搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物大分子过渡态搜索算法及其中的机器学习

杨建宇 席昆 竺立哲

引用本文:
Citation:

生物大分子过渡态搜索算法及其中的机器学习

杨建宇, 席昆, 竺立哲

Transition state searching for complex biomolecules: Algorithms and machine learning

Yang Jian-Yu, Xi Kun, Zhu Li-Zhe
PDF
HTML
导出引用
  • 过渡态是物理化学家理解和调控生物大分子相关功能微观机制的关键. 因其存在时间极短, 难以被实验手段捕捉, 全面刻画其结构必须通过物理定律驱动的模拟计算搜索予以实现. 然而, 与化学反应过程只涉及少量原子不同, 生物大分子的功能性构象变化所涉的原子和坐标数量巨大, 搜索其过渡态将不可避免地遭遇维数灾难, 即反应坐标问题, 因而催生了多种应对策略和算法. 同时, 随着近年来新型机器学习算法的大量涌现和日臻成熟, 融入机器学习范式的过渡态搜索算法也已出现. 本文首先回顾和梳理过渡态搜索代表性算法的设计思想, 包括依赖集合变量的温和爬升动力学(gentlest ascent dynamics, GAD)、有限温度弦方法(finite temperature string, FTS)、快速断层扫描法(fast tomographic)、基于旅行商的自动路径搜索算法TAPS, 以及过渡路径采样法(transition path sampling, TPS). 然后, 重点介绍TPS与强化学习融合而成的新型路径采样算法, 解析强化学习在其中的作用, 并厘清其适用场景. 最后, 我们提出一种将降维算法与GAD深度融合的新构想, 讨论研发可保留过渡态信息的新型降维算法的必要性及可行性.
    Transition state is a key concept for chemists to understand and fine-tune the conformational changes of large biomolecules. Due to its short residence time, it is difficult to capture a transition state via experimental techniques. Characterizing transition states for a conformational change therefore is only achievable via physics-driven molecular dynamics simulations. However, unlike chemical reactions which involve only a small number of atoms, conformational changes of biomolecules depend on numerous atoms and therefore the number of their coordinates in our 3D space. The searching for their transition states will inevitably encounter the curse of dimensionality, i.e. the reaction coordinate problem, which invokes the invention of various algorithms for solution. Recent years, new machine learning techniques and the incorporation of some of them into the transition state searching methods emerged. Here, we first review the design principle of representative transition state searching algorithms, including the collective-variable (CV)-dependent gentlest ascent dynamics, finite temperature string, fast tomographic, travelling-salesman based automated path searching, and the CV-independent transition path sampling. Then, we focus on the new version of TPS that incorporates reinforcement learning for efficient sampling, and we also clarify the suitable situation for its application. Finally, we propose a new paradigm for transition state searching, a new dimensionality reduction technique that preserves transition state information and combines gentlest ascent dynamics.
      通信作者: 竺立哲, zhulizhe@cuhk.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 31971179)和深圳市科技创新委员会(批准号: JCYJ20200109150003938, RCYX20200714114645019)资助的课题.
      Corresponding author: Zhu Li-Zhe, zhulizhe@cuhk.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 31971179) and the Science Technology and Innovation Commission of Shenzhen Municipality, China (Grant Nos. JCYJ20200109150003938, RCYX20200714114645019).
    [1]

    Edman L, Földes-Papp Z, Wennmalm S, Rigler R 1999 Chem. Phys. 247 11Google Scholar

    [2]

    Evenäs J, Malmendal A, Thulin E, Carlstrӧm G, Forsén S 1998 Biochemistry 37 13744Google Scholar

    [3]

    Hanson J A, Duderstadt K, Watkins L P, Bhattacharyya S, Brokaw J B, Chu J W, Yang H 2007 Proc. Natl. Acad. Sci. USA 104 18055Google Scholar

    [4]

    Moffat K 1989 Annu. Rev. Biophys. Chem. 18 309Google Scholar

    [5]

    Huang C, Kalodimos C G 2017 Annu. Rev. Biophys. 46 317Google Scholar

    [6]

    Weissenberger G, Henderikx R J M, Peters P J 2021 Nat. Methods 18 463Google Scholar

    [7]

    Clegg R M 1995 Curr. Opin. Biotechnol. 6 103Google Scholar

    [8]

    Karplus M, McCammon J A 2002 Nat. Struct. Biol. 9 646Google Scholar

    [9]

    Hollingsworth S A, Dror R O 2018 Neuron 99 1129Google Scholar

    [10]

    Bernèche S, Roux B 2001 Nature 414 73Google Scholar

    [11]

    Khafizov K, Perez C, Koshy C, Quick M, Fendler K, Ziegler C, Forrest L R 2012 Proc. Natl. Acad. Sci. USA 109 E3035Google Scholar

    [12]

    Li J, Shaikh S A, Enkavi G, Wen P C, Huang Z, Tajkhorshid E 2013 Proc. Natl. Acad. Sci. USA 110 7696Google Scholar

    [13]

    Dror, R O, Green H F, Valant C, Borhani D W, Valcourt J R, Pan A C, Arlow D H, Canals M, Lane J R, Rahmani R, Baell J B, Sexton P M, Christopoulos A, Shaw D E 2013 Nature 503 295Google Scholar

    [14]

    Wacker D, Stevens R C, Roth B L 2017 a Cell 170 414Google Scholar

    [15]

    Wacker D, Wang S, McCorvy J D, Betz R M, Venkatakrishnan A J, Levit A, Lansu K, Schools Z L, Che T, Nichols D E, Dror R O, Roth B L 2017 Cell 168 377Google Scholar

    [16]

    McCorvy J D, Butler K V, Kelly B, Rechsteiner K, Karpiak J, Betz R M, Kormos B L, Shoichet B K, Dror R O, Jin J, Roth B L 2018 Nat. Chem. Biol. 14 126Google Scholar

    [17]

    Provasi D, Artacho M C, Negri A, Mobarec J C, Filizola M 2011 PLoS Comput. Biol. 7 e1002193Google Scholar

    [18]

    Cordero-Morales J F, Jogini V, Lewis A, Vásquez V, Cortes D M, Roux B, Perozo E 2007 Nat. Struct. Mol. Biol. 14 1062Google Scholar

    [19]

    Fields J B, Németh-Cahalan K L, Freites J A, Vorontsova I, Hall J E, Tobias D J 2017 J. Biol. Chem. 292 185Google Scholar

    [20]

    Groban E S, Narayanan A, Jacobson M P 2006 PLoS Comput. Biol. 2 e32Google Scholar

    [21]

    Liu Y, Ke M, Gong H 2015 Biophys. J. 109 542Google Scholar

    [22]

    Delemotte L, Tarek M, Klein M L, Amaral C, Treptow W 2011 Proc. Natl. Acad. Sci. USA 108 6109Google Scholar

    [23]

    Lindorff-Larsen K, Piana S, Dror R O, Shaw D E 2011 Science 334 517Google Scholar

    [24]

    Snow C D, Nguyen H, Pande V S, Gruebele M 2002 Nature 420 102Google Scholar

    [25]

    Dror R O, Arlow D H, Maragakis P, Mildorf T J, Pan A C, Xu H, Borhani D W, Shaw D E 2011 Proc. Natl. Acad. Sci. USA 108 18684Google Scholar

    [26]

    Dror R O, Pan A C, Arlow D H, Borhani D W, Maragakis P, Shan Y, Xu H, Shaw D E 2011 Proc. Natl. Acad. Sci. USA 108 13118Google Scholar

    [27]

    Gu Y, Shrivastava I H, Amara S G, Bahar I 2009 Proc. Natl. Acad. Sci. USA 106 2589Google Scholar

    [28]

    Latorraca N R, Fastman N M, Venkatakrishnan A J, Frommer W B, Dror R O, Feng L 2017 Cell 169 96Google Scholar

    [29]

    Stelzl L S, Fowler P W, Sansom M S, Beckstein O 2014 J. Mol. Biol. 426 735Google Scholar

    [30]

    Buch I, Giorgino T, De Fabritiis G 2011 Proc. Natl. Acad. Sci. USA 108 10184Google Scholar

    [31]

    Liang R, Swanson J M J, Madsen J J, Hong M, DeGrado W F, Voth G A 2016 Proc. Natl. Acad. Sci. USA 113 E6955Google Scholar

    [32]

    Suomivuori C M, Gamiz-Hernandez A P, Sundholm D, Kaila V R I 2017 Proc. Natl. Acad. Sci. USA 114 7043Google Scholar

    [33]

    Tajkhorshid E, Nollert P, Jensen M Ø, Miercke L J W, O’Connell J, Stroud R M, Schulten K 2002 Science 296 525Google Scholar

    [34]

    Watanabe A, Choe S, Chaptal V, Rosenberg J M, Wright E M, Grabe M, Abramson J 2010 Nature 468 988Google Scholar

    [35]

    Dedmon M M, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson C M 2005 J. Am. Chem. Soc. 127 476Google Scholar

    [36]

    Nguyen H D, Hall C K 2004 Proc. Natl. Acad. Sci. USA 101 16180Google Scholar

    [37]

    Levitt M 1983 J. Mol. Biol. 168 595Google Scholar

    [38]

    Sugita Y, Okamoto Y 1999 Chem. Phys. Lett. 314 141Google Scholar

    [39]

    Rhee Y M, Pande V S 2003 Biophys. J. 84 775Google Scholar

    [40]

    Zhang W, Wu C, Duan Y 2005 J. Chem. Phys. 123 154105Google Scholar

    [41]

    Zhou R 2006 Protein Folding Protocols (Humana Totowa, NJ: Springer) pp205−223

    [42]

    Sindhikara D, Meng Y, Roitberg A E 2008 J. Chem. Phys. 128 024103Google Scholar

    [43]

    Buchete N V, Hummer G 2008 Phys. Rev. E 77 030902Google Scholar

    [44]

    Rosta E, Hummer G 2009 J. Chem. Phys. 131 165102Google Scholar

    [45]

    Stelzl L S, Hummer G 2017 J. Chem. Theory Comput. 13 3927Google Scholar

    [46]

    Yang L J, Gao Q Y 2009 J. Chem. Phys. 131 214109Google Scholar

    [47]

    Yang L, Liu C W, Shao Q, Zhang J, Gao Y Q 2015 Acc. Chem. Res. 48 947Google Scholar

    [48]

    Yang Y I, Zhang J, Che X, Yang L J, Gao Y Q 2016 J. Chem. Phys. 144 094105Google Scholar

    [49]

    Yang Y I, Shao Q, Zhang J, Yang L J, Gao Y Q 2019 J. Chem. Phys. 151 070902Google Scholar

    [50]

    Huber T, Torda A E, Van Gunsteren W F 1994 J. Comput. -Aided Mol. Des. 8 695Google Scholar

    [51]

    Wada T, Kuroda K, Yoshida Y, Ogasawara K, Ogawa A, Endo S 2006 Neurosurg. Rev. 29 242Google Scholar

    [52]

    Hansen H S, Hünenberger P H 2010 J. Comput. Chem. 31 1Google Scholar

    [53]

    Perić-Hassler L, Hansen H S, Baron R, Hünenberger P H 2010 Carbohydr. Res. 345 1781Google Scholar

    [54]

    Grubmüller H 1995 Phys. Rev. E 52 2893Google Scholar

    [55]

    Schulze B G, Grubmüller H, Evanseck J D 2000 J. Am. Chem. Soc. 122 8700Google Scholar

    [56]

    Bouvier B, Grubmüller H 2007 Biophys. J. 93 770Google Scholar

    [57]

    Barducci A, Bonomi M, Parrinello M 2011 WIREs Comput. Mol. Sci. 1 826Google Scholar

    [58]

    Tiwary P, Parrinello M 2013 Phys. Rev. Lett. 111 230602Google Scholar

    [59]

    Bussi G, Laio A 2020 Nat. Rev. Phys. 2 200Google Scholar

    [60]

    Miao Y, Feher V A, McCammon J A 2015 J. Chem. Theory Comput. 11 3584Google Scholar

    [61]

    Miao Y, McCammon J A 2017 Annu. Rep. Comput. Chem. 13 231Google Scholar

    [62]

    Wang J, Arantes P R, Bhattarai A, et al. 2021 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 11 e1521Google Scholar

    [63]

    Naritomi Y, Sotaro F 2011 J. Chem. Phys. 134 065101Google Scholar

    [64]

    Schwantes C R, Vijay S P 2013 J. Chem. Theory Comput. 9 2000Google Scholar

    [65]

    Perez-Hernandez G, Paul F, Giorgino T, Fabritiis G D, Noé F 2013 J. Chem. Phys. 139 015102Google Scholar

    [66]

    Bowman G R, Huang X H, Pande V S 2009 Methods 49 197Google Scholar

    [67]

    Metzner P, Noé F, Schütte C 2009 Phys. Rev. E 80 021106Google Scholar

    [68]

    Pande V S, Beauchamp K A, Bowman G R 2010 Methods 52 99Google Scholar

    [69]

    Prinz J H, Wu H, Sarich M, Keller B, Senne M, Held M, Chodera J D, Schütte C, Noé F 2011 J. Chem. Phys. 134 174105Google Scholar

    [70]

    Kellogg E H, Lange O F, Baker D 2012 J. Phys. Chem. B 116 11405Google Scholar

    [71]

    Yao Y, Cui R Z, Bowman G R, Silva D A, Sun J, Huang X H 2013 J. Chem. Phys. 138 174106Google Scholar

    [72]

    McGibbon R T, Schwantes C R, Pande V S 2014 J. Phys. Chem. B 118 6475Google Scholar

    [73]

    Nuske F, Keller B G, Pérez-Hernández G, Mey A S J, Noé F 2014 J. Chem. Theory Comput. 10 1739Google Scholar

    [74]

    Sheong F K, Silva D A, Meng L, Zhao Y, Huang X H 2015 J. Chem. Theory Comput. 11 17Google Scholar

    [75]

    Zhu L Z, Sheong F K, Zeng X, Huang X H 2016 Phys. Chem. Chem. Phys. 18 30228Google Scholar

    [76]

    Wang W, Cao S, Zhu L Z, Huang X H 2018 WIREs Comput. Mol. Sci. 8 e1343Google Scholar

    [77]

    Husic B E, Pande V S 2018 J. Am. Chem. Soc. 140 2386Google Scholar

    [78]

    Konovalov K A, Unarta I C, Cao S, Goonetilleke E C, Huang X H 2021 J. Am. Chem. Soc. Au. 1 1330Google Scholar

    [79]

    E W, Zhou X 2011 Nonlinearity 24 1831Google Scholar

    [80]

    Samanta A, Chen M, Yu T Q, Tuckerman M E 2014 J. Chem. Phys. 140 164109Google Scholar

    [81]

    Chen M, Yu T Q, Tuckerman M E 2015 Proc. Natl. Acad. Sci. USA 112 3235Google Scholar

    [82]

    E W, Ren W, Vanden-Eijnden E 2002 Phys. Rev. B 66 052301Google Scholar

    [83]

    E W, Ren W, Vanden-Eijnden E 2005 J. Phys. Chem. B 109 6688Google Scholar

    [84]

    Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G 2006 J. Chem. Phys. 125 024106Google Scholar

    [85]

    Ren W, Vanden-Eijnden E 2007 J. Chem. Phys. 126 164103Google Scholar

    [86]

    Maragliano L, Vanden-Eijnden E 2007 Chem. Phys. Lett. 446 182Google Scholar

    [87]

    Pan A C, Sezer D, Roux B 2008 J. Phys. Chem. B 112 3432Google Scholar

    [88]

    Chen C, Huang Y, Xiao Y 2012 Phys. Rev. E 86 031901Google Scholar

    [89]

    Chen C, Huang Y, Ji X, Xiao Y 2013 J. Chem. Phys. 138 164122Google Scholar

    [90]

    Chen C J, Huang Y Z, Jiang X W, Xiao Y 2014 J. Chem. Phys. 141 154109Google Scholar

    [91]

    Zhu L Z, Sheong F K, Cao S, Liu S, Unarta I C, Huang X H 2019 J. Chem. Phys. 150 124105Google Scholar

    [92]

    Xi K, Hu Z, Wu Q, Wei M, Qian R, Zhu L Z 2021 J. Chem. Theory Comput. 17 5301Google Scholar

    [93]

    Wang L, Xi K, Zhu L Z, Da L T 2022 J. Chem. Inf. Model. 62 3213Google Scholar

    [94]

    Xi K, Zhu L Z 2022 Int. J. Mol. Sci. 23 14628Google Scholar

    [95]

    Xi K, Zhu L Z 2023 A Practical Guide to Recent Advances in Multiscale Modeling and Simulation of Biomolecules (AIP Publishing) pp9-1−9-24

    [96]

    Vanden-Eijnden E 2006 Computer Simulations in Condensed Matter: From Materials to Chemical Biology (Berlin: Springer) pp453−493

    [97]

    Vanden-Eijnden E 2010 Annu. Rev. Phys. Chem. 61 391Google Scholar

    [98]

    Dellago C, Bolhuis P G, Csajka F S, Chandler D 1998 J. Chem. Phys. 108 1964Google Scholar

    [99]

    Bolhuis P G, Dellago C, Chandler D 1998 Faraday Discuss. 110 421Google Scholar

    [100]

    Dellago C, Bolhuis P G, Chandler D 1999 J. Chem. Phys. 110 6617Google Scholar

    [101]

    Dellago C, Bolhuis P G, Geissler P L 2002 Adv. Chem. Phys. 123 1Google Scholar

    [102]

    Noé F, Tkatchenko A, Müller K R, Clementi C 2020 Annu. Rev. Phys. Chem. 71 361Google Scholar

    [103]

    AlQuraishi M, Sorger P K 2021 Nat. Methods 18 1169Google Scholar

    [104]

    Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S, Yang L 2021 Nat. Rev. Phys. 3 422Google Scholar

    [105]

    Ju F, Zhu J, Shao B, Kong L, Liu T Y, Zheng W M, Bu D 2021 Nat. Commum. 12 2535Google Scholar

    [106]

    Huang B, Xu Y, Hu X H, Liu Y R, Liao S H, Zhang J H, Huang C D, Hong J J, Chen Q, Liu H Y 2022 Nature 602 523Google Scholar

    [107]

    Du Z, Su H, Wang W, Ye L, Wei H, Peng Z, Anishchenko I, Baker D, Yang J 2021 Nat. Prot. 16 5634Google Scholar

    [108]

    Dai M, Dong Z, Xu K, Zhang Q C 2023 J. Mol. Biol. 435 168059Google Scholar

    [109]

    Yuan Q M, Chen J W, Zhao H Y, Zhou Y Q, Yang Y D 2022 Bioinformatics 38 125Google Scholar

    [110]

    Su M Y, Feng G, Liu Z, Li Y, Wang R 2020 J. Chem. Inf. Model. 60 1122Google Scholar

    [111]

    Zeng C, Jian Y, Vosoughi S, Zeng C, Zhao Y 2023 Nat. Commum. 14 1060Google Scholar

    [112]

    Noé F, Olsson S, Köhler J, Wu H 2019 Science 365 6457Google Scholar

    [113]

    Jung H, Covino R, Arjun A, Leitold C, Dellago C, Bolhuis P G, Hummer G 2023 Nat. Comput. Sci. 3 334Google Scholar

    [114]

    Weiss D R, Levitt M 2009 J. Mol. Biol. 385 665Google Scholar

    [115]

    Isralewitz B, Gao M, Schulten K 2001 Curr. Opin. Struct. Biol. 11 224Google Scholar

    [116]

    Schlitter J, Engels M, Krüger P 1994 J. Mol. Graph. 12 84Google Scholar

    [117]

    Torrie G M, Valleau J P 1977 J. Comput. Phys. 23 187Google Scholar

    [118]

    Ryckaert J P, Ciccotti G, Berendsen H J 1977 J. Comput. Phys. 23 327Google Scholar

    [119]

    Babin V, Roland C, Sagui C 2008 J. Chem. Phys. 128 134101Google Scholar

    [120]

    Branduardi D, Gervasio F L, Parrinello M 2007 J. Chem. Phys. 126 054103Google Scholar

    [121]

    Applegate D L, Bixby R E, Chvátal V, Cook W J 2011 The Traveling Salesman Problem: A Computational Study (Princeton University Press) pp1−58

    [122]

    Cox M A A, Cox T F 2008 Handbook of Data Visualization (Berlin: Springer) pp315−347

    [123]

    Barducci A, Bussi G, Parrinello M 2008 Phys. Rev. Lett. 100 020603Google Scholar

    [124]

    Fischmann T O, Smith C K, Mayhood T W, Myers J E, Reichert J P, Mannarino A, Carr D, Zhu H, Wong J, Yang R S, Le H V, Madison V S 2009 Biochemistry 48 2661Google Scholar

    [125]

    Hanrahan A J, Sylvester B E, Chang M T, et al. 2020 Cancer Res. 80 4233Google Scholar

    [126]

    Schmidt M, Lipson H 2009 Science 324 81Google Scholar

    [127]

    Jung H, Okazaki K, Hummer G 2017 J. Chem. Phys. 147 152716Google Scholar

    [128]

    Swenson D W H, Prinz J H, Noe F, Chodera J D, Bolhuis P G 2019 J. Chem. Theory Comput. 15 813Google Scholar

    [129]

    Swenson D W H, Prinz J H, Noe F, Chodera J D, Bolhuis P G 2019 J. Chem. Theory Comput. 15 837Google Scholar

    [130]

    Glielmo A, Husic B E, Rodriguez A, Clementi C, Noé F, Laio A 2021 Chem. Rev. 121 9722Google Scholar

  • 图 1  (a)依赖集合变量的过渡态搜索示意图, 需由生物分子(以丙戊酸二肽为例)体系所在的高维相空间(phase space)选取少量集合变量CV强行“定向降维”, 后在此低维CV空间利用非路径类方法或路径方法, 找到过渡态(Transition State), 并给出微观机制解释(mechanism interpretation); (b)非路径类的GAD算法原理示意图; (c), (d)两类路径类搜索算法原理示意图

    Fig. 1.  (a) Illustration of the flow-chart of the collective variables (CVs) based transition state searching. A low dimensional space must be constructed with the CVs, which are arbitrary a priori guess about the mechanism. The transition state(s) is then determined by either the non-path or path methods. (b) The non-path method GAD. Path methods of (c) finite temperature string and (d) fast tomographic.

    图 2  (a) PCV构建[120]和TAPS Method[9195,121]算法原理示意图; (b)基于伞形采样方法得到的TAPS算法确定的MEK1由Loop-Out到达Loop-In转变过程最小自由能路径(MFEP)的自由能图景及相应的微观转变机制[92]

    Fig. 2.  (a) Illustration for the construction of PCV and the flow-chart of the TAPS method; (b) TAPS revealed the free energy landscape and the transition states for the transition from the Loop-Out state of MEK1 to its Loop-In state[92].

    图 3  路径采样算法的基本原理示意图 (a)路径采样中生成新相空间路径的shooting move; (b)传统过渡路径采样(左侧)的随机蒙特卡罗采样与过渡态分析原理[98101], 融合强化学习的路径采样(右侧)在学习过程中不断促进采样起始点选择向过渡态集中[113]

    Fig. 3.  Schematics of path sampling methods. (a) Shooting move: select a phase space point on the current path, make a small perturbation to this point (redraw random initial velocities) and perform a set of simulations. (b) Path sampling is built upon the committor probability $ {p}_{{\mathrm{B}}} $. The traditional transition path sampling (left)[98101] selects shooting points randomly and uses Monte Carlo for sampling; the transition state is characterized through post-analysis: choosing the CVs with the highest and narrowest distribution of P(TP|CV); the new reinforcement path sampling (right)[113] chooses shooting points adaptively and directly learns the committor probability $ {p}_{{\mathrm{B}}} $ with maximized P(TP|x). Symbolic regression of $ {p}_{{\mathrm{B}}} $ is used for mechanism interpretation.

    图 4  物理化学家需要怎样的降维算法 (a)现有降维算法范式不保留过渡态信息, 不利于机制解析; (b)可能的替代范式, 基于生成模型研发可保留过渡态信息的可逆降维算法, 并与低维空间搜索过渡态的GAD联用

    Fig. 4.  Requirements on dimensionality reduction algorithms by physical chemists. (a) Current paradigm for dimensionality reduction and the main difficulties for the transition state searching. (b) Proposed alternative paradigm for transition state searching: combine dimensionality reduction that preserves transition state information with GAD.

    表 1  主要过渡态搜索算法的总结分类

    Table 1.  Classification of the algorithms for transition state searching.

    过渡态搜索算法分类 代表性算法 参考文献 备注
    传统方法 依赖CV Gentlest ascent dynamics (GAD) [7981] 非路径方法
    Finite temperature string [8287]

    路径方法
    预设低维 Fast tomographic [8890]
    空间搜索 基于旅行商的路径搜索 TAPS [9195]
    融合AI 不依赖CV
    高维空间搜索
    Transition path sampling [98101]
    Reinforcement path sampling [113]
    保留过渡态
    信息的降维
    低维空间搜索
    融合生成模型及GAD
    的过渡态搜索(待研发)
    非路径方法
    下载: 导出CSV
  • [1]

    Edman L, Földes-Papp Z, Wennmalm S, Rigler R 1999 Chem. Phys. 247 11Google Scholar

    [2]

    Evenäs J, Malmendal A, Thulin E, Carlstrӧm G, Forsén S 1998 Biochemistry 37 13744Google Scholar

    [3]

    Hanson J A, Duderstadt K, Watkins L P, Bhattacharyya S, Brokaw J B, Chu J W, Yang H 2007 Proc. Natl. Acad. Sci. USA 104 18055Google Scholar

    [4]

    Moffat K 1989 Annu. Rev. Biophys. Chem. 18 309Google Scholar

    [5]

    Huang C, Kalodimos C G 2017 Annu. Rev. Biophys. 46 317Google Scholar

    [6]

    Weissenberger G, Henderikx R J M, Peters P J 2021 Nat. Methods 18 463Google Scholar

    [7]

    Clegg R M 1995 Curr. Opin. Biotechnol. 6 103Google Scholar

    [8]

    Karplus M, McCammon J A 2002 Nat. Struct. Biol. 9 646Google Scholar

    [9]

    Hollingsworth S A, Dror R O 2018 Neuron 99 1129Google Scholar

    [10]

    Bernèche S, Roux B 2001 Nature 414 73Google Scholar

    [11]

    Khafizov K, Perez C, Koshy C, Quick M, Fendler K, Ziegler C, Forrest L R 2012 Proc. Natl. Acad. Sci. USA 109 E3035Google Scholar

    [12]

    Li J, Shaikh S A, Enkavi G, Wen P C, Huang Z, Tajkhorshid E 2013 Proc. Natl. Acad. Sci. USA 110 7696Google Scholar

    [13]

    Dror, R O, Green H F, Valant C, Borhani D W, Valcourt J R, Pan A C, Arlow D H, Canals M, Lane J R, Rahmani R, Baell J B, Sexton P M, Christopoulos A, Shaw D E 2013 Nature 503 295Google Scholar

    [14]

    Wacker D, Stevens R C, Roth B L 2017 a Cell 170 414Google Scholar

    [15]

    Wacker D, Wang S, McCorvy J D, Betz R M, Venkatakrishnan A J, Levit A, Lansu K, Schools Z L, Che T, Nichols D E, Dror R O, Roth B L 2017 Cell 168 377Google Scholar

    [16]

    McCorvy J D, Butler K V, Kelly B, Rechsteiner K, Karpiak J, Betz R M, Kormos B L, Shoichet B K, Dror R O, Jin J, Roth B L 2018 Nat. Chem. Biol. 14 126Google Scholar

    [17]

    Provasi D, Artacho M C, Negri A, Mobarec J C, Filizola M 2011 PLoS Comput. Biol. 7 e1002193Google Scholar

    [18]

    Cordero-Morales J F, Jogini V, Lewis A, Vásquez V, Cortes D M, Roux B, Perozo E 2007 Nat. Struct. Mol. Biol. 14 1062Google Scholar

    [19]

    Fields J B, Németh-Cahalan K L, Freites J A, Vorontsova I, Hall J E, Tobias D J 2017 J. Biol. Chem. 292 185Google Scholar

    [20]

    Groban E S, Narayanan A, Jacobson M P 2006 PLoS Comput. Biol. 2 e32Google Scholar

    [21]

    Liu Y, Ke M, Gong H 2015 Biophys. J. 109 542Google Scholar

    [22]

    Delemotte L, Tarek M, Klein M L, Amaral C, Treptow W 2011 Proc. Natl. Acad. Sci. USA 108 6109Google Scholar

    [23]

    Lindorff-Larsen K, Piana S, Dror R O, Shaw D E 2011 Science 334 517Google Scholar

    [24]

    Snow C D, Nguyen H, Pande V S, Gruebele M 2002 Nature 420 102Google Scholar

    [25]

    Dror R O, Arlow D H, Maragakis P, Mildorf T J, Pan A C, Xu H, Borhani D W, Shaw D E 2011 Proc. Natl. Acad. Sci. USA 108 18684Google Scholar

    [26]

    Dror R O, Pan A C, Arlow D H, Borhani D W, Maragakis P, Shan Y, Xu H, Shaw D E 2011 Proc. Natl. Acad. Sci. USA 108 13118Google Scholar

    [27]

    Gu Y, Shrivastava I H, Amara S G, Bahar I 2009 Proc. Natl. Acad. Sci. USA 106 2589Google Scholar

    [28]

    Latorraca N R, Fastman N M, Venkatakrishnan A J, Frommer W B, Dror R O, Feng L 2017 Cell 169 96Google Scholar

    [29]

    Stelzl L S, Fowler P W, Sansom M S, Beckstein O 2014 J. Mol. Biol. 426 735Google Scholar

    [30]

    Buch I, Giorgino T, De Fabritiis G 2011 Proc. Natl. Acad. Sci. USA 108 10184Google Scholar

    [31]

    Liang R, Swanson J M J, Madsen J J, Hong M, DeGrado W F, Voth G A 2016 Proc. Natl. Acad. Sci. USA 113 E6955Google Scholar

    [32]

    Suomivuori C M, Gamiz-Hernandez A P, Sundholm D, Kaila V R I 2017 Proc. Natl. Acad. Sci. USA 114 7043Google Scholar

    [33]

    Tajkhorshid E, Nollert P, Jensen M Ø, Miercke L J W, O’Connell J, Stroud R M, Schulten K 2002 Science 296 525Google Scholar

    [34]

    Watanabe A, Choe S, Chaptal V, Rosenberg J M, Wright E M, Grabe M, Abramson J 2010 Nature 468 988Google Scholar

    [35]

    Dedmon M M, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson C M 2005 J. Am. Chem. Soc. 127 476Google Scholar

    [36]

    Nguyen H D, Hall C K 2004 Proc. Natl. Acad. Sci. USA 101 16180Google Scholar

    [37]

    Levitt M 1983 J. Mol. Biol. 168 595Google Scholar

    [38]

    Sugita Y, Okamoto Y 1999 Chem. Phys. Lett. 314 141Google Scholar

    [39]

    Rhee Y M, Pande V S 2003 Biophys. J. 84 775Google Scholar

    [40]

    Zhang W, Wu C, Duan Y 2005 J. Chem. Phys. 123 154105Google Scholar

    [41]

    Zhou R 2006 Protein Folding Protocols (Humana Totowa, NJ: Springer) pp205−223

    [42]

    Sindhikara D, Meng Y, Roitberg A E 2008 J. Chem. Phys. 128 024103Google Scholar

    [43]

    Buchete N V, Hummer G 2008 Phys. Rev. E 77 030902Google Scholar

    [44]

    Rosta E, Hummer G 2009 J. Chem. Phys. 131 165102Google Scholar

    [45]

    Stelzl L S, Hummer G 2017 J. Chem. Theory Comput. 13 3927Google Scholar

    [46]

    Yang L J, Gao Q Y 2009 J. Chem. Phys. 131 214109Google Scholar

    [47]

    Yang L, Liu C W, Shao Q, Zhang J, Gao Y Q 2015 Acc. Chem. Res. 48 947Google Scholar

    [48]

    Yang Y I, Zhang J, Che X, Yang L J, Gao Y Q 2016 J. Chem. Phys. 144 094105Google Scholar

    [49]

    Yang Y I, Shao Q, Zhang J, Yang L J, Gao Y Q 2019 J. Chem. Phys. 151 070902Google Scholar

    [50]

    Huber T, Torda A E, Van Gunsteren W F 1994 J. Comput. -Aided Mol. Des. 8 695Google Scholar

    [51]

    Wada T, Kuroda K, Yoshida Y, Ogasawara K, Ogawa A, Endo S 2006 Neurosurg. Rev. 29 242Google Scholar

    [52]

    Hansen H S, Hünenberger P H 2010 J. Comput. Chem. 31 1Google Scholar

    [53]

    Perić-Hassler L, Hansen H S, Baron R, Hünenberger P H 2010 Carbohydr. Res. 345 1781Google Scholar

    [54]

    Grubmüller H 1995 Phys. Rev. E 52 2893Google Scholar

    [55]

    Schulze B G, Grubmüller H, Evanseck J D 2000 J. Am. Chem. Soc. 122 8700Google Scholar

    [56]

    Bouvier B, Grubmüller H 2007 Biophys. J. 93 770Google Scholar

    [57]

    Barducci A, Bonomi M, Parrinello M 2011 WIREs Comput. Mol. Sci. 1 826Google Scholar

    [58]

    Tiwary P, Parrinello M 2013 Phys. Rev. Lett. 111 230602Google Scholar

    [59]

    Bussi G, Laio A 2020 Nat. Rev. Phys. 2 200Google Scholar

    [60]

    Miao Y, Feher V A, McCammon J A 2015 J. Chem. Theory Comput. 11 3584Google Scholar

    [61]

    Miao Y, McCammon J A 2017 Annu. Rep. Comput. Chem. 13 231Google Scholar

    [62]

    Wang J, Arantes P R, Bhattarai A, et al. 2021 Wiley Interdiscip. Rev.: Comput. Mol. Sci. 11 e1521Google Scholar

    [63]

    Naritomi Y, Sotaro F 2011 J. Chem. Phys. 134 065101Google Scholar

    [64]

    Schwantes C R, Vijay S P 2013 J. Chem. Theory Comput. 9 2000Google Scholar

    [65]

    Perez-Hernandez G, Paul F, Giorgino T, Fabritiis G D, Noé F 2013 J. Chem. Phys. 139 015102Google Scholar

    [66]

    Bowman G R, Huang X H, Pande V S 2009 Methods 49 197Google Scholar

    [67]

    Metzner P, Noé F, Schütte C 2009 Phys. Rev. E 80 021106Google Scholar

    [68]

    Pande V S, Beauchamp K A, Bowman G R 2010 Methods 52 99Google Scholar

    [69]

    Prinz J H, Wu H, Sarich M, Keller B, Senne M, Held M, Chodera J D, Schütte C, Noé F 2011 J. Chem. Phys. 134 174105Google Scholar

    [70]

    Kellogg E H, Lange O F, Baker D 2012 J. Phys. Chem. B 116 11405Google Scholar

    [71]

    Yao Y, Cui R Z, Bowman G R, Silva D A, Sun J, Huang X H 2013 J. Chem. Phys. 138 174106Google Scholar

    [72]

    McGibbon R T, Schwantes C R, Pande V S 2014 J. Phys. Chem. B 118 6475Google Scholar

    [73]

    Nuske F, Keller B G, Pérez-Hernández G, Mey A S J, Noé F 2014 J. Chem. Theory Comput. 10 1739Google Scholar

    [74]

    Sheong F K, Silva D A, Meng L, Zhao Y, Huang X H 2015 J. Chem. Theory Comput. 11 17Google Scholar

    [75]

    Zhu L Z, Sheong F K, Zeng X, Huang X H 2016 Phys. Chem. Chem. Phys. 18 30228Google Scholar

    [76]

    Wang W, Cao S, Zhu L Z, Huang X H 2018 WIREs Comput. Mol. Sci. 8 e1343Google Scholar

    [77]

    Husic B E, Pande V S 2018 J. Am. Chem. Soc. 140 2386Google Scholar

    [78]

    Konovalov K A, Unarta I C, Cao S, Goonetilleke E C, Huang X H 2021 J. Am. Chem. Soc. Au. 1 1330Google Scholar

    [79]

    E W, Zhou X 2011 Nonlinearity 24 1831Google Scholar

    [80]

    Samanta A, Chen M, Yu T Q, Tuckerman M E 2014 J. Chem. Phys. 140 164109Google Scholar

    [81]

    Chen M, Yu T Q, Tuckerman M E 2015 Proc. Natl. Acad. Sci. USA 112 3235Google Scholar

    [82]

    E W, Ren W, Vanden-Eijnden E 2002 Phys. Rev. B 66 052301Google Scholar

    [83]

    E W, Ren W, Vanden-Eijnden E 2005 J. Phys. Chem. B 109 6688Google Scholar

    [84]

    Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G 2006 J. Chem. Phys. 125 024106Google Scholar

    [85]

    Ren W, Vanden-Eijnden E 2007 J. Chem. Phys. 126 164103Google Scholar

    [86]

    Maragliano L, Vanden-Eijnden E 2007 Chem. Phys. Lett. 446 182Google Scholar

    [87]

    Pan A C, Sezer D, Roux B 2008 J. Phys. Chem. B 112 3432Google Scholar

    [88]

    Chen C, Huang Y, Xiao Y 2012 Phys. Rev. E 86 031901Google Scholar

    [89]

    Chen C, Huang Y, Ji X, Xiao Y 2013 J. Chem. Phys. 138 164122Google Scholar

    [90]

    Chen C J, Huang Y Z, Jiang X W, Xiao Y 2014 J. Chem. Phys. 141 154109Google Scholar

    [91]

    Zhu L Z, Sheong F K, Cao S, Liu S, Unarta I C, Huang X H 2019 J. Chem. Phys. 150 124105Google Scholar

    [92]

    Xi K, Hu Z, Wu Q, Wei M, Qian R, Zhu L Z 2021 J. Chem. Theory Comput. 17 5301Google Scholar

    [93]

    Wang L, Xi K, Zhu L Z, Da L T 2022 J. Chem. Inf. Model. 62 3213Google Scholar

    [94]

    Xi K, Zhu L Z 2022 Int. J. Mol. Sci. 23 14628Google Scholar

    [95]

    Xi K, Zhu L Z 2023 A Practical Guide to Recent Advances in Multiscale Modeling and Simulation of Biomolecules (AIP Publishing) pp9-1−9-24

    [96]

    Vanden-Eijnden E 2006 Computer Simulations in Condensed Matter: From Materials to Chemical Biology (Berlin: Springer) pp453−493

    [97]

    Vanden-Eijnden E 2010 Annu. Rev. Phys. Chem. 61 391Google Scholar

    [98]

    Dellago C, Bolhuis P G, Csajka F S, Chandler D 1998 J. Chem. Phys. 108 1964Google Scholar

    [99]

    Bolhuis P G, Dellago C, Chandler D 1998 Faraday Discuss. 110 421Google Scholar

    [100]

    Dellago C, Bolhuis P G, Chandler D 1999 J. Chem. Phys. 110 6617Google Scholar

    [101]

    Dellago C, Bolhuis P G, Geissler P L 2002 Adv. Chem. Phys. 123 1Google Scholar

    [102]

    Noé F, Tkatchenko A, Müller K R, Clementi C 2020 Annu. Rev. Phys. Chem. 71 361Google Scholar

    [103]

    AlQuraishi M, Sorger P K 2021 Nat. Methods 18 1169Google Scholar

    [104]

    Karniadakis G E, Kevrekidis I G, Lu L, Perdikaris P, Wang S, Yang L 2021 Nat. Rev. Phys. 3 422Google Scholar

    [105]

    Ju F, Zhu J, Shao B, Kong L, Liu T Y, Zheng W M, Bu D 2021 Nat. Commum. 12 2535Google Scholar

    [106]

    Huang B, Xu Y, Hu X H, Liu Y R, Liao S H, Zhang J H, Huang C D, Hong J J, Chen Q, Liu H Y 2022 Nature 602 523Google Scholar

    [107]

    Du Z, Su H, Wang W, Ye L, Wei H, Peng Z, Anishchenko I, Baker D, Yang J 2021 Nat. Prot. 16 5634Google Scholar

    [108]

    Dai M, Dong Z, Xu K, Zhang Q C 2023 J. Mol. Biol. 435 168059Google Scholar

    [109]

    Yuan Q M, Chen J W, Zhao H Y, Zhou Y Q, Yang Y D 2022 Bioinformatics 38 125Google Scholar

    [110]

    Su M Y, Feng G, Liu Z, Li Y, Wang R 2020 J. Chem. Inf. Model. 60 1122Google Scholar

    [111]

    Zeng C, Jian Y, Vosoughi S, Zeng C, Zhao Y 2023 Nat. Commum. 14 1060Google Scholar

    [112]

    Noé F, Olsson S, Köhler J, Wu H 2019 Science 365 6457Google Scholar

    [113]

    Jung H, Covino R, Arjun A, Leitold C, Dellago C, Bolhuis P G, Hummer G 2023 Nat. Comput. Sci. 3 334Google Scholar

    [114]

    Weiss D R, Levitt M 2009 J. Mol. Biol. 385 665Google Scholar

    [115]

    Isralewitz B, Gao M, Schulten K 2001 Curr. Opin. Struct. Biol. 11 224Google Scholar

    [116]

    Schlitter J, Engels M, Krüger P 1994 J. Mol. Graph. 12 84Google Scholar

    [117]

    Torrie G M, Valleau J P 1977 J. Comput. Phys. 23 187Google Scholar

    [118]

    Ryckaert J P, Ciccotti G, Berendsen H J 1977 J. Comput. Phys. 23 327Google Scholar

    [119]

    Babin V, Roland C, Sagui C 2008 J. Chem. Phys. 128 134101Google Scholar

    [120]

    Branduardi D, Gervasio F L, Parrinello M 2007 J. Chem. Phys. 126 054103Google Scholar

    [121]

    Applegate D L, Bixby R E, Chvátal V, Cook W J 2011 The Traveling Salesman Problem: A Computational Study (Princeton University Press) pp1−58

    [122]

    Cox M A A, Cox T F 2008 Handbook of Data Visualization (Berlin: Springer) pp315−347

    [123]

    Barducci A, Bussi G, Parrinello M 2008 Phys. Rev. Lett. 100 020603Google Scholar

    [124]

    Fischmann T O, Smith C K, Mayhood T W, Myers J E, Reichert J P, Mannarino A, Carr D, Zhu H, Wong J, Yang R S, Le H V, Madison V S 2009 Biochemistry 48 2661Google Scholar

    [125]

    Hanrahan A J, Sylvester B E, Chang M T, et al. 2020 Cancer Res. 80 4233Google Scholar

    [126]

    Schmidt M, Lipson H 2009 Science 324 81Google Scholar

    [127]

    Jung H, Okazaki K, Hummer G 2017 J. Chem. Phys. 147 152716Google Scholar

    [128]

    Swenson D W H, Prinz J H, Noe F, Chodera J D, Bolhuis P G 2019 J. Chem. Theory Comput. 15 813Google Scholar

    [129]

    Swenson D W H, Prinz J H, Noe F, Chodera J D, Bolhuis P G 2019 J. Chem. Theory Comput. 15 837Google Scholar

    [130]

    Glielmo A, Husic B E, Rodriguez A, Clementi C, Noé F, Laio A 2021 Chem. Rev. 121 9722Google Scholar

  • [1] 陈晶晶, 赵洪坡, 王葵, 占慧敏, 罗泽宇. SiC基底覆多层石墨烯力学强化性能分子动力学模拟. 物理学报, 2024, 73(10): 109601. doi: 10.7498/aps.73.20232031
    [2] 刘希望, 张宏丹, 贲帅, 杨士栋, 任鑫, 宋晓红, 杨玮枫. 费曼路径积分强场动力学计算方法. 物理学报, 2023, 72(19): 198701. doi: 10.7498/aps.72.20230451
    [3] 张逸凡, 任卫, 王伟丽, 丁书剑, 李楠, 常亮, 周倩. 机器学习结合固溶强化模型预测高熵合金硬度. 物理学报, 2023, 72(18): 180701. doi: 10.7498/aps.72.20230646
    [4] 华颖鑫, 刘福生, 耿华运, 郝龙, 于继东, 谭叶, 李俊. 多次冲击加载-卸载路径下铁α-ε相变动力学特性研究. 物理学报, 2021, 70(16): 166201. doi: 10.7498/aps.70.20210089
    [5] 孙太平, 吴玉椿, 郭国平. 量子生成模型. 物理学报, 2021, 70(14): 140304. doi: 10.7498/aps.70.20210930
    [6] 张冬晓, 陈志斌, 肖程, 秦梦泽, 吴浩. 基于引力搜索算法的湍流相位屏生成方法. 物理学报, 2019, 68(13): 134205. doi: 10.7498/aps.68.20190081
    [7] 梅英, 谭冠政, 刘振焘, 武鹤. 基于大脑情感学习模型和自适应遗传算法的混沌时间序列预测. 物理学报, 2018, 67(8): 080502. doi: 10.7498/aps.67.20172104
    [8] 王湘林, 吴德伟, 李响, 朱浩男, 陈坤, 方冠. 一种生成质量最优路径纠缠微波信号的压缩参量选择方法. 物理学报, 2017, 66(23): 230302. doi: 10.7498/aps.66.230302
    [9] 李晓克, 冯伟. 非绝热分子动力学的量子路径模拟. 物理学报, 2017, 66(15): 153101. doi: 10.7498/aps.66.153101
    [10] 陈基, 冯页新, 李新征, 王恩哥. 基于路径积分分子动力学与热力学积分方法的高压氢自由能计算. 物理学报, 2015, 64(18): 183101. doi: 10.7498/aps.64.183101
    [11] 高文, 汤洋, 朱明. 目标跟踪中目标模型更新问题的半监督学习算法研究. 物理学报, 2015, 64(1): 014205. doi: 10.7498/aps.64.014205
    [12] 廖宏宇, 马晓燠, 郭友明, 饶长辉, 魏凯. 基于AR模型搜索迭代算法的望远镜跟踪误差分析. 物理学报, 2014, 63(17): 179501. doi: 10.7498/aps.63.179501
    [13] 阮鹏, 谢冀江, 潘其坤, 张来明, 郭劲. 非链式脉冲DF化学激光器反应动力学模型. 物理学报, 2013, 62(9): 094208. doi: 10.7498/aps.62.094208
    [14] 陈基根, 曾思良, 杨玉军, 程超. 三色激光控制量子路径生成短于30阿秒的孤立脉冲. 物理学报, 2012, 61(12): 123201. doi: 10.7498/aps.61.123201
    [15] 张水舰, 刘学军, 杨洋. 动态随机最短路径算法研究. 物理学报, 2012, 61(16): 160201. doi: 10.7498/aps.61.160201
    [16] 颜克凤, 李小森, 孙丽华, 陈朝阳, 夏志明. 储氢笼型水合物生成促进机理的分子动力学模拟研究. 物理学报, 2011, 60(12): 128801. doi: 10.7498/aps.60.128801
    [17] 戴显英, 金国强, 董洁琼, 王船宝, 赵娴, 楚亚萍, 奚鹏程, 邓文洪, 张鹤鸣, 郝跃. 锗硅/硅异质结材料的化学气相淀积生长动力学模型. 物理学报, 2011, 60(6): 065101. doi: 10.7498/aps.60.065101
    [18] 陈军, 李春光. 禁忌学习神经元模型的电路设计及其动力学研究. 物理学报, 2011, 60(2): 020502. doi: 10.7498/aps.60.020502
    [19] 陈基根, 陈高, 池方萍, 杨玉军. 量子路径控制生成宽频软X射线连续辐射谱. 物理学报, 2010, 59(5): 3162-3167. doi: 10.7498/aps.59.3162
    [20] 程成, 庄飞. 优化铜蒸气激光的动力学强化机理研究. 物理学报, 2001, 50(3): 478-482. doi: 10.7498/aps.50.478
计量
  • 文章访问数:  3570
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-13
  • 修回日期:  2023-09-09
  • 上网日期:  2023-10-08
  • 刊出日期:  2023-12-20

/

返回文章
返回