev. 6 210 212

    [73]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152Google Scholar

    [74]

    Rosch A 2013 Nat. Nanotech. 8 160Google Scholar

    [75]

    Liang D, DeGrave J P, Stolt M J, Tokura Y, Jin S 2015 Nat. Commun. 6 8217Google Scholar

    [76]

    Hou Z P, Zhang Q, Zhang X C, Xu G Z, et al. 2020 Adv. Mater. 32 1904815Google Scholar

    [77]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Nanotech. 8 742Google Scholar

    [78]

    Wang Y D, Wang L, Xia J, et al. 2020 Nat. Commun. 11 3577Google Scholar

    [79]

    Hou Z P, Wang Y D, Lan X M, et al. 2022 Adv. Mater. 34 202107908

  • 图 1  基于多功能扫描探针的微观多物性观测与多场调控系统

    Fig. 1.  A sketched experimental system based on scanning probe microscopy that enables the probing and tailoring of multi-functionalities and properties under multi-fields/stimuli.

    图 2  铁电畴结构探测 (a) 压电力显微镜原理示意图; (b), (c) 通过扫描探针的针尖在超薄BTO薄膜施加3 V图案化电压后的PFM相位与振幅图[33]; (d) 自组装PbO2/PZT/SRO 薄膜-纳米岛中测得的SSPFM图像及对应3个区域的压电响应曲线, A 为纳米岛边缘, B为纳米岛中心, C为薄膜区域[34]; (e), (f) 随着插入层厚度的增大, BFO/LBFO/SRO/DSO薄膜面内和面外(右上插图)PFM图像; (e) 71°条带畴, 没有La掺杂BFO插入层; (f) 109°畴, 10 nm厚的La掺杂BFO插入层[35]

    Fig. 2.  Measurement of ferroelectric domain structures: (a) Schematic diagram of piezoelectric response force microscope; (b), (c) piezoresponse phase and amplitude images for the ultra-thin BTO film, in which the bright/dark contrast were poled by applying 3 V through AFM tip using a predefined pattern[33]; (d) SSPFM mapping for the PbO2/PZT/SRO film-island structure, and piezoresponse loops for three typical locations: Island edge A, center of an island B, naked film C, respectively[34]; (e), (f) in-plane and out-of-plane PFM images of BFO/LBFO/SRO/DSO films, (e) pure 71° domains without LBFO layer, (f) pured 109° domains with 10 nm LBFO layer[35].

    图 3  铁电阻变与光伏效应 (a) Pt/BFO/SRO 纳米电容器阵列的形貌和导电原子力显微镜图像[36]; (b) Pt/BFO/SRO 纳米电容器的电流-电压多次循环回线, 左上为纳米电容器阻变开关比保持特性曲线[36]; (c) Au/Ti/T-BFO/LSMO微米器件阵列的光学显微镜图像[38]; (d) Au/Ti/T-BFO/LSMO微米器件阵列的PFM相位图, 其中亮区表示极化朝下, 暗区表示极化朝上[38]; (e) 导电原子力显微镜测得微米电极上的光电流图象[38]

    Fig. 3.  Ferroelectric resistive switching and photovoltaic effect: (a) Topography and CAFM current mapping of Pt/BFO/SRO nanocapacitor arrays[36]; (b) I-V hysteresis loops measured for multipe cyscles (Inset top shows retention properties of a typical nanocapacitor[36]); (c) optical image of the microarray derived from Au/Ti/T-BFO/LSMO[38]; (d) ferroelectric phase images recorded by PFM, bright contrast represents polarized-down (Pdown) state, and dark contrast represents polarized-up (Pup) state[38]; (e) photocurrent image of a microarray scanned by CAFM[38].

    图 4  (a) 全铁电储备池计算系统的电路图, 其中易失性和非易失性铁电电阻变器件分别用于构建储备池和读出层; (b) 全铁电储备池计算系统的实物图; (c) 曲率识别任务中不同曲线输入后获得的储备池状态[45]

    Fig. 4.  (a) A schematic flow of the curvature discrimination task implemented on the all-ferroelectric reservoir computing system, in which the reservoir and readout network are implemented with volatile and nonvolatile ferroelectric diodes, respectively; (b) photo of the experimentally constructed all ferroelectric reservoir computing system; (c) the reservoir states after presenting different curves in the curvature discrimination task[45].

    图 5  (a) 铁电光伏突触器件示意图; (b) “传感-计算-存储”一体神经网络电路示意图; (c) 器件的长期增强和抑制特性, 其中光响应度表示权重; (d) 图像识别任务中不同图像输入时获得的输出电流, 理论值用“星号”符号表示[43]

    Fig. 5.  (a) Schematic diagram of ferroelectric photovoltaic synapse; (b) schematic illustration of the architecture of the ferroelectric photosensor network; (c) long-term potentiation and depression characteristics of the device, where the photoresponsivity represents the weight; (d) output currents during the presentations of different input patterns. The theoretical values are indicated by the “star” symbols 43].

    图 6  铁电拓扑畴结构 (a) 角度分辨的矢量PFM技术用于重构中心型拓扑畴的极化分布图像[56]; (b) BFO 纳米点中的一些典型拓扑畴的矢量PFM图像及理论模拟示意图[13]

    Fig. 6.  Ferroelectric topological domains: (a) The angle-resolved lateral PFM images used to reconstruct the polarization vector map for a selected center domain state[56]; (b) vector PFM images and vector maps, along with the simulated contours for some typical topological domains in the BFO nanodots[13].

    图 7  铁电纳米岛的畴壁导电性 (a) BFO纳米岛阵列的PFM 和CAFM表征示意图; (b) BFO纳米岛阵列中导电畴壁的CAFM图; (c) 单个BFO纳米岛中不同畴壁状态相对应的表面电势、导电态和形成机制示意图, 其中(i)为不同畴壁状态的极化分布图象, (ii)为对应的表面电势分布如图, (iii)为不同的畴壁电导分布图, (iv)为不同畴壁状态的形成机制的示意图[58]

    Fig. 7.  Ferroelectric domain wall conductivity: (a) Schematic diagram of PFM and CAFM characterization of the BFO nanoisland array; (b) CAFM map of conductive domain walls in an array of BFO nanodots; (c) surface potential and schematics of possible formation mechanisms for various domain wall states in individual nanoislands, where (i) is the vector map, (ii) is the SKPFM map, (iii) is the corresponding CAFM images, and (iv) is the schematic diagram to help explain the formation mechanisms for different domain wall states [58].

    图 8  铁电拓扑缺陷中心的准一维金属性导电通道 (a) 在BFO纳米岛阵列上探测CAFM和PFM图像的实验装置示意图, 其中纳米岛阵列的三维形态与中心拓扑畴阵列的CAFM图像叠加; (b) 两种拓扑畴的极化分布示意图及对应的导电分布图像; (c) 拓扑缺陷中心的准一维导电通道示意图(上)和相场模拟得到的导电拓扑缺陷核心的横向尺寸(下); (d) 利用拓扑缺陷中的可编程金属传导通道作为数据位设计的概念存储器的示意图; (e) 电阻的在高低阻态之间变化的保持特性曲线; (f)可往复切换的导电拓扑缺陷中心的疲劳特性[56]

    Fig. 8.  Quasi-one-dimensional metallic conduction channels in ferroelectric topological defects: (a) Schematic experimental setup for probing the C-AFM and PFM maps on an array of BFO nanoislands, wherein the 3 D morphology of an array of nanoislands was superimposed with a C-AFM map for an array of center topological states; (b) the typical domain structures of two types of topological states, along with their conduction patterns; (c) schematic diagram of the quasi-one-dimensional conductive channel at the topological core and the lateral dimension of the conductive topological core by phase field simulation; (d) a schematic conceptual crossbar memory device using the programable metallic conduction channels in topological defects as data bits; (e) retention properties of resistance changes between the low and high-conduction states; (f) the fatigue behaviors for a switchable central core [56] .

    图 9  (a) 交叉集成的畴壁存储概念器件示意图和用电子束光刻技术(electron beam lithography, EBL)制备的器件阵列的实例; (b) 基于导电畴壁态产生和消除的原理图; (c) 高低阻态在108次切换的耐受性能; (d) 高低阻态在室温下的保持特性[60]

    Fig. 9.  (a) Conceptual crossbar-integrated domain-wall memory device and an example of a device array fabricated by the Electron beam lithography (EBL) technique; (b) schematic working principle based on creation and erasure of conductive domain-wall states; (c) endurance properties for both LRS and HRS over 108 switching cycles; (d) the retention properties for LRS and HRS at a room temperature [60] .

    图 10  (a)电场控制SRO/CFO/BFO多铁异质结纳米岛中的磁畴翻转[67]; (b)电场驱动在T-BFO/LAO薄膜上的三角形Co纳米磁体的可逆120°磁畴态旋转[70]

    Fig. 10.  (a) Electric field control of magnetic domain switching in SRO/CFO/BFO nanodots[67]; (b) electric field driven reversible 120° magnetic state rotation in triangular-shape Co nanomagnets on tetragonal-structured BiFeO3 film on LaAlO3 substrate [70] .

    图 11  电场控制磁斯格明子 (a) [Pt/Co/Ta]12/PMN-PT 纳米点阵列结构及测试示意图[78]; (b)在~ 350 nm [Pt/Co/Ta]8纳米点上的平均转移应变曲线和相应的磁畴演化过程 (涡旋态、条带、斯格明子态翻转)[78]; (c)直径900 nm 纳米点在不同应变下的模拟自旋图[77]; (d) 电场脉冲驱动斯格明子团簇四态转变[79]

    Fig. 11.  Electric filed manipulation of magnetic skyrmion: (a) [Pt/Co/Ta]12/PMN-PT nanodot array structure and test diagram[78]; (b) the transferred average strain εave and corresponding magnetic domain evolution processes in the d ~ 350 nm [Pt/Co/Ta]8 nanodots[78]; (c) the simulated spin diagram of 900 nm diameter nanodots under different strains[77]; (d) the electric field pulse drives the four-state transformation of skyrmions cluster[79].

  • [1]

    Scott J F 2007 Science 315 954Google Scholar

    [2]

    Nan C W, Bichurin M I, Dong S X, Vieland D, Srinivasan G 2008 J. Appl. Phys. 103 031101Google Scholar

    [3]

    Dong S, Liu J M, Cheong S W, Ren Z F 2015 Adv. Phys. 64 519Google Scholar

    [4]

    Polking M J, Han M G, Yourdkhani A, Petkov V, Kisielowski C F, Volkov V V, Zhu Y, Caruntu G, Alivisatos A P, Ramesh R 2012 Nat. Mater. 11 700Google Scholar

    [5]

    Hu J M, Chen L Q, Nan C W 2016 Adv. Mater. 28 15Google Scholar

    [6]

    Hu J M, Li Zheng, Chen L Q, Nan C W 2011 Nat. Commun. 2 553Google Scholar

    [7]

    Seidel J, Vasudevan R K, Nagarajan V 2016 Adv. Electron. Mater. 2 1500292Google Scholar

    [8]

    Seidel J 2019 Nat. Mater. 18 188Google Scholar

    [9]

    Das S, Hong Z, McCarter M, Shafer P, Shao Y T, Muller D A, Martin L W, Ramesh R 2020 APL Mater. 8 120902Google Scholar

    [10]

    Tang Y L, Zhu Y L, Ma X L 2021 J. Appl. Phys. 129 200904Google Scholar

    [11]

    Tang Y L, Zhu Y L, Ma X L, Borisevich A Y, Morozovska A N, Eliseev E A, Wang W Y, Wang Y J, Xu Y B, Zhang Z D, Pennycook S J 2015 Science 348 547Google Scholar

    [12]

    Yadav A K, Nelson C T, Hsu S L, Hong Z, Clarkson J D, Schleputz C M, Damodaran A R, Shafer P, Arenholz E, Dedon L R, Chen D, Vishwanath A, Minor A M, Chen L Q, Scott J F, Martin L W, Ramesh R 2016 Nature 530 198Google Scholar

    [13]

    Li Z W, Wang Y J, Tian G, Li P L, Zhao L N, Zhang F Y, Yao J X, Fan H, Song X, Chen D Y, Fan Z, Qin M H, Zeng M, Zhang Z, Lu X B, Hu S J, Lei C H, Zhu Q F, Li J Y, Gao X S, Liu J M 2017 Sci Adv 3 e1700919Google Scholar

    [14]

    Das S, Tang Y L, Hong Z, et al. 2019 Nature 568 368Google Scholar

    [15]

    Rodriguez B J, Gao X S, Liu L F, Lee W, Naumov I I, Bratkovsky A M, Hesse D, Alexe M 2009 Nano Lett. 9 1127Google Scholar

    [16]

    Seidel J, Martin L W, He Q, Zhan Q, Chu Y H, Rother A, Hawkridge M E, Maksymovych, Yu P, Gajek M, Balke N, Kalinin S V, Gemming S, Wang F, Catalan G, Scott J F, Spaldin N A, Orenstein J, Ramesh R 2009 Nat. Mater. 8 229Google Scholar

    [17]

    Gao F, Chen X Y, Yin K B, Dong S, Ren Z F, Yuan F, Yu T, Zou Z G, Liu J-M 2007 Adv. Mater. 19 2889Google Scholar

    [18]

    Seidel J, Fu D, Yang S Y, Alarcon-Llado E, Wu J, Ramesh R, Ager III J W 2011 Phys. Rev. Lett. 107 126805Google Scholar

    [19]

    He Q, Yeh C H, Yang J C, Singh-Bhalla G, Liang C W, Chiu P W, Catalan G, Martin L W, Chu Y H, Scott J F, Ramesh R 2012 Phys. Rev. Lett. 108 067203Google Scholar

    [20]

    Park T J, Papaefthymiou G C, Viescas A J, Moodenbaugh A R, Wong S S 2007 Nano Lett. 7 766Google Scholar

    [21]

    Vasudevan R K, Bogle K A, Kumar A, Jesse S, Magaraggia R, Stamps R, Ogale S B, Potdar H S, Nagarajan V 2011 Appl. Phys. Lett. 99 252905Google Scholar

    [22]

    Tsymbal E Y, Kohlstedt 2006 Science 313 181Google Scholar

    [23]

    Lin Y B, Yan Z B, Lu X B, Lu Z X, Zeng M, Chen Y, Gao X S, Wan J G, Dai J Y, Liu J-M 2014 Appl. Phys. Lett. 104 143503Google Scholar

    [24]

    Yan F, Xing G Z, Li L 2014 Appl. Phys. Lett. 104 132904Google Scholar

    [25]

    Wang C, Jin K J, Xu Z T, Wang L, Ge C, Lu H-B, Guo H-Z, He M, Yang G Z 2011 Appl. Phys. Lett. 98 192901Google Scholar

    [26]

    Banerjee W, Kashir A, Kamba S 2022 Samll 18 2107575

    [27]

    Choi T, Lee S, Choi Y J, Kiryukhin V, Cheong S-W 2009 Science 324 63Google Scholar

    [28]

    Guo R, You L, Zhou Y, Lim Z S, Zou X, Chen L, Ramesh R, Wang J L 2013 Nat. Commun. 4 1990Google Scholar

    [29]

    Hu W J, Wang Z H, Yu W L, Wu T 2016 Nat. Commun. 7 10808Google Scholar

    [30]

    Yi H T, Choi T, Choi S G, Oh Y S, Cheong S W 2011 Adv. Mater. 23 3403Google Scholar

    [31]

    Chang K, Liu J W, Lin H C, Wang N, Zhao K, Zhang A M, Jin F, Zhong Y, Hu X P, Duan W H, Zhang Q M, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [32]

    Gou J, Bai H, Zhang X L, Huang Y L, Duan S S, Ariando A, Yang S A, Chen L, Lu Y H, Wee A T S 2023 Nature 617 67

    [33]

    Gao X S, Liu J-M, Au K, Dai J Y 2012 Appl. Phys. Lett. 101 142905Google Scholar

    [34]

    Zhang F Y, Miao Q, Tian G, Lu Z X, Zhao L N, Fan H, Song X, Li Z W, Zeng M, Gao X S, Liu J M 2016 Nanotechnology 27 015703Google Scholar

    [35]

    Chen D Y, Chen Z H, He Q, Clarkson J D, Serrao C R, Yadav A K, Nowakowski M E, Fan Z, You L, Gao X S, Zeng D H, Chen L, Borisevich A Y, Salahuddin S, Liu J-M, Bokor J 2017 Nano Lett. 17 486Google Scholar

    [36]

    Lu Z X, Fan Z, Li P L, Fan H, Tian G, Song X, Li Z W, Zhao L N, Huang K R, Zhang F Y, Zhang Z, Zeng M, Gao X S, Feng J J, Wan J G, Liu J M 2016 ACS Appl. Mater. Interfaces 8 23963Google Scholar

    [37]

    Miao Q, Zeng M, Zhang Z, Lu X B, Dai J Y, Gao X S, Liu J M 2014 Appl. Phys. Lett. 104 182903Google Scholar

    [38]

    Lu Z X, Li P L, Wan J G, Huang Z F, Tian G, Pan D F, Fan Z, Gao X S, Liu J M 2021 ACS Appl. Mater. Interfaces 9 27284

    [39]

    Fan H, Fan Z, Li P L, Zhang F Y, Tian G, Yao J X, Li Z W, Song X, Chen D Y, Han B, Zeng M, Wu S J, Zhang Z, Qin M H, Lu X B, Gao J W, Lu Z X, Zhang Z, Dai J Y, Gao X S, Liu J-M 2017 J. Mater. Chem. C 5 3323Google Scholar

    [40]

    Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J, Li R W 2019 ACS Nano 13 2634Google Scholar

    [41]

    Tan H, Ni Z Y, Peng W B, Du S C, Liu X K, Zhao S Y, Li W, Ye Z, Xu M S, Xu Y, Pi X D, Yang D R 2018 Nano Energy 52 422Google Scholar

    [42]

    Zhao L, Fan Z, Chen S L, Hong L Q, Li Y Q, Tian G, Chen D Y, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J M 2020 Adv. Electron. Mater. 6 201900858

    [43]

    Cui B Y, Fan Z, Li W J, Chen Y H, Dong S, Tan Z W, Chen S L, Tian B B, Tao R Q, Tian G, Chen D Y, Hou Z P, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J-M 2022 Nat. Commun. 13 1707Google Scholar

    [44]

    Li W J, Fan Z, Huang Q C, Rao J J, Cui B Y, Chen Z W, Lin Z S, Yan X B, Tian G, Tao R Q, Chen D Y, Qin M H, Zeng M, Lu X B, Zhou G F, Gao X S, Liu J M 2023 Phys. Rev. Appl. 19 014054Google Scholar

    [45]

    Chen Z W, Li W J, Fan Z, Dong S, Chen Y H, Qin M H, Zeng M , Lu X B, Zhou G F, Gao S X, Liu J M 2023 Nat. Commun. 14 3585

    [46]

    Zhang Y, Wang Z R, Zhu J D, Yang Y C, Rao M Y, Song W H, Zhuo Y, Zhang X M, Cui M L, Shen L L, Huang R, Yang J 2020 Appl. Phys. Rev. 7 011308Google Scholar

    [47]

    Liao F Y, Zhou F C, Chai Y 2021 J. Semicond. 42 013105Google Scholar

    [48]

    Ma J, Ma J, Zhang Q H, Peng R C, Wang J, Liu C, Wang M, Li N, Chen M F, Chen X X, Gao P, Gu L, Chen L Q, Yu P, Nan C W, Zhang J X 2018 Nat. Nanotech. 13 947Google Scholar

    [49]

    Han M J, Wang Y J, Tang Y L, Zhu Y L, Ma J Y, Geng W R, Zou M J, Feng Y P, Zhang N B, Ma X L 2019 J. Phys. Chem. C 123 2557Google Scholar

    [50]

    Wang Y J, Feng Y P, Zhu Y L, Tang Y L, Yang L X, Zou M J, Geng W R, Han M J, Guo X W, Wu B, Ma X L 2020 Nat. Mater. 19 881Google Scholar

    [51]

    Naumov I I, Bellaiche L, Fu H X 2004 Nature 432 737Google Scholar

    [52]

    Kalinin S V, Gruverman A 2006 J. Mater. Sci. 41 107Google Scholar

    [53]

    Tian G, Chen D Y, Fan H, Li P L, Fan Z, Qin M H, Zeng M, Dai J Y, Gao X S, Liu J M 2017 ACS Appl. Mater. Interfaces 9 37219Google Scholar

    [54]

    Tian G, Yi X, Song Z Q, et al. 2023 Appl. Phys. Rev. 10 021413Google Scholar

    [55]

    Chen H Y, Tian G, Yang W D, Mo Z H, Zhang L Y, Chen Y Y, Chen C, Hou Z P, Chen D Y, Fan Z, Gao X S, Liu J-M 2020 J. Appl. Phys. 128 224103Google Scholar

    [56]

    Yang W D, Tian G, Zhang Y, Xue F, Zheng D F, Zhang L Y, Wang Y D, Chen C, Fan Z, Hou Z P, Chen D Y, Gao J W, Zeng M, Qin M H, Chen L Q, Gao X S, Liu J M 2021 Nat. Commun. 12 1306Google Scholar

    [57]

    Zhang X C, Chen H Y, Tian Guo, Yang W D, Fan Z, Hou Z P, Chen D Y, Zeng M, Qin M H, Gao J W, Gao X S, Liu J-M 2023 Journal of Materiomics 9 626Google Scholar

    [58]

    Tian G, Yang W D, Song X, Zheng D F, Zhang L Y, Chen C, Li P L, Fan H, Yao J X, Chen D Y, Fan Z, Hou Z P, Zhang Z, Wu S J, Zeng M, Gao X S, Liu J M 2019 Adv. Funct. Mater. 19 1807276

    [59]

    Zheng D F, Tian G, Wang Y D, Yang W D, Zhang L Y, Chen Z F, Fan Z, Chen D Y, Hou Z P, Gao X S, Li Q L, Liu J M 2022 J. Materiomics 8 2022

    [60]

    Yang W D, Tian G, Fan H, Zhao Y, Chen H Y, Zhang L Y, Wang Y D, Fan Z, Hou Z P, Chen D Y, Gao J W, Zeng M, Lu X B, Qin M H, Gao X S, Liu J M 2022 Adv. Mater. 34 2107711Google Scholar

    [61]

    Bibes M, Barthelemy 2008 Nat. Mater. 7 425Google Scholar

    [62]

    Amiri P K, Alzate J G, Cai X Q, Ebrahimi F, Hu Q, Wong K, Grezes C, Lee H, Yu G Q, Li X, Akyol M, Shao Q, Katine J A, Langer J, Ocker B, Wang K L 2015 IEEE Trans. Magn 5 1

    [63]

    Zhou W, Xiong Y Q, Zhang Z M, Wang D H, Tan W S, Cao Q Q, Qian Z H, Du Y W 2016 ACS Appl. Mater. Interfaces 8 5424Google Scholar

    [64]

    郑仁奎, 李晓光2013 物理学进展33 359

    Zheng R K, Li X G 2013 Prog. Phys. 33 359

    [65]

    宋骁, 高兴森, 刘俊明 2018 物理学报 67 157512Google Scholar

    Song X, Gao X S, Liu J-M 2018 Acta Phys. Sin. 67 157512Google Scholar

    [66]

    Kosub T, Kopte M, Hühne R, Appel P, Shields B, Maletinsky P, Hühne R, Liedke M O, Fassbender J, Schmidt O G, Makarov D 2017 Nat. Commun. 8 13985Google Scholar

    [67]

    Tian G, Zhang F Y, Yao J X, Fan H, Li P L, Li Z W, Song X, Zhang X Y, Qin M H, Zeng M, Zhang Z, Yao J X, Gao X S, Liu J-M 2016 ACS Nano 10 1025Google Scholar

    [68]

    Tian G, Ojha S, Ning S, Gao X S, Ross C A 2019 Adv. Electron. Mater. 5 1900012Google Scholar

    [69]

    Zhong X, Tian G, Song X, Wang Y D, Yang W D, Li P L, Luo Q Y, Hou Z P, Fan Z, Chen D Y, Qin M H, Zeng M, Gao X S, Liu J M 2019 Appl. Phys. Lett. 114 012901Google Scholar

    [70]

    Yao J X, Song X, Gao X S, Tian G, Li P L, Fan H, Huang Z F, Yang W D, Chen D Y, Fan Z, Zeng M, Liu J-M 2018 ACS Nano 12 6767Google Scholar

    [71]

    Wiesendanger R 2016 Nat. Rev. Mater. 1 16044Google Scholar

    [72]

    Zhou Y 2019 Natl. Sci. Rev. 6 210 212

    [73]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotech. 8 152Google Scholar

    [74]

    Rosch A 2013 Nat. Nanotech. 8 160Google Scholar

    [75]

    Liang D, DeGrave J P, Stolt M J, Tokura Y, Jin S 2015 Nat. Commun. 6 8217Google Scholar

    [76]

    Hou Z P, Zhang Q, Zhang X C, Xu G Z, et al. 2020 Adv. Mater. 32 1904815Google Scholar

    [77]

    Iwasaki J, Mochizuki M, Nagaosa N 2013 Nat. Nanotech. 8 742Google Scholar

    [78]

    Wang Y D, Wang L, Xia J, et al. 2020 Nat. Commun. 11 3577Google Scholar

    [79]

    Hou Z P, Wang Y D, Lan X M, et al. 2022 Adv. Mater. 34 202107908

  • [1] 张颖, 李卓霖, 沈保根. 磁畴壁拓扑结构研究进展. 物理学报, 2024, 73(1): 017504. doi: 10.7498/aps.73.20231612
    [2] 黄远志, 杨传浩, 何颂平, 马瑞松, 郇庆. 基于干式制冷的低温扫描探针显微镜研究进展. 物理学报, 2024, 73(22): 228701. doi: 10.7498/aps.73.20241367
    [3] 欧阳鑫健, 张紫阳, 张锋, 张佳乐, 王大威. 用于铁电体复杂畴结构模拟的布朗方程. 物理学报, 2023, 72(5): 057502. doi: 10.7498/aps.72.20222150
    [4] 李玲, 潘天择, 马家骏, 张善涛, 汪尧进. PNZST:AlN复合陶瓷局域应力场增强热释电性能机理. 物理学报, 2022, 71(21): 217701. doi: 10.7498/aps.71.20221250
    [5] 刘迪, 王静, 王俊升, 黄厚兵. 相场模拟应变调控PbZr(1–x)TixO3薄膜微观畴结构和宏观铁电性能. 物理学报, 2020, 69(12): 127801. doi: 10.7498/aps.69.20200310
    [6] 谭丛兵, 钟向丽, 王金斌. 铁电材料中的极性拓扑结构. 物理学报, 2020, 69(12): 127702. doi: 10.7498/aps.69.20200311
    [7] 杨文达, 陈洪英, 陈䶮, 田国, 高兴森. 铁电纳米结构中奇异极化拓扑畴的研究新进展. 物理学报, 2020, 69(21): 217501. doi: 10.7498/aps.69.20201063
    [8] 张志模, 张文号, 付英双. 二维拓扑绝缘体的扫描隧道显微镜研究. 物理学报, 2019, 68(22): 226801. doi: 10.7498/aps.68.20191631
    [9] 曹永泽, 赵越. 交变力磁力显微镜: 在三维空间同时观测静态和动态磁畴. 物理学报, 2019, 68(16): 168502. doi: 10.7498/aps.68.20190510
    [10] 徐桂舟, 徐展, 丁贝, 侯志鹏, 王文洪, 徐锋. 磁畴壁手性和磁斯格明子的拓扑性表征及其调控. 物理学报, 2018, 67(13): 137508. doi: 10.7498/aps.67.20180513
    [11] 张志东. 磁性材料的磁结构、磁畴结构和拓扑磁结构. 物理学报, 2015, 64(6): 067503. doi: 10.7498/aps.64.067503
    [12] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [13] 吕业刚, 梁晓琳, 谭永宏, 郑学军, 龚跃球, 何林. 微结构对Eu掺杂Bi4Ti3O12铁电薄膜铁电性能的影响. 物理学报, 2011, 60(2): 027701. doi: 10.7498/aps.60.027701
    [14] 华宝成, 钱建强, 王曦, 姚骏恩. 应用于扫描探针显微镜的石英音叉机械模型研究. 物理学报, 2011, 60(4): 040702. doi: 10.7498/aps.60.040702
    [15] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [16] 周波, 陈云琳, 刘刚, 詹鹤. 铁电体中新畴成核经典模型的改进. 物理学报, 2009, 58(4): 2762-2767. doi: 10.7498/aps.58.2762
    [17] 王龙海, 于 军, 刘 锋, 郑朝丹, 李 佳, 王耘波, 高峻雄, 王志红, 曾慧中, 赵素玲. PT/PZT/PT铁电薄膜的铁电畴和畴壁. 物理学报, 2006, 55(5): 2590-2595. doi: 10.7498/aps.55.2590
    [18] 曾华荣, 李国荣, 殷庆瑞, 唐新桂. PZT铁电薄膜纳米尺度畴结构的扫描力显微术研究. 物理学报, 2003, 52(7): 1783-1787. doi: 10.7498/aps.52.1783
    [19] 王春雷, 钟维烈, 张沛霖. 有电畴的铁电薄膜中的相变. 物理学报, 1993, 42(10): 1703-1706. doi: 10.7498/aps.42.1703
    [20] 阎凤利, 李伯臧. 管状和闭合磁畴壁的拓扑分类. 物理学报, 1988, 37(1): 95-104. doi: 10.7498/aps.37.95
计量
  • 文章访问数:  4018
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-07
  • 修回日期:  2023-07-25
  • 上网日期:  2023-08-19
  • 刊出日期:  2023-10-20

/

返回文章
返回