搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

He/Ar/Kr光泵稀有气体激光介质中的Ar-Kr共振能量转移

沈元毅 雷鹏 王新兵 左都罗

引用本文:
Citation:

He/Ar/Kr光泵稀有气体激光介质中的Ar-Kr共振能量转移

沈元毅, 雷鹏, 王新兵, 左都罗

Ar-Kr resonance energy transfer in He/Ar/Kr optically pumped rare gas laser medium

Shen Yuan-Yi, Lei Peng, Wang Xin-Bing, Zuo Du-Luo
PDF
HTML
导出引用
  • 高亚稳态原子数密度是光抽运稀有气体激光器的研究重点之一. 考虑到Ar亚稳态能级与Kr激发态5p[3/2]2能量仅相差20 cm–1, 在He/Kr放电体系中加入氩气, 有望通过能量共振转移达到补充Kr亚稳态原子(Kr*)密度的目的. 本文从光谱诊断及亚稳态原子密度激光吸收光谱测量两个角度进行实验分析, 结果表明: 在100 mbar (1 bar = 105 Pa), 1% Kr, 12.5% Ar气体条件下, Kr(5p[3/2]2)向亚稳态能级跃迁辐射谱线峰值最高可增强约10倍, 该跃迁谱线尾部信号从0.6 μs延长至14.25 μs. 实验同时测量了不同Ar含量下 Kr*密度. 在100 mbar, 1% Kr气体条件下加入15% Ar, Kr*密度从 4.94×1011 cm–3提升至6.96×1012 cm–3. 在气压600 mbar, 1% Kr/He混合气体中加入5% Ar, Kr*峰值密度从4.69×1013 cm–3提升至5.79×1013 cm–3. 这些结果说明, Ar-Kr的共振能量转移能有效提高Kr*密度, 有利于光抽运Kr*激光器的高效运行.
    High metastable density is one of the research hotspots of optically pumped rare gas laser (OPRGL). Considering that the Ar metastable state energy level is only 20 cm–1 different from the Kr excited state 5p[3/2]2, argon gas is added to the He/Kr discharge system. Owing to the long lifetime of the Ar metastable state atoms, through the collision resonance energy transfer process of Ar(4s[3/2]2)→Kr(5p[3/2]2), the purpose of supplementing and increasing the metastable density of Kr (Kr*) can be realized. In the case of obtaining the same metastable density, the pressure of the discharge power source is reduced, and a new idea is provided for further obtaining a high metastable density in a large discharge volume. In this work, the experimental analysis is carried out from the perspectives of spectral diagnosis and measurement of metastable density by laser absorption spectroscopy. The results show that the peak of radiative transition line of Kr high energy level atoms participating in the collision to the metastable state energy level is significantly enhanced after adding argon, and the tail signal of the transition line is extended within one discharge cycle. Under the gas conditions of 100 mbar, 1% Kr and 12.5% Ar, the peak value of the spectral line can be enhanced by about 10 times, and the tail signal of the transition line can be extended from 0.6 μs to 14.25 μs. At the same time, the density of Kr metastable energy level atoms is measured under different Ar content. Under the gas conditions of 100 mbar, 15% Ar and 1% Kr, the density of Kr* increases from 4.94×1011 cm–3 to 6.96×1012 cm–3. At low pressure, the absorption linewidth of Kr metastable atoms narrows with the increase of Ar content. Under the gas condition of 600 mbar and 1% Kr, when the content of Ar is increased to 5%, the peak density of Kr* increases from 4.69×1013 cm–3 to 5.79×1013 cm–3, i.e. the increment is 20%. Although the enhancement of metastable-atom-generation at high pressure is not so significant as those at low pressure, an increasing trend can still be observed. The results verify that the Kr metastable atoms generated in each discharge period can be supplemented by Ar-Kr resonance energy transfer.
      通信作者: 左都罗, zuoduluo@hust.edu.cn
      Corresponding author: Zuo Du-Luo, zuoduluo@hust.edu.cn
    [1]

    Qi Y, Yi H Y, Huang J J, Kuang Y 2021 Laser Optoelectron. P. 58 0700003Google Scholar

    [2]

    Krupke W F 2012 Prog. Quantum Electron. 36 4Google Scholar

    [3]

    Pitz G A, Stalnaker D M, Guild E M, Oliker B Q, Moran P J, Townsend S W, Hostutler D A 2016 High Energy/ Average Power Lasers and Intense Beam Applications IX San Francisco, CA, February 15–16, 2016 972902

    [4]

    齐予, 易亨瑜, 黄吉金, 匡艳 2021 激光与光电子学进展 58 46

    Qi Y, Yi H Y, Huang J J, Kuang Y 2021 Laser Optoelectron P. 58 46

    [5]

    Han J D, Heaven M C 2012 Opt. Lett. 37 2157Google Scholar

    [6]

    Kim H, Hopwood J 2019 J. Appl. Phys. 126 163301Google Scholar

    [7]

    Mikheyev P A, Chernyshov A K, Ufimtsev N I, Vorontsova E A, Azyazov V N 2015 J. Quant. Spectrosc. Radiat. Transf. 164 1Google Scholar

    [8]

    Mikheyev P A, Chernyshov A K, Ufimtsev N I, Vorontsova E A 2015 Tunable Diode-laser Spectroscopy (TDLS) of 811.5 nm Ar Line for Ar(4s[3/2]2) Number Density Measurements in a 40 MHz RF Discharge (Vol. 9255) (SPIE) 92552W

    [9]

    Mikheyev P A, Chernyshov A K, Ufimtsev N I, Ghildina A R, Azyazov V N, Heaven M C 2016 High Energy/Average Power Lasers and Intense Beam Applications IX San Francisco, CA, February 15–16, 2016 97290E

    [10]

    Gao J, Zuo D L, Zhao J, Li B, Yu A L, Wang X B 2016 Opt. Laser Technol. 84 48Google Scholar

    [11]

    Mikheyev P A, Han J D, Clark A, Sanderson C, Heaven M C2017 Production of Ar Metastables in A Dielectric Barrier Discharge (Vol. 10254) (SPIE) 102540X

    [12]

    Han J D, Glebov L, Venus G, Heaven M C 2013 Opt. Lett. 38 5458Google Scholar

    [13]

    Chu J Z, Huang K, Luan K P, Hu S, Zhu F, Huang C, Li G P, Liu J B, Guo J W, Liu D 2021 Chin. J. Lasers 48 0701006Google Scholar

    [14]

    Zhang Z F, Lei P, Zuo D L, Wang X B 2022 Chin. Opt. Lett. 20 031408Google Scholar

    [15]

    Chu J Z, Huang K, Gai B D, Hu S, Liu J B, Chen Y, Liu D, Guo J W 2022 J. Lumines. 247 118839Google Scholar

    [16]

    Wang R, Yang Z N, Tang H, Li L, Zhao H Z, Wang H Y, Xu X J 2022 Opt. Commun. 502 127398Google Scholar

    [17]

    Ghildina A R, Mikheyev P A, Chernyshov A K, Ufimtsev N I, Azyazov V N, Heaven M C 2017 Pressure Broadening Coefficients for the 811.5 nm Ar Line and 811.3 nm Kr Line in Rare Gases (Vol. 10254) (SPIE) 102540Y

    [18]

    Han J, Heaven M C, Moran P J, Pitz G A, Guild E M, Sanderson C R, Hokr B 2017 Opt. Lett. 42 4627Google Scholar

    [19]

    Wang R, Yang Z N, Li K, Wang H Y, Xu X J 2022 J. Appl. Phys. 131 023104Google Scholar

    [20]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2022) https://physics.nist.gov/asd/ [2023-6-8

    [21]

    Lei P, Zhang Z F, Wang X B, Zuo D L 2022 Opt. Commun. 513 128116Google Scholar

    [22]

    Belostotskiy S G, Donnelly V M, Economou D J, Sadeghi N 2009 IEEE Trans. Plasma Sci. 37 852Google Scholar

    [23]

    Miura N, Hopwood J 2011 J. Appl. Phys. 109 013304Google Scholar

    [24]

    Sun P, Zuo D, Wang X, Han J D, Heaven M C 2020 Opt. Express 28 14580Google Scholar

  • 图 1  Ar-Kr原子能级以及碰撞传能示意图, Ar(4s[3/2]2)能级与Kr(5p[3/2]2)能级能量差仅为20 cm–1

    Fig. 1.  Schematic diagram of Ar-Kr atomic energy levels and collision energy transfer, and the energy difference between Ar(4s[3/2]2) energy and Kr(5p[3/2]2) energy is only 20 cm–1.

    图 2  放电装置及探测光路图

    Fig. 2.  Discharge device and detection optical path diagram.

    图 3  760.2 nm光谱诊断结果 (a) 100 mbar, 1% Kr/Ar/He混合气体不同Ar含量的放电等离子体放射光谱; (b) 不同气压760.2 nm谱线峰值随Ar含量的变化

    Fig. 3.  Spectral diagnosis results at 760.2 nm: (a) Emission spectra of discharge plasma with different Ar content in 100 mbar, 1% Kr/Ar/He gas mixture; (b) variation of the peak value of 760.2 nm spectral line with Ar content at different pressure.

    图 4  819.0 nm光谱诊断结果 (a) 100 mbar, 1% Kr/Ar/He混合气体不同Ar含量的放电等离子体放射光谱; (b) 不同气压819.0 nm谱线峰值随Ar含量的变化

    Fig. 4.  Diagnosis Results of 819.0 nm spectra: (a) Emission spectra of discharge plasma with different Ar content in 100 mbar, 1% Kr/Ar/He gas mixture; (b) variation of the peak value of 819.0 nm spectral line with Ar content at different pressure.

    图 5  760.2 nm时间分辨光谱诊断结果 (a) 100 mbar, 1% Kr时不同氩含量原始光谱图; (b)荧光信号强度降至0.1 mV所需时间

    Fig. 5.  Diagnostic results of 760.2 nm time-resolved spectra: (a) Original spectrogram of different argon content at 100 mbar, 1% Kr; (b) time required for fluorescence signal intensity to drop to 0.1 mV.

    图 6  (a) 100 mbar, 1% Kr, 4% Ar条件下原始吸收信号; (b) Voigt拟合结果

    Fig. 6.  (a) Original absorption signal under condition of 100 mbar, 1% Kr, 4% Ar; (b) Voigt fitting results.

    图 7  (a) 100—200 mbar, 1% Kr/He混合气中不同Ar含量对Kr*密度影响; (b) 100—200 mbar, 1% Kr/He混合气中不同Ar含量对Kr亚稳态能级吸收线宽影响; (c) 100 mbar, 1% Kr和2% Kr含量时, Kr*粒子数密度和吸收线宽对比

    Fig. 7.  (a) Effect of Ar content in 1% Kr/He mixture on Kr* density at 100–200 mbar; (b) effect of different Ar content in 100–200 mbar, 1% Kr/He mixture on the absorption linewidth of Kr metastable energy level; (c) comparison of Kr* particle number density and absorption line width at 100 mbar, 1% Kr and 2% Kr content.

    图 8  (a) 300—600 mbar不同Ar含量对1% Kr/He混合气中Kr*密度影响; (b)不同气压下Kr*密度增长比例变化

    Fig. 8.  (a) Effect of different Ar content on Kr* Density in 1% Kr/He mixture at 300—600 mbar; (b) change in Kr* density growth ratio under different air pressures.

  • [1]

    Qi Y, Yi H Y, Huang J J, Kuang Y 2021 Laser Optoelectron. P. 58 0700003Google Scholar

    [2]

    Krupke W F 2012 Prog. Quantum Electron. 36 4Google Scholar

    [3]

    Pitz G A, Stalnaker D M, Guild E M, Oliker B Q, Moran P J, Townsend S W, Hostutler D A 2016 High Energy/ Average Power Lasers and Intense Beam Applications IX San Francisco, CA, February 15–16, 2016 972902

    [4]

    齐予, 易亨瑜, 黄吉金, 匡艳 2021 激光与光电子学进展 58 46

    Qi Y, Yi H Y, Huang J J, Kuang Y 2021 Laser Optoelectron P. 58 46

    [5]

    Han J D, Heaven M C 2012 Opt. Lett. 37 2157Google Scholar

    [6]

    Kim H, Hopwood J 2019 J. Appl. Phys. 126 163301Google Scholar

    [7]

    Mikheyev P A, Chernyshov A K, Ufimtsev N I, Vorontsova E A, Azyazov V N 2015 J. Quant. Spectrosc. Radiat. Transf. 164 1Google Scholar

    [8]

    Mikheyev P A, Chernyshov A K, Ufimtsev N I, Vorontsova E A 2015 Tunable Diode-laser Spectroscopy (TDLS) of 811.5 nm Ar Line for Ar(4s[3/2]2) Number Density Measurements in a 40 MHz RF Discharge (Vol. 9255) (SPIE) 92552W

    [9]

    Mikheyev P A, Chernyshov A K, Ufimtsev N I, Ghildina A R, Azyazov V N, Heaven M C 2016 High Energy/Average Power Lasers and Intense Beam Applications IX San Francisco, CA, February 15–16, 2016 97290E

    [10]

    Gao J, Zuo D L, Zhao J, Li B, Yu A L, Wang X B 2016 Opt. Laser Technol. 84 48Google Scholar

    [11]

    Mikheyev P A, Han J D, Clark A, Sanderson C, Heaven M C2017 Production of Ar Metastables in A Dielectric Barrier Discharge (Vol. 10254) (SPIE) 102540X

    [12]

    Han J D, Glebov L, Venus G, Heaven M C 2013 Opt. Lett. 38 5458Google Scholar

    [13]

    Chu J Z, Huang K, Luan K P, Hu S, Zhu F, Huang C, Li G P, Liu J B, Guo J W, Liu D 2021 Chin. J. Lasers 48 0701006Google Scholar

    [14]

    Zhang Z F, Lei P, Zuo D L, Wang X B 2022 Chin. Opt. Lett. 20 031408Google Scholar

    [15]

    Chu J Z, Huang K, Gai B D, Hu S, Liu J B, Chen Y, Liu D, Guo J W 2022 J. Lumines. 247 118839Google Scholar

    [16]

    Wang R, Yang Z N, Tang H, Li L, Zhao H Z, Wang H Y, Xu X J 2022 Opt. Commun. 502 127398Google Scholar

    [17]

    Ghildina A R, Mikheyev P A, Chernyshov A K, Ufimtsev N I, Azyazov V N, Heaven M C 2017 Pressure Broadening Coefficients for the 811.5 nm Ar Line and 811.3 nm Kr Line in Rare Gases (Vol. 10254) (SPIE) 102540Y

    [18]

    Han J, Heaven M C, Moran P J, Pitz G A, Guild E M, Sanderson C R, Hokr B 2017 Opt. Lett. 42 4627Google Scholar

    [19]

    Wang R, Yang Z N, Li K, Wang H Y, Xu X J 2022 J. Appl. Phys. 131 023104Google Scholar

    [20]

    Kramida A, Ralchenko Y, Reader J, NIST ASD Team (2022) https://physics.nist.gov/asd/ [2023-6-8

    [21]

    Lei P, Zhang Z F, Wang X B, Zuo D L 2022 Opt. Commun. 513 128116Google Scholar

    [22]

    Belostotskiy S G, Donnelly V M, Economou D J, Sadeghi N 2009 IEEE Trans. Plasma Sci. 37 852Google Scholar

    [23]

    Miura N, Hopwood J 2011 J. Appl. Phys. 109 013304Google Scholar

    [24]

    Sun P, Zuo D, Wang X, Han J D, Heaven M C 2020 Opt. Express 28 14580Google Scholar

  • [1] 黄知秋, 李启正, 张猛, 彭志敏, 杨乾锁. 利用波长慢速扫描和快速调制激光吸收光谱实验数据反演光谱吸收函数的理论和实验研究. 物理学报, 2023, 72(12): 123301. doi: 10.7498/aps.72.20230371
    [2] 袁洪瑞, 刘涛, 朱天鑫, 刘云, 李响, 陈杨, 段传喜. SF6分子的10.6 μm高分辨射流冷却激光吸收光谱. 物理学报, 2023, 72(6): 063301. doi: 10.7498/aps.72.20222285
    [3] 赵荣, 周宾, 刘奇, 戴明露, 汪步斌, 王一红. 基于激光吸收光谱技术的在线层析成像算法. 物理学报, 2023, 72(5): 054206. doi: 10.7498/aps.72.20221935
    [4] 刘坤, 项红甫, 周雄峰, 夏昊天, 李华. 固定功率下大气压交流氩气等离子体射流的光谱特性. 物理学报, 2023, 72(11): 115201. doi: 10.7498/aps.72.20230307
    [5] 刘国荣, 朱维君, 褚润通, 王伟, 袁萍, 安婷婷, 万瑞斌, 孙对兄, 马云云, 郭志艳. 依据不同波段光谱诊断闪电回击通道温度. 物理学报, 2022, 71(10): 109201. doi: 10.7498/aps.71.20211673
    [6] 管林强, 邓昊, 姚路, 聂伟, 许振宇, 李想, 臧益鹏, 胡迈, 范雪丽, 杨晨光, 阚瑞峰. 基于可调谐激光吸收光谱技术的二硫化碳中红外光谱参数测量. 物理学报, 2019, 68(8): 084204. doi: 10.7498/aps.68.20182140
    [7] 梁亦寒, 胡广月, 袁鹏, 王雨林, 赵斌, 宋法伦, 陆全明, 郑坚. 纳秒激光烧蚀固体靶产生的等离子体在外加横向磁场中膨胀时的温度和密度参数演化. 物理学报, 2015, 64(12): 125204. doi: 10.7498/aps.64.125204
    [8] 耿辉, 刘建国, 张玉钧, 阚瑞峰, 许振宇, 姚路, 阮俊. 基于可调谐半导体激光吸收光谱的酒精蒸汽检测方法. 物理学报, 2014, 63(4): 043301. doi: 10.7498/aps.63.043301
    [9] 高启, 张传飞, 周林, 李正宏, 吴泽清, 雷雨, 章春来, 祖小涛. Z箍缩Al等离子体X辐射谱线的分离及电子温度的提取. 物理学报, 2014, 63(9): 095201. doi: 10.7498/aps.63.095201
    [10] 张志荣, 吴边, 夏滑, 庞涛, 王高旋, 孙鹏帅, 董凤忠, 王煜. 基于可调谐半导体激光吸收光谱技术的气体浓度测量温度影响修正方法研究. 物理学报, 2013, 62(23): 234204. doi: 10.7498/aps.62.234204
    [11] 李钦蕾, 范凤英, 熊纬佳, 陈安滢, 黎闫. 应用于碳同位素丰度测量的激光频率刻度系统研究. 物理学报, 2013, 62(24): 242801. doi: 10.7498/aps.62.242801
    [12] 张亮, 刘建国, 阚瑞峰, 刘文清, 张玉钧, 许振宇, 陈军. 基于可调谐半导体激光吸收光谱技术的高速气流流速测量方法研究. 物理学报, 2012, 61(3): 034214. doi: 10.7498/aps.61.034214
    [13] 宋俊玲, 洪延姬, 王广宇, 潘虎. 基于激光吸收光谱技术的燃烧场气体温度和浓度二维分布重建研究. 物理学报, 2012, 61(24): 240702. doi: 10.7498/aps.61.240702
    [14] 张帅, 刘文清, 张玉钧, 阮俊, 阚瑞峰, 尤坤, 于殿强, 董金婷, 韩小磊. 基于激光吸收光谱技术天然气管道泄漏定量遥测方法的研究. 物理学报, 2012, 61(5): 050701. doi: 10.7498/aps.61.050701
    [15] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究. 物理学报, 2011, 60(4): 045210. doi: 10.7498/aps.60.045210
    [16] 郝 楠, 周 斌, 陈立民. 利用差分吸收光谱法测量亚硝酸和反演气溶胶参数. 物理学报, 2006, 55(3): 1529-1533. doi: 10.7498/aps.55.1529
    [17] 赖天树, 刘鲁宁, 雷 亮, 寿 倩, 李熙莹, 王嘉辉, 林位株. 电子自旋偏振度及其弛豫过程的飞秒激光吸收光谱研究. 物理学报, 2005, 54(2): 967-971. doi: 10.7498/aps.54.967
    [18] 周 斌, 郝 楠, 陈立民. 夫琅禾费线对差分光学吸收光谱法测量大气污染气体影响的研究. 物理学报, 2005, 54(9): 4445-4450. doi: 10.7498/aps.54.4445
    [19] 阚瑞峰, 刘文清, 张玉钧, 刘建国, 董凤忠, 高山虎, 王 敏, 陈 军. 可调谐二极管激光吸收光谱法测量环境空气中的甲烷含量. 物理学报, 2005, 54(4): 1927-1930. doi: 10.7498/aps.54.1927
    [20] 刘鸿, 陈暧球, 李白文. Rydberg态Na原子与稀有气体热碰撞的l-混合截面的计算. 物理学报, 1991, 40(4): 527-532. doi: 10.7498/aps.40.527
计量
  • 文章访问数:  2758
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-08
  • 修回日期:  2023-07-31
  • 上网日期:  2023-08-02
  • 刊出日期:  2023-10-05

/

返回文章
返回