搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

相干控制的布洛赫表面波偏振转换

韦进志 王金浩 陈俊学

引用本文:
Citation:

相干控制的布洛赫表面波偏振转换

韦进志, 王金浩, 陈俊学

Coherent control of polarization transformation of Bloch surface waves

Wei Jin-Zhi, Wang Jin-Hao, Chen Jun-Xue
PDF
HTML
导出引用
  • 光子结构在多光束的相干激发下, 通过调控光束间的干涉效应可以对结构的光学响应进行实时的控制. 本文研究了介质多层膜结构中相干控制的布洛赫表面波的偏振转换过程. 通过在介质多层膜的顶层引入凹槽结构, 可以促使布洛赫表面波进行偏振转换. 当两束相干的布洛赫表面波分别从结构的左右两端入射到凹槽结构上时, 通过设计结构偏振转换系数的相位差和入射相干光束间的相位延迟, 不仅可以对布洛赫表面波的偏振转换效率进行动态调控, 还可以对结构偏振转换的输出端口进行选择, 从而可以实现可控端口传输的表面波偏振转换器件. 本文通过改变凹槽的间距, 实现了对结构偏振转换系数相位差的设计, 通过严格的电磁场仿真验证了本文所设计结构中布洛赫表面波偏振转换的相干控制. 本文结果丰富了布洛赫表面波相关器件的研究, 在片上集成的光子回路中有着潜在的应用.
    The coherent excitation of optical device through the interference effect of multiple beam provides a practical way to enhance the degree of real-time control of the optical response of device. In this work, the coherent control of polarization transformation of Bloch surface wave supported by dielectric multilayer is studied. The grooves are introduced into the top layer of the dielectric multilayer to achieve the polarization transformations of Bloch surface wave. Two coherent beams of Bloch surface waves are incident on the grooves from the left side and the right side of the structure, respectively. The polarization transformation efficiency of Bloch surface wave can be controlled in real time by designing the phase difference of polarization transformation coefficients and the phase delay of the incident coherent beams. Moreover, the output ports of polarization transformation of Bloch surface waves can be selectively excited. By using the proposed method, the controllable port transmission of Bloch surface wave related polarization component can be achieved. In this work, the design of phase difference from the polarization transformation coefficients is achieved by changing the separation distance of grooves. The predicted polarization transformation phenomena under the excitation of coherent beams are evidenced by the rigorous electromagnetic simulation. The research results have potential applications in on-chip integration of photonic circuitry.
      通信作者: 陈俊学, cjxueoptics@glut.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12164015)和广西青年创新人才科研专项(批准号: 2020AC19208)资助的课题.
      Corresponding author: Chen Jun-Xue, cjxueoptics@glut.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12164015) and the Science and Technology Base and Talent Special Project Guangxi Province, China (Grant No. 2020AC19208).
    [1]

    Zhao R Z, Geng G Z, Wei Q S, Liu Y, Zhou H Q, Zhang X, He C, Li X, Li X W, Wang Y T, Li J J, Huang L L 2022 Adv. Opt. Mater. 10 2102596Google Scholar

    [2]

    Ghosh S K, Das S, Bhattacharyya S 2022 J. Lightwave Technol. 40 6676Google Scholar

    [3]

    Luo W, Abbasi S A, Zhu S, Li X, Ho H P, Yuan W 2023 Nanophotonics 12 1797Google Scholar

    [4]

    Zhang X G, Yu Q, Jiang W X, Sun Y L, Bai L, Wang Q, Qiu C W, Cui T J 2020 Adv. Sci. 7 1903382Google Scholar

    [5]

    Zhang Y, Feng Y, Zhao J 2020 Carbon 163 244Google Scholar

    [6]

    Baranov D G, Krasnok A, Shegai T, Alù A, Chong Y 2017 Nat. Rev. Mater. 2 17064Google Scholar

    [7]

    Zhang J, MacDonald K F, Zheludev N I 2012 Light-Sci. Appl. 1 e18.Google Scholar

    [8]

    Baldacci L, Zanotto S, Biasiol G, Sorba L, Tredicucci A 2015 Opt. Express 23 9202Google Scholar

    [9]

    Yoon J W, Koh G M, Song S H, Magnusson 2012 Phys. Rev. Lett. 109 257402Google Scholar

    [10]

    Rao S M, Heitz J J F, Roger T, Westerberg N, Faccio D 2014 Opt. Lett. 39 5345Google Scholar

    [11]

    Fan Y, Liu Z, Zhang F, Zhao Q, Wei Z, Fu Q, Li J, Gu C, Li H 2015 Sci. Rep. 5 13956Google Scholar

    [12]

    Kang M, Chong Y D 2015 Phys. Rev. A 92 043826Google Scholar

    [13]

    Kang M, Zhang Z, Wu T, Zhang X, Xu Q, Krasnok A, Han J, Alù A 2022 Nat. Commun. 13 4536Google Scholar

    [14]

    Zhang H, Kang M, Zhang X, Guo W, Lv C, Li Y, Zhang W, Han J 2017 Adv. Mater. 29 1604252Google Scholar

    [15]

    Zhang Z, Kang M, Zhang X, Feng X, Xu Y, Chen X, Zhang H, Xu Q, Tian Z, Zhang W, Krasnok A, Han J, Alù A 2020 Adv. Mater. 32 2002341Google Scholar

    [16]

    Pirruccio G, Ramezani M, Rodriguez S R K, Rivas J G, 2016 Phys. Rev. Lett. 116 103002Google Scholar

    [17]

    Yeh P, Yariv A, Hong C S 1977 J. Opt. Soc. Am. 67 423Google Scholar

    [18]

    Kang X B, Lu H, Wang Z G 2018 Opt. Express 26 12769Google Scholar

    [19]

    Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L, Michelotti F 2012 Sens. Actuators B 174 292Google Scholar

    [20]

    Badugu R, Nowaczyk K, Descrovi E, Lakowicz J R 2013 Anal. Biochem. 442 83Google Scholar

    [21]

    Yang Q, Zhang C, Wu S, Li S, Bao Q, Giannini V, Maier S A, Li X 2018 Nano Energy 48 161Google Scholar

    [22]

    Nong J, Zhao B, Xiao X, Min C, Yuan X, Somekh M, Feng F 2022 Opt. Express 30 35085Google Scholar

    [23]

    Descrovi E, Sfez T, Quaglio M, Brunazzo D, Dominici L, Michelotti F, Herzig H P, Martin O J F, Giorgis F 2010 Nano Letters 10 2087Google Scholar

    [24]

    Luo H, Tang X, Lu Y, Wang P 2021 Phys. Rev. Appl. 16 014064Google Scholar

    [25]

    Perani T, Liscidini M 2020 Opt. Lett. 45 6534Google Scholar

    [26]

    Xiang Y, Lu Q, Wang R 2023 Opt. Express 31 22102Google Scholar

    [27]

    Wang M, Zhang H, Kovalevich T, Salut R, Kim M S, Suarez M A, Bernal M P, Herzig H P, Lu H, Grosjean T 2018 Light-Sci. Appl. 7 24Google Scholar

    [28]

    Deng C Z, Ho Y L, Clark J K, Yatsui T, Delaunay J J 2020 ACS Photonics 7 2915Google Scholar

    [29]

    Bezus E A, Bykov D A, Doskolovich L L 2021 Nanophotonics 10 4331Google Scholar

    [30]

    Safronov K R, Gulkin D N, Antropov I M, Abrashitova K A, Bessonov V O, Fedyanin A A 2020 ACS Nano 14 10428Google Scholar

    [31]

    Rodriguez G A, Aurelio D, Liscidini M, Weiss S M 2019 Appl. Phys. Lett. 115 011101Google Scholar

    [32]

    Chen J, Zhang D, Wang P, Ming H, Lakowicz J R 2018 Phys. Rev. Appl. 9 024008Google Scholar

    [33]

    Wang R, Chen J, Xiang Y, Kuai Y, Wang P, Ming H, Lakowicz J R, Zhang D 2018 Phys. Rev. Appl. 10 024032Google Scholar

    [34]

    Derudder H, Olyslager F, De Zutter D, Van den Berghe S 2001 IEEE Trans. Antennas Propag. 49 185Google Scholar

    [35]

    Liscidini M, Sipe J E 2009 J. Opt. Soc. Am. B 26 279Google Scholar

    [36]

    Moharam M G, Gaylord T K, Grann E B, Pommet D A 1995 J. Opt. Soc. Am. A 12 1068Google Scholar

    [37]

    Silberstein E, Lalanne P, Hugonin J P, Cao Q 2001 J. Opt. Soc. Am. A 18 2865Google Scholar

  • 图 1  (a)多层结构的示意图; (b) 结构对应的输入和输出端口示意图

    Fig. 1.  (a) Schematic diagram of the considered dielectric multilayer; (b) the schematic diagram of input and output ports in the structure.

    图 2  单束TE-BSW入射到单个凹槽上的情况, 偏振转换系数rsp的幅度随TE-BSW的入射角度和凹槽宽度的变化

    Fig. 2.  Amplitude of polarization transformation coefficient rsp as a function of the incidence angle of TE-BSW and the width of groove. Here, a single TE-BSW beam is incident on a single groove.

    图 3  (a) 偏振转换系数$ {r^{{\text{sp}}}} $$ {t^{{\text{sp}}}} $的幅度随凹槽间距L的变化; (b)偏振转换系数的相位差$ {\theta _{{\text{r, sp}}}} - {\theta _{{\text{t, sp}}}} $随凹槽间距L的变化. 凹槽的宽度和深度都为250 nm, TE-BSW的入射角度θi = 49°

    Fig. 3.  (a) Amplitude of polarization transformation coefficients $ {r^{{\text{sp}}}} $and $ {t^{{\text{sp}}}} $ versus the separation distance L; (b) the phase difference of polarization transformation coefficients $ {\theta _{{\text{r, sp}}}} - {\theta _{{\text{t, sp}}}} $ versus the separation distance L. The width and depth of grooves are 250 nm, the incidence angle of TE-BSW is 49°.

    图 4  (a)偏振转换强度(RspTsp)随入射TE-BSW的延迟相位ψ的变化; (b)反射率(Rss)和透射率(Tss)随入射TE-BSW的延迟相位ψ的变化. 其中, 凹槽的间距L = 530 nm, 入射角度 θi = 49°

    Fig. 4.  (a) Polarization transformation intensities Rsp and Tsp versus the phase delay ψ of incident TE-BSWs; (b) the reflectance Rss and transmittance Tss of TE-BSW versus the phase delay ψ of incident TE-BSWs. The separation distance L = 530 nm, the incidence angle θi = 49°.

    图 5  当相位延迟(a) $ \psi = {{\text{π }} \mathord{\left/ {\vphantom {{\text{π }} 2}} \right. } 2} $和 (b) $ \psi = {{3{\text{π }}} \mathord{\left/ {\vphantom {{3{\text{π }}} 2}} \right. } 2} $时, 结构的电场振幅分布. 其中凹槽的间距L = 530 nm, 入射角度θi = 49°, 白色的点线表示凹槽所在的区域

    Fig. 5.  Electric field amplitude distribution of structure for different phase delay (a) $ \psi = {{\text{π }} \mathord{\left/ {\vphantom {{\text{π }} 2}} \right. } 2} $ and (b) $ \psi = {{3{\text{π }}} \mathord{\left/ {\vphantom {{3{\text{π }}} 2}} \right. } 2} $. The separation distance L = 530 nm and the incidence angle θi = 49°, the dot lines denote the zone of grooves.

    图 6  (a) 偏振转换强度(RspTsp)随入射TE-BSW的延迟相位的变化; (b)反射(Rss)和透射(Tss)强度随入射TE-BSW的延迟相位的变化关系. 其中, 凹槽的间距L = 453 nm, 入射角度θi = 49°

    Fig. 6.  (a) Polarization transformation intensity Rsp and Tsp versus the phase delay of the incident TE-BSWs; (b) the reflectance Rss and transmittance Tss versus the phase delay. The separation distance L = 453 nm and the incidence angle θi = 49°.

    图 7  相位延迟$ \psi = {\text{π }} $时, 结构的电场振幅分布, 其中凹槽的间距L = 453 nm, 入射角度θi = 49°, 白色的点线表示凹槽所在的区域

    Fig. 7.  Electric field amplitude distribution of structure for phase delay $ \psi = {\text{π}}$, the separation distance L = 453 nm and the incidence angle θi = 49°. The dotted lines dente the zone of grooves.

  • [1]

    Zhao R Z, Geng G Z, Wei Q S, Liu Y, Zhou H Q, Zhang X, He C, Li X, Li X W, Wang Y T, Li J J, Huang L L 2022 Adv. Opt. Mater. 10 2102596Google Scholar

    [2]

    Ghosh S K, Das S, Bhattacharyya S 2022 J. Lightwave Technol. 40 6676Google Scholar

    [3]

    Luo W, Abbasi S A, Zhu S, Li X, Ho H P, Yuan W 2023 Nanophotonics 12 1797Google Scholar

    [4]

    Zhang X G, Yu Q, Jiang W X, Sun Y L, Bai L, Wang Q, Qiu C W, Cui T J 2020 Adv. Sci. 7 1903382Google Scholar

    [5]

    Zhang Y, Feng Y, Zhao J 2020 Carbon 163 244Google Scholar

    [6]

    Baranov D G, Krasnok A, Shegai T, Alù A, Chong Y 2017 Nat. Rev. Mater. 2 17064Google Scholar

    [7]

    Zhang J, MacDonald K F, Zheludev N I 2012 Light-Sci. Appl. 1 e18.Google Scholar

    [8]

    Baldacci L, Zanotto S, Biasiol G, Sorba L, Tredicucci A 2015 Opt. Express 23 9202Google Scholar

    [9]

    Yoon J W, Koh G M, Song S H, Magnusson 2012 Phys. Rev. Lett. 109 257402Google Scholar

    [10]

    Rao S M, Heitz J J F, Roger T, Westerberg N, Faccio D 2014 Opt. Lett. 39 5345Google Scholar

    [11]

    Fan Y, Liu Z, Zhang F, Zhao Q, Wei Z, Fu Q, Li J, Gu C, Li H 2015 Sci. Rep. 5 13956Google Scholar

    [12]

    Kang M, Chong Y D 2015 Phys. Rev. A 92 043826Google Scholar

    [13]

    Kang M, Zhang Z, Wu T, Zhang X, Xu Q, Krasnok A, Han J, Alù A 2022 Nat. Commun. 13 4536Google Scholar

    [14]

    Zhang H, Kang M, Zhang X, Guo W, Lv C, Li Y, Zhang W, Han J 2017 Adv. Mater. 29 1604252Google Scholar

    [15]

    Zhang Z, Kang M, Zhang X, Feng X, Xu Y, Chen X, Zhang H, Xu Q, Tian Z, Zhang W, Krasnok A, Han J, Alù A 2020 Adv. Mater. 32 2002341Google Scholar

    [16]

    Pirruccio G, Ramezani M, Rodriguez S R K, Rivas J G, 2016 Phys. Rev. Lett. 116 103002Google Scholar

    [17]

    Yeh P, Yariv A, Hong C S 1977 J. Opt. Soc. Am. 67 423Google Scholar

    [18]

    Kang X B, Lu H, Wang Z G 2018 Opt. Express 26 12769Google Scholar

    [19]

    Sinibaldi A, Danz N, Descrovi E, Munzert P, Schulz U, Sonntag F, Dominici L, Michelotti F 2012 Sens. Actuators B 174 292Google Scholar

    [20]

    Badugu R, Nowaczyk K, Descrovi E, Lakowicz J R 2013 Anal. Biochem. 442 83Google Scholar

    [21]

    Yang Q, Zhang C, Wu S, Li S, Bao Q, Giannini V, Maier S A, Li X 2018 Nano Energy 48 161Google Scholar

    [22]

    Nong J, Zhao B, Xiao X, Min C, Yuan X, Somekh M, Feng F 2022 Opt. Express 30 35085Google Scholar

    [23]

    Descrovi E, Sfez T, Quaglio M, Brunazzo D, Dominici L, Michelotti F, Herzig H P, Martin O J F, Giorgis F 2010 Nano Letters 10 2087Google Scholar

    [24]

    Luo H, Tang X, Lu Y, Wang P 2021 Phys. Rev. Appl. 16 014064Google Scholar

    [25]

    Perani T, Liscidini M 2020 Opt. Lett. 45 6534Google Scholar

    [26]

    Xiang Y, Lu Q, Wang R 2023 Opt. Express 31 22102Google Scholar

    [27]

    Wang M, Zhang H, Kovalevich T, Salut R, Kim M S, Suarez M A, Bernal M P, Herzig H P, Lu H, Grosjean T 2018 Light-Sci. Appl. 7 24Google Scholar

    [28]

    Deng C Z, Ho Y L, Clark J K, Yatsui T, Delaunay J J 2020 ACS Photonics 7 2915Google Scholar

    [29]

    Bezus E A, Bykov D A, Doskolovich L L 2021 Nanophotonics 10 4331Google Scholar

    [30]

    Safronov K R, Gulkin D N, Antropov I M, Abrashitova K A, Bessonov V O, Fedyanin A A 2020 ACS Nano 14 10428Google Scholar

    [31]

    Rodriguez G A, Aurelio D, Liscidini M, Weiss S M 2019 Appl. Phys. Lett. 115 011101Google Scholar

    [32]

    Chen J, Zhang D, Wang P, Ming H, Lakowicz J R 2018 Phys. Rev. Appl. 9 024008Google Scholar

    [33]

    Wang R, Chen J, Xiang Y, Kuai Y, Wang P, Ming H, Lakowicz J R, Zhang D 2018 Phys. Rev. Appl. 10 024032Google Scholar

    [34]

    Derudder H, Olyslager F, De Zutter D, Van den Berghe S 2001 IEEE Trans. Antennas Propag. 49 185Google Scholar

    [35]

    Liscidini M, Sipe J E 2009 J. Opt. Soc. Am. B 26 279Google Scholar

    [36]

    Moharam M G, Gaylord T K, Grann E B, Pommet D A 1995 J. Opt. Soc. Am. A 12 1068Google Scholar

    [37]

    Silberstein E, Lalanne P, Hugonin J P, Cao Q 2001 J. Opt. Soc. Am. A 18 2865Google Scholar

  • [1] 景文泉, 贾利娟, 孙兆鹏, 赵松峰, 束传存. 超快强场相干调控氯溴甲烷分子的解离研究. 物理学报, 2024, 73(24): 243301. doi: 10.7498/aps.73.20241401
    [2] 张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜. 局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220288
    [3] 刘靖宇, 李文宇, 刘智星, 舒敬懿, 赵国忠. 基于V形超表面的透射式太赫兹线偏振转换器. 物理学报, 2022, 71(23): 230701. doi: 10.7498/aps.71.20221259
    [4] 付亚男, 张新群, 赵国忠, 李永花, 于佳怡. 基于谐振环的太赫兹宽带偏振转换器件研究. 物理学报, 2017, 66(18): 180701. doi: 10.7498/aps.66.180701
    [5] 金柯, 刘永强, 韩俊, 杨崇民, 王颖辉, 王慧娜. 基于超材料的中波红外宽带偏振转换研究. 物理学报, 2017, 66(13): 134201. doi: 10.7498/aps.66.134201
    [6] 张晓旭, 张胜海, 吴天安, 孙巍阳. 1550 nm-VCSELs在偏振保持光反馈和正交光注入下的偏振转换特性. 物理学报, 2016, 65(21): 214206. doi: 10.7498/aps.65.214206
    [7] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器. 物理学报, 2016, 65(8): 080702. doi: 10.7498/aps.65.080702
    [8] 吴正人, 刘梅, 刘秋升, 宋朝匣, 王思思. 倾斜波动壁面上液膜表面波演化特性的影响. 物理学报, 2015, 64(24): 244701. doi: 10.7498/aps.64.244701
    [9] 王松岭, 刘梅, 王思思, 吴正人. 随时间变化的非平整壁面对液膜表面波演化特性的影响. 物理学报, 2015, 64(1): 014701. doi: 10.7498/aps.64.014701
    [10] 张蕾, 戈燕, 张向阳. 基于量子相干控制吸收的准Λ型四能级原子局域化研究. 物理学报, 2015, 64(13): 134204. doi: 10.7498/aps.64.134204
    [11] 周桢力, 夏光琼, 邓涛, 赵茂戎, 吴正茂. 互注入垂直腔表面发射激光器的多次偏振转换特性研究. 物理学报, 2015, 64(2): 024208. doi: 10.7498/aps.64.024208
    [12] 钟东洲, 计永强, 邓涛, 周开利. 电光调制对外部光注入垂直腔表面发射激光器的偏振转换及其非线性动力学行为的操控性研究. 物理学报, 2015, 64(11): 114203. doi: 10.7498/aps.64.114203
    [13] 姚云华, 卢晨晖, 徐淑武, 丁晶新, 贾天卿, 张诗按, 孙真荣. 飞秒激光脉冲整形技术及其应用. 物理学报, 2014, 63(18): 184201. doi: 10.7498/aps.63.184201
    [14] 冯天闰, 卢克清, 陈卫军, 刘书芹, 牛萍娟, 于莉媛. 线性电介质和中心对称光折变晶体界面表面波的研究. 物理学报, 2013, 62(23): 234205. doi: 10.7498/aps.62.234205
    [15] 徐天宇, 何峰. H2+在阿秒以及双色飞秒激光脉冲中解离时电子位置的相干控制. 物理学报, 2013, 62(6): 068201. doi: 10.7498/aps.62.068201
    [16] 苏家妮, 邓文武, 李高翔. 四能级原子介质中Goos-Hnchen位移的相干控制. 物理学报, 2012, 61(14): 144210. doi: 10.7498/aps.61.144210
    [17] 刘鲁宁, 寿 倩, 雷 亮, 林春梅, 赖天树, 文锦辉, 林位株. 半导体中相干控制光电流对光场的偏振依赖性. 物理学报, 2005, 54(4): 1863-1867. doi: 10.7498/aps.54.1863
    [18] 冯 倩, 黄志高, 都有为. 磁性多层膜磁特性的表面效应. 物理学报, 2003, 52(11): 2906-2911. doi: 10.7498/aps.52.2906
    [19] 郭红, 李高翔, 彭金生. 双通道离化系统的相干控制. 物理学报, 2002, 51(11): 2517-2523. doi: 10.7498/aps.51.2517
    [20] 刘颖力, 张怀武, 王豪才, 钟智勇. 多层周期薄膜中静磁表面波宽度模色散特性研究. 物理学报, 1999, 48(13): 98-104. doi: 10.7498/aps.48.98
计量
  • 文章访问数:  2413
  • PDF下载量:  70
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-06-27
  • 修回日期:  2023-08-18
  • 上网日期:  2023-08-24
  • 刊出日期:  2023-11-05

/

返回文章
返回