-
采用声悬浮无容器处理技术, 研究了聚乙二醇-硫酸铵(PEG-AMS)双水相液滴的蒸发与相分离过程. 双水相液滴蒸发过程中, 液滴赤道直径的平方
$ {d}^{2} $ 随时间线性减小, 同时液滴横纵比$ \gamma $ 随时间线性增大. 初始处于单相区的液滴随着水分蒸发可以跨越到双相区, 进而发生相分离. 声悬浮状态下PEG-AMS双水相液滴的相分离分为3个阶段: 首先液滴内部形成富PEG相微滴, 然后富PEG相微滴发生碰撞凝并同时向外迁移, 最终液滴形成水平分层结构. 对比分析了不同横纵比及不同成分的双水相液滴的蒸发和相分离过程, 发现横纵比$ \gamma $ 越大, 富PEG相体积分数越小, 则液滴蒸发速率越快; 横纵比$ \gamma $ 越大, 富PEG相体积分数越大, 则液滴相分离越快. 这些发现有助于深入理解声悬浮条件下液滴的运动特性、蒸发动力学和相分离规律, 并为材料的声悬浮无容器制备和加工提供依据.As a ground-based experimental method for simulating the containerless state in space, acoustic levitation provides excellent containerless and contact-free conditions for studying droplet dynamics, including droplet evaporation and phase separation. Meanwhile, the nonlinear effects of the acoustic field, such as acoustic radiation pressure and acoustic streaming, bring novel characteristics to the droplet evaporation process and phase separation process. In this work, the evaporation and phase separation of aqueous two-phase-system (ATPS) droplet composed of polyethylene glycol (PEG) and ammonium sulfate (AMS) are investigated by a single-axis acoustic levitator through the combination of image acquisition and processing technique. During the evaporation of the ATPS droplet, the square of its equatorial diameter,$ {d}^{2} $ , decreases linearly with time, and its aspect ratio,$ \gamma $ , increases linearly with time. The PEG-AMS droplet initially in the single-phase regime can enter into the two-phase regime as the water evaporates, resulting in phase separation. The phase separation of the acoustically levitated PEG-AMS ATPS droplet includes three stages: first, a large number of PEG-rich globules form inside the ATPS droplet, and then these PEG-rich globules collide, coagulate and migrate outward, and finally a horizontal layered structure of the whole droplet comes into being. The evaporation constant, the evolution of the PEG-rich globules and the AMS-rich phase area, are analyzed for ATPS droplets with different initial aspect ratios and different initial compositions. It is concluded that the greater the initial aspect ratio and the smaller the volume fraction of the PEG-rich phase, the faster the evaporation rate of the droplet is; the greater the initial aspect ratio and the lager the volume fraction of the PEG-rich phase, the faster the phase separation is. Numerical simulations show that the acoustically levitated droplets with a large aspect ratio are subjected to greater acoustic radiation pressure on the surface, and that the corresponding sound field is more intense and the acoustic streaming is stronger, which accelerates the evaporation and phase separation of the levitated droplets. These findings contribute to deepening our understanding of the motion characteristics, evaporation dynamics and phase separation of acoustically levitated droplets, and provide a foundation for studying the containerless preparation and processing the materials under acoustic levitation.[1] Andrade M A B, Pérez N, Adamowski J C 2018 Braz. J. Phys. 48 190Google Scholar
[2] Xie W J, Wei B 2001 Appl. Phys. Lett. 79 881Google Scholar
[3] Geng D L, Yan N, Xie W J, Lü Y J, Wei B B 2023 Adv. Mater. 35 2206464Google Scholar
[4] Andrade M A B, Marzo A, Adamowski J C 2020 Appl. Phys. Lett. 116 250501Google Scholar
[5] Ami Y B, Manela A 2021 J. Fluid Mech. 916 A24Google Scholar
[6] Polychronopoulos S, Memoli G 2020 Sci. Rep. 10 4254Google Scholar
[7] Combe N A, Donaldson D J 2017 J. Phys. Chem. A 121 7197Google Scholar
[8] Bunio L B, Wang J, Kannaiyan R, Gates I D 2022 Chem. Eng. Sci. 251 117441Google Scholar
[9] Inserra C, Regnault G, Cleve S, Mauger C, Blanc-Benon P 2021 J. Vis. Exp. 171 e62044Google Scholar
[10] Lu X L, Twiefel J, Ma Z C, Yu T T, Wallaschek J, Fischer P 2021 Adv. Sci. 8 2100888Google Scholar
[11] Xie W J, Wei B B 2004 Phys. Rev. E 70 046611Google Scholar
[12] Argyri S M, Evenäs L, Bordes R 2023 J. Colloid Interface Sci. 640 637Google Scholar
[13] 杜人君, 解文军 2011 物理学报 60 114302Google Scholar
Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302Google Scholar
[14] Tuckermann R, Puskar L, Zavabeti M, Sekine R, Mcnaughton D 2009 Anal. Bioanal. Chem. 394 1433Google Scholar
[15] Zaitone B A 2018 Int. J. Heat Mass Transf. 126 164Google Scholar
[16] Maruyama Y, Hasegawa K 2020 RSC Adv. 10 1870Google Scholar
[17] Brutin D, Starov V 2018 Chem. Soc. Rev. 47 558Google Scholar
[18] Junk M, Hinrichs J, Polt F, Fechner J, Pauer W 2020 Int. J. Heat Mass Transf. 149 119057Google Scholar
[19] Yarin A L, Brenn G, Kastner O, Rensink D, Tropea C 1999 J. Fluid Mech. 399 151Google Scholar
[20] Yarin A L, Brenn G, Rensink D 2002 Int. J. Heat Fluid Flow 23 471Google Scholar
[21] 翟薇, 王楠, 魏炳波 2007 物理学报 56 2353Google Scholar
Zhai W, Wang N, Wei B B 2007 Acta Phys. Sin. 56 2353Google Scholar
[22] Hoven C V, Dang X D, Coffin R C, Peet J, Nguyen T Q, Bazan G C 2010 Adv. Mater. 22 E63Google Scholar
[23] Zhu J, Jiang L 2022 Langmuir 38 9043Google Scholar
[24] 齐玉, 曲昌荣, 王丽, 方腾 2014 物理学报 63 046401Google Scholar
Qi Y, Qu C R, Wang L, Fang T 2014 Acta Phys. Sin. 63 046401Google Scholar
[25] 张鹏程, 方文玉, 鲍磊, 康文斌 2020 物理学报 69 138701Google Scholar
Zhang P C, Fang W Y, Bao L, Kang W B 2020 Acta Phys. Sin. 69 138701Google Scholar
[26] Molino J V D, Marques D A V, Júnior A P, Mazzola P G, Gatti M S V 2013 Biotechnol. Prog. 29 1343Google Scholar
[27] Zhong Q C, Xie W J 2020 Appl. Phys. Lett. 116 224101Google Scholar
[28] Chao Y, Shum H C 2020 Chem. Soc. Rev. 49 114Google Scholar
[29] King L V 1934 Proc. Roy. Soc. A 147 212Google Scholar
[30] Huddleston J G, Willauer H D, Rogers R D 2003 J. Chem. Eng. Data 48 1230Google Scholar
-
图 5 液滴表面声辐射压分布与反射端-发射端间距H0的关系 (a) H0 = 34.1 mm时声场中的声辐射压分布; (b) 不同H0对应的液滴上下表面的声辐射压(空心符号和实心符号分别表示液滴上下表面)
Fig. 5. Relationship between the acoustic radiation pressure on the droplet’s surface and the reflector-emitter distance H0: (a) Distribution of acoustic radiation pressure when H0 = 34.1 mm; (b) acoustic radiation pressure on the upper and lower surfaces of the droplets with different H0 (the open symbols indicate the data on the upper surface, and the solid symbols the lower surface).
表 1 三种成分的PEG-AMS双水相液体参数
Table 1. Parameters of three PEG-AMS ATPS liquids with different compositions.
序号 成分(质量分数)/% 上下相体积比$ {V}_{{{T}}}/{V}_{{{B}}} $ H2O PEG AMS ① 51 22 27 0.47 ② 47 32 21 0.96 ③ 43 43 14 2.08 表 2 声场模拟采用的物理参数
Table 2. Physical parameters for acoustic simulation.
参数 数值 注释 $ {H}_{0} $/mm 34—35 反射端-发射端间距 $ {R}_{0} $/mm 40 反射端曲率半径 $ {R}_{{\mathrm{b}}} $/mm 20 反射端截面半径 $ {R}_{{\mathrm{a}}} $/mm 12 发射端截面半径 $ {H}_{{\mathrm{s}}} $/mm 20 样品位置 $ {R}_{1} $/mm 2 液滴半长轴 $ {r}_{1} $/mm 1 液滴半短轴 $ {\rho }_{0} $/(kg·m–3) 1.293 空气密度 $ {c}_{0} $/(m·s–1) 340 空气中声速 $ {v}_{0} $/(m·s–1) 0.8916 发射端振动速度幅值 $ {f}_{0} $/kHz 22 超声波频率 表 3 H2O-10%PEG-10%AMS液滴蒸发过程中上、下相的成分变化
Table 3. Compositions of the top phase and bottom phase during evaporation of H2O-10%PEG-10%AMS droplet.
蒸发时间/min 液滴成分(质量分数)/% 上相成分 (质量分数)/% 下相成分(质量分数)/% H2O PEG AMS H2O PEG AMS H2O PEG AMS 0 80.0 10.0 10.0 — — — — — — 5 78.4 10.8 10.8 — — — — — — 10 76.6 11.7 11.7 75.2 15.6 9.2 80.4 0.7 18.9 15 75.2 12.4 12.4 73.0 18.8 8.2 79.0 0.3 20.7 20 73.6 13.2 13.2 70.8 21.7 7.5 78.0 0.0 22.0 25 71.2 14.4 14.4 66.5 27.5 6.0 76.2 0.0 23.8 30 68.8 15.6 15.6 62.4 33.2 4.4 74.2 0.0 25.8 -
[1] Andrade M A B, Pérez N, Adamowski J C 2018 Braz. J. Phys. 48 190Google Scholar
[2] Xie W J, Wei B 2001 Appl. Phys. Lett. 79 881Google Scholar
[3] Geng D L, Yan N, Xie W J, Lü Y J, Wei B B 2023 Adv. Mater. 35 2206464Google Scholar
[4] Andrade M A B, Marzo A, Adamowski J C 2020 Appl. Phys. Lett. 116 250501Google Scholar
[5] Ami Y B, Manela A 2021 J. Fluid Mech. 916 A24Google Scholar
[6] Polychronopoulos S, Memoli G 2020 Sci. Rep. 10 4254Google Scholar
[7] Combe N A, Donaldson D J 2017 J. Phys. Chem. A 121 7197Google Scholar
[8] Bunio L B, Wang J, Kannaiyan R, Gates I D 2022 Chem. Eng. Sci. 251 117441Google Scholar
[9] Inserra C, Regnault G, Cleve S, Mauger C, Blanc-Benon P 2021 J. Vis. Exp. 171 e62044Google Scholar
[10] Lu X L, Twiefel J, Ma Z C, Yu T T, Wallaschek J, Fischer P 2021 Adv. Sci. 8 2100888Google Scholar
[11] Xie W J, Wei B B 2004 Phys. Rev. E 70 046611Google Scholar
[12] Argyri S M, Evenäs L, Bordes R 2023 J. Colloid Interface Sci. 640 637Google Scholar
[13] 杜人君, 解文军 2011 物理学报 60 114302Google Scholar
Du R J, Xie W J 2011 Acta Phys. Sin. 60 114302Google Scholar
[14] Tuckermann R, Puskar L, Zavabeti M, Sekine R, Mcnaughton D 2009 Anal. Bioanal. Chem. 394 1433Google Scholar
[15] Zaitone B A 2018 Int. J. Heat Mass Transf. 126 164Google Scholar
[16] Maruyama Y, Hasegawa K 2020 RSC Adv. 10 1870Google Scholar
[17] Brutin D, Starov V 2018 Chem. Soc. Rev. 47 558Google Scholar
[18] Junk M, Hinrichs J, Polt F, Fechner J, Pauer W 2020 Int. J. Heat Mass Transf. 149 119057Google Scholar
[19] Yarin A L, Brenn G, Kastner O, Rensink D, Tropea C 1999 J. Fluid Mech. 399 151Google Scholar
[20] Yarin A L, Brenn G, Rensink D 2002 Int. J. Heat Fluid Flow 23 471Google Scholar
[21] 翟薇, 王楠, 魏炳波 2007 物理学报 56 2353Google Scholar
Zhai W, Wang N, Wei B B 2007 Acta Phys. Sin. 56 2353Google Scholar
[22] Hoven C V, Dang X D, Coffin R C, Peet J, Nguyen T Q, Bazan G C 2010 Adv. Mater. 22 E63Google Scholar
[23] Zhu J, Jiang L 2022 Langmuir 38 9043Google Scholar
[24] 齐玉, 曲昌荣, 王丽, 方腾 2014 物理学报 63 046401Google Scholar
Qi Y, Qu C R, Wang L, Fang T 2014 Acta Phys. Sin. 63 046401Google Scholar
[25] 张鹏程, 方文玉, 鲍磊, 康文斌 2020 物理学报 69 138701Google Scholar
Zhang P C, Fang W Y, Bao L, Kang W B 2020 Acta Phys. Sin. 69 138701Google Scholar
[26] Molino J V D, Marques D A V, Júnior A P, Mazzola P G, Gatti M S V 2013 Biotechnol. Prog. 29 1343Google Scholar
[27] Zhong Q C, Xie W J 2020 Appl. Phys. Lett. 116 224101Google Scholar
[28] Chao Y, Shum H C 2020 Chem. Soc. Rev. 49 114Google Scholar
[29] King L V 1934 Proc. Roy. Soc. A 147 212Google Scholar
[30] Huddleston J G, Willauer H D, Rogers R D 2003 J. Chem. Eng. Data 48 1230Google Scholar
计量
- 文章访问数: 1982
- PDF下载量: 135
- 被引次数: 0