搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁场诱导的TmFeO3单晶自旋重取向

王宁 黄峰 陈盈 朱国锋 苏浩斌 郭翠霞 王向峰

引用本文:
Citation:

磁场诱导的TmFeO3单晶自旋重取向

王宁, 黄峰, 陈盈, 朱国锋, 苏浩斌, 郭翠霞, 王向峰

Magnetic-field-induced spin reorientation in TmFeO3 single crystals

Wang Ning, Huang Feng, Chen Ying, Zhu Guo-Feng, Su Hao-Bin, Guo Cui-Xia, Wang Xiang-Feng
PDF
HTML
导出引用
  • TmFeO3具有磁光效应、多铁性和自旋重取向等丰富的物理特性, 在凝聚态物理和材料物理领域具有重要的研究价值. 本文利用时域太赫兹低温磁光谱, 研究 TmFeO3单晶在1.6 K温度下自旋共振频率随外加磁场的变化规律, 并表征其内部复杂的相互作用. 结果表明, 随磁场增加TmFeO3单晶的准铁磁共振向高频移动, 而准反铁磁共振在临界磁场(2.2—3.6 T)转变为准铁磁共振, 通过磁结构分析和理论拟合, 证实单晶磁矩发生了磁场诱导的自旋重取向. 本研究有助于深入理解稀土正铁氧体在外磁场、温度场综合作用下, 内部磁结构的调控机制, 开发相关的自旋电子学器件.
    TmFeO3 exhibits rich physical properties such as magneto-optical effect, multiferroicity, and spin reorientation, making it possess significant research value in condensed matter physics and materials science. In this study, we utilize a time-domain terahertz magneto-optical spectroscopy system to investigate the changes in spin resonance frequency of TmFeO3 single crystal at T = 1.6 K under external magnetic fields in a range of 0–7 T. The TmFeO3 sample is grown in an optical floating zone furnace and its crystallographic orientation is determined by using back-reflection Laue X-ray photography with a tungsten target. The measurement setup is a self-built time-domain terahertz magneto-optical spectroscopy system, with magnetic fields in a range of 0–7 T, temperatures in a range of 1.6–300 K, and a spectral range of 0.2–2.0 THz. A pair of 1 mm-thick ZnTe nonlinear crystals is used to generate and detect terahertz signals through optical rectification and electro-optic sampling technique. The system variable temperature and magnetic field are controlled by a superconducting magnet. In experiments, a linearly polarized terahertz wave is vertically incident on the sample surface, and its magnetic component HTHz is parallel to the sample surface. By rotating the sample, the angle (θ) between macroscopic magnetic moment M and HTHz can be tuned, achieving selective excitations of the two modes, that is, θ = 0 for q-AFM mode and 90° for q-FM mode. Terahertz absorption spectrum results indicate that as the magnetic field increases, the quasi-ferromagnetic resonance (q-FM) of TmFeO3 single crystal shifts towards high frequencies, and quasi-antiferromagnetic resonance (q-AFM) transits to q-FM under low critical magnetic fields (2.2–3.6 T). Through magnetic structure analysis and theoretical fitting, it is confirmed that the magnetic moment of the single crystal undergoes magnetic field induced spin reorientation. This study is helpful in better understanding of the regulation mechanism of the internal magnetic structure of rare earth ferrite under the combined action of external magnetic field and temperature field, and also in developing related spin electronic devices.
      通信作者: 黄峰, huangf@fzu.edu.cn ; 陈盈, chenying26@fzu.edu.cn ; 王向峰, xfwang@fzu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 62105068)、福建省自然科学基金(批准号: 2023J05096, 2023J01055)、福建省太赫兹功能器件与智能传感重点实验室(福州大学)开放基金(批准号: FPKLTFDIS202304)、CAD/CAM福建省高校工程研究中心开放基金(批准号: K202203)、智能配电网装备福建省高校工程研究中心开放基金(批准号: KFRC202203)、福建省教育厅中青年教师教育科研项目(批准号: JAT220032)和福州大学科研启动项目(批准号: XRC-22073)资助的课题.
      Corresponding author: Huang Feng, huangf@fzu.edu.cn ; Chen Ying, chenying26@fzu.edu.cn ; Wang Xiang-Feng, xfwang@fzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62105068), the Natural Science Foundation of Fujian Province, China (Grant Nos. 2023J05096, 2023J01055), the Key Laboratory of Terahertz Functional Devices and Intelligent Sensing of Fujian Province, China (Grant No. FPKLTFDIS202304), the Engineering Research Center for CAD/CAM of Fujian Universities (Grant No. K202203), the Engineering Research Center of Smart Distribution Grid Equipment, China (Grant No. KFRC202203), the Education and Scientific Research Foundation for Young Teachers in Fujian Province, China (Grant No. JAT220032), and the Scientific Research Start-up Project of Fuzhou University, China (Grant No. XRC-22073).
    [1]

    Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A, Rasing Th 2009 Nat. Phys. 5 727Google Scholar

    [2]

    Afanasiev D, Ivanov B A, Kirilyuk A, Rasing Th, Pisarev R V, Kimel A V 2016 Phys. Rev. Lett. 116 658270

    [3]

    Nova T F, Cartella A, Cantaluppi A, Först M, Bossini D, Mikhaylovskiy R V, Kimel A V, Merlin R, Cavalleri A 2017 Nat. Phys. 13 132Google Scholar

    [4]

    White R L 1969 J. Appl. Phys. 40 1061Google Scholar

    [5]

    Yamaguchi T 1974 J. Phys. Chem. Solids. 35 479Google Scholar

    [6]

    Ma X X, Yuan N, Yang W T, Zhu S, Shi C F, Song H, Sun Z Q, Kang B J, Ren W, Cao S X 2022 Inorg. Chem. 61 14815Google Scholar

    [7]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids. 4 241Google Scholar

    [8]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [9]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar

    [10]

    Song H, Fan W C, Jia R R, Sun Z Q, Ma X X, Yang W T, Zhu S, Kang B J, Feng Z J, Cao S X 2023 Ceram. Int. 49 22038Google Scholar

    [11]

    Guo J J, Cheng L, Ren Z, Zhang W J, Lin X, Jin Z M, Cao S X, Sheng Z G, Ma G H 2020 J. Phys. Condens. Matter 32 185401

    [12]

    Jiang J J, Song G B, Wang D Y, Jin Z M, Tian Z, Lin X, Han J G, Ma G H, Cao S X, Cheng Z X 2016 J. Phys. Condens. Matter 28 116002

    [13]

    Shen H, Cheng Z X, Hong F, Xu J Y, Yuan S J, Cao S X, Wang X L 2013 Appl. Phys. Lett. 103 192404Google Scholar

    [14]

    Nikitin S E, Wu L S, Sefat A S, Shaykhutdinov K A, Lu Z, Meng S, Pomjakushina E V, Conder K, Ehlers G, Lumsden M D, Kolesnikov A I, Barilo S, Guretskii S A, Inosov D S, Podlesnyak A 2018 Phys. Rev. B 98 064424Google Scholar

    [15]

    Slawinski W, Przenioslo R, Sosnowska I, Suard E 2005 J. Phys. Condens. Matter 17 4605

    [16]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing Th 2005 Nature 435 655Google Scholar

    [17]

    Chen L, Li T W, Cao S X, Yuan S J, Hong F, Zhang J C 2012 J. Appl. Phys. 111 103905Google Scholar

    [18]

    Ramu N, Muralidharan R, Meera K, Jeong Y H 2016 RSC Adv. 6 72295Google Scholar

    [19]

    Zhao W Y, Cao S X, Huang R X, Cao Y M, Xu K, Kang B J, Zhang J C, Ren W 2015 Phys. Rev. B 91 104425Google Scholar

    [20]

    Long H, Cao S X, Liu M, Kang Y M, Zhang B J, Jin C 2014 Phys. Rev. B 90 144415Google Scholar

    [21]

    任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高 2020 物理学报 69 207802Google Scholar

    Ren Z, Cheng L, Sergey G, Nadezhda L, Li J T, Shang J M, Sergey B, Wu A H, Aleksandra K, Ma Z W, Zhou C, Sheng Z G 2020 Acta Phys. Sin. 69 207802Google Scholar

    [22]

    Amelin K, Nagel U, Fishman R S, Yoshida Y, Sim H, Park K, Park J G, Rõõm T 2018 Phys. Rev. B 98 174417Google Scholar

    [23]

    Nagel U, Fishman Randy S, Katuwal T, Engelkamp H, Talbayev D, Yi H T, Cheong S W, Rõõm T 2013 Phys. Rev. Lett. 110 257201Google Scholar

    [24]

    Beard M C, Turner G M, Schmuttenmaer C A 2001 J. Appl. Phys. 90 5915Google Scholar

    [25]

    Kim T H, Kang C, Kee C S, Lee J H, Cho B K, Gruenberg P, Tokunaga Y, Tokura Y, Lee J S 2015 J. Appl. Phys. 118 233101Google Scholar

    [26]

    Reid A H M, Rasing Th, Pisarev R V, Duerr H A, Hoffmann M C 2015 Appl. Phys. Lett. 106 082403Google Scholar

    [27]

    Grishunin K, Huisman T, Li G Q, Mishina E, Rasing T, Kimel A V, Zhang K L, Jin Z M, Cao S X, Ma G H, Mikhaylovskiy R V 2018 ACS Photonics 5 1375Google Scholar

    [28]

    Johnson C E, Prelorendjo L A, Thomas M F 1980 J. Magn. Magn. Mater. 15 557

    [29]

    Ju X W, Hu Z Q, Huang F, Wu H B, Wang X F 2021 Opt. Express 29 9261Google Scholar

    [30]

    Tsuyoshi Y, Kunirô T 1973 Phys. Rev. B 8 5187Google Scholar

    [31]

    Li X W, Bamba M, Yuan N, Zhang Q, Zhao Y, Xiang M L, Xu K, Jin Z M, Ren W, Ma G H, Cao S X, Turchinovich D, Kono J 2018 Science 361 794Google Scholar

    [32]

    Balbashov A M, Berezin A G, Gufan Y M, Kolyadko G S, Marchukov P Y, Rudashevskii E G 1987 J. Exp. Theor. Phys. 66 174

    [33]

    Lin X, Jiang J J, Jin Z M, Wang D Y, Tian Z, Han J G, Cheng Z X, Ma G H 2015 Appl. Phys. Lett. 106 092403Google Scholar

    [34]

    Gorodetsky G, Shaft S, Remeika J P 1981 J. Appl. Phys. 52 7353Google Scholar

    [35]

    Herrmann G F 1963 J. Phys. Chem. Solids 24 597Google Scholar

  • 图 1  TmFeO3晶体结构及倾角反铁磁自旋构型示意图 (a)晶体结构示意图; (b)反铁磁亚晶格Fe1-4自旋方向示意图; (c) T < 85 K, Γ2相的自旋磁矩构型示意图, S1S2表示两对合成的Fe3+亚晶格自旋

    Fig. 1.  Schematic diagrams of TmFeO3 crystal’s structure and canted-antiferromagnet spin configuration: (a) Crystal’s structure diagram; (b) spin directions for the Fe1-4 sites in the antiferromagnetic sublattice; (c) spin magnetic moment configuration schematic of Γ2 phase at T < 85 K, S1 and S2 stand for two pairs of spins for synthesized Fe3+ sublattices.

    图 2  TmFeO3共振模式激发规律及实验构型 (a) THz波选择性激发q-FM和q-AFM两种共振模式; (b)实验构型图, 通过旋转样品改变宏观磁化矢量M 和THz磁场分量的角度

    Fig. 2.  Excitation rule of TmFeO3 resonance modes and experimental geometry: (a) THz wave selectively excites the two resonance modes of q-FM and q-AFM; (b) experimental geometry, the angle between the macroscopic magnetization vector M and the THz magnetic field component is changed by rotating the sample.

    图 3  T = 1.6 K时, 沿晶体c轴施加0—7 T外磁场, TmFeO3在不同磁场下的THz吸收光谱 (a) HTHz//b轴; (b) HTHz//a

    Fig. 3.  THz absorption spectra of TmFeO3 at T = 1.6 K under different magnetic fields applied along crystal’s c-axis from 0–7 T: (a) HTHz//b-axis; (b) HTHz//a-axis.

    图 4  1.6 K温度下TmFeO3在沿c轴外加磁场影响下磁结构变化示意图

    Fig. 4.  Schematic diagram of magnetic structure change of TmFeO3 under magnetic field applied along the crystal’s c-axis

    图 5  TmFeO3在1.6 K共振频率随磁场变化的理论拟合 (a)图3(a)中q-FM共振频率及其理论拟合曲线; (b)图3(b)中q-AFM和q-FM共振频率及其理论拟合曲线. 图中的插图显示了太赫兹磁分量HTHz方向, 外磁场H方向, 及Γ2相TmFeO3在不同磁场下的简化磁结构变化示意图. 黑色虚线是根据(1)式对q-AFM共振频率的拟合; 黑色实线是根据(6)式对q-FM共振频率的拟合

    Fig. 5.  Theoretical fittings of TmFeO3 resonance frequency varying with magnetic field at 1.6 K: (a) The q-FM resonance frequencies in Fig. 3(a) and its theoretical fitting curve; (b) the q-AFM and q-FM resonance frequencies in Fig. 3(b) and their theoretical fitting curves. The illustrations in the figure show the terahertz magnetic component HTHz, the external magnetic field H, and simplified magnetic structure changes of Γ2-phase TmFeO3 under different magnetic fields. The black dashed line is the fitting of q-AFM resonance frequency according to Eq. (1); black solid line is the fitting of q-FM resonance frequency according to Eq. (6).

  • [1]

    Kimel A V, Ivanov B A, Pisarev R V, Usachev P A, Kirilyuk A, Rasing Th 2009 Nat. Phys. 5 727Google Scholar

    [2]

    Afanasiev D, Ivanov B A, Kirilyuk A, Rasing Th, Pisarev R V, Kimel A V 2016 Phys. Rev. Lett. 116 658270

    [3]

    Nova T F, Cartella A, Cantaluppi A, Först M, Bossini D, Mikhaylovskiy R V, Kimel A V, Merlin R, Cavalleri A 2017 Nat. Phys. 13 132Google Scholar

    [4]

    White R L 1969 J. Appl. Phys. 40 1061Google Scholar

    [5]

    Yamaguchi T 1974 J. Phys. Chem. Solids. 35 479Google Scholar

    [6]

    Ma X X, Yuan N, Yang W T, Zhu S, Shi C F, Song H, Sun Z Q, Kang B J, Ren W, Cao S X 2022 Inorg. Chem. 61 14815Google Scholar

    [7]

    Dzyaloshinsky I 1958 J. Phys. Chem. Solids. 4 241Google Scholar

    [8]

    Moriya T 1960 Phys. Rev. 120 91Google Scholar

    [9]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar

    [10]

    Song H, Fan W C, Jia R R, Sun Z Q, Ma X X, Yang W T, Zhu S, Kang B J, Feng Z J, Cao S X 2023 Ceram. Int. 49 22038Google Scholar

    [11]

    Guo J J, Cheng L, Ren Z, Zhang W J, Lin X, Jin Z M, Cao S X, Sheng Z G, Ma G H 2020 J. Phys. Condens. Matter 32 185401

    [12]

    Jiang J J, Song G B, Wang D Y, Jin Z M, Tian Z, Lin X, Han J G, Ma G H, Cao S X, Cheng Z X 2016 J. Phys. Condens. Matter 28 116002

    [13]

    Shen H, Cheng Z X, Hong F, Xu J Y, Yuan S J, Cao S X, Wang X L 2013 Appl. Phys. Lett. 103 192404Google Scholar

    [14]

    Nikitin S E, Wu L S, Sefat A S, Shaykhutdinov K A, Lu Z, Meng S, Pomjakushina E V, Conder K, Ehlers G, Lumsden M D, Kolesnikov A I, Barilo S, Guretskii S A, Inosov D S, Podlesnyak A 2018 Phys. Rev. B 98 064424Google Scholar

    [15]

    Slawinski W, Przenioslo R, Sosnowska I, Suard E 2005 J. Phys. Condens. Matter 17 4605

    [16]

    Kimel A V, Kirilyuk A, Usachev P A, Pisarev R V, Balbashov A M, Rasing Th 2005 Nature 435 655Google Scholar

    [17]

    Chen L, Li T W, Cao S X, Yuan S J, Hong F, Zhang J C 2012 J. Appl. Phys. 111 103905Google Scholar

    [18]

    Ramu N, Muralidharan R, Meera K, Jeong Y H 2016 RSC Adv. 6 72295Google Scholar

    [19]

    Zhao W Y, Cao S X, Huang R X, Cao Y M, Xu K, Kang B J, Zhang J C, Ren W 2015 Phys. Rev. B 91 104425Google Scholar

    [20]

    Long H, Cao S X, Liu M, Kang Y M, Zhang B J, Jin C 2014 Phys. Rev. B 90 144415Google Scholar

    [21]

    任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高 2020 物理学报 69 207802Google Scholar

    Ren Z, Cheng L, Sergey G, Nadezhda L, Li J T, Shang J M, Sergey B, Wu A H, Aleksandra K, Ma Z W, Zhou C, Sheng Z G 2020 Acta Phys. Sin. 69 207802Google Scholar

    [22]

    Amelin K, Nagel U, Fishman R S, Yoshida Y, Sim H, Park K, Park J G, Rõõm T 2018 Phys. Rev. B 98 174417Google Scholar

    [23]

    Nagel U, Fishman Randy S, Katuwal T, Engelkamp H, Talbayev D, Yi H T, Cheong S W, Rõõm T 2013 Phys. Rev. Lett. 110 257201Google Scholar

    [24]

    Beard M C, Turner G M, Schmuttenmaer C A 2001 J. Appl. Phys. 90 5915Google Scholar

    [25]

    Kim T H, Kang C, Kee C S, Lee J H, Cho B K, Gruenberg P, Tokunaga Y, Tokura Y, Lee J S 2015 J. Appl. Phys. 118 233101Google Scholar

    [26]

    Reid A H M, Rasing Th, Pisarev R V, Duerr H A, Hoffmann M C 2015 Appl. Phys. Lett. 106 082403Google Scholar

    [27]

    Grishunin K, Huisman T, Li G Q, Mishina E, Rasing T, Kimel A V, Zhang K L, Jin Z M, Cao S X, Ma G H, Mikhaylovskiy R V 2018 ACS Photonics 5 1375Google Scholar

    [28]

    Johnson C E, Prelorendjo L A, Thomas M F 1980 J. Magn. Magn. Mater. 15 557

    [29]

    Ju X W, Hu Z Q, Huang F, Wu H B, Wang X F 2021 Opt. Express 29 9261Google Scholar

    [30]

    Tsuyoshi Y, Kunirô T 1973 Phys. Rev. B 8 5187Google Scholar

    [31]

    Li X W, Bamba M, Yuan N, Zhang Q, Zhao Y, Xiang M L, Xu K, Jin Z M, Ren W, Ma G H, Cao S X, Turchinovich D, Kono J 2018 Science 361 794Google Scholar

    [32]

    Balbashov A M, Berezin A G, Gufan Y M, Kolyadko G S, Marchukov P Y, Rudashevskii E G 1987 J. Exp. Theor. Phys. 66 174

    [33]

    Lin X, Jiang J J, Jin Z M, Wang D Y, Tian Z, Han J G, Cheng Z X, Ma G H 2015 Appl. Phys. Lett. 106 092403Google Scholar

    [34]

    Gorodetsky G, Shaft S, Remeika J P 1981 J. Appl. Phys. 52 7353Google Scholar

    [35]

    Herrmann G F 1963 J. Phys. Chem. Solids 24 597Google Scholar

  • [1] 杨泽浩, 刘紫威, 杨博, 张成龙, 蔡宸, 祁志美. 基于多孔金膜的太赫兹导模共振生化传感特性仿真. 物理学报, 2022, 71(21): 218701. doi: 10.7498/aps.71.20220722
    [2] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [3] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211831
    [4] 张朋, 刘政, 戴建明, 杨昭荣, 苏付海. 强磁场在ZnCr2Se4中诱导的各向异性太赫兹共振吸收. 物理学报, 2020, 69(20): 207501. doi: 10.7498/aps.69.20201507
    [5] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源. 物理学报, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [6] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [7] 陈亚博, 杨晓阔, 危波, 吴瞳, 刘嘉豪, 张明亮, 崔焕卿, 董丹娜, 蔡理. 非对称条形纳磁体的铁磁共振频率和自旋波模式. 物理学报, 2020, 69(5): 057501. doi: 10.7498/aps.69.20191622
    [8] 任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高. Ho1–xYxFeO3单晶自旋重取向的掺杂效应与磁控效应的太赫兹光谱. 物理学报, 2020, 69(20): 207802. doi: 10.7498/aps.69.20201518
    [9] 韩方彬, 张文旭, 彭斌, 张万里. NiFe/Pt薄膜中角度相关的逆自旋霍尔效应. 物理学报, 2015, 64(24): 247202. doi: 10.7498/aps.64.247202
    [10] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振. 物理学报, 2014, 63(21): 217601. doi: 10.7498/aps.63.217601
    [11] 薛慧, 马宗敏, 石云波, 唐军, 薛晨阳, 刘俊, 李艳君. 铁磁共振磁交换力显微镜. 物理学报, 2013, 62(18): 180704. doi: 10.7498/aps.62.180704
    [12] 刘明, 曹世勋, 袁淑娟, 康保娟, 鲁波, 张金仓. Pr掺杂DyFeO3体系的自旋重取向相变、晶格畸变与Raman光谱研究. 物理学报, 2013, 62(14): 147601. doi: 10.7498/aps.62.147601
    [13] 顾文娟, 潘靖, 杜薇, 胡经国. 铁磁共振法测磁各向异性. 物理学报, 2011, 60(5): 057601. doi: 10.7498/aps.60.057601
    [14] 李磊, 周庆莉, 施宇蕾, 赵冬梅, 张存林, 赵昆, 田璐, 赵卉, 宝日玛, 赵嵩卿. 在太赫兹波段的开口共振环的不同开口形状对透过率频谱的影响. 物理学报, 2011, 60(1): 019503. doi: 10.7498/aps.60.019503
    [15] 荣建红, 云国宏. 外应力场下双层铁磁薄膜中的铁磁共振性质. 物理学报, 2007, 56(9): 5483-5488. doi: 10.7498/aps.56.5483
    [16] 郑小平, 张佩峰, 范多旺, 李发伸, 郝 远. Tb0.3Dy0.7-xPrx(Fe0.9Al0.1)1.95合金的磁致伸缩、自旋重取向和穆斯堡尔谱研究. 物理学报, 2007, 56(1): 535-540. doi: 10.7498/aps.56.535
    [17] 潘 靖, 周 岚, 陶永春, 胡经国. 外应力场下铁磁/反铁磁双层膜系统中的自旋波. 物理学报, 2007, 56(6): 3521-3526. doi: 10.7498/aps.56.3521
    [18] 潘 靖, 马 梅, 周 岚, 胡经国. 外应力场下铁磁/反铁磁双层膜系统的铁磁共振性质. 物理学报, 2006, 55(2): 897-903. doi: 10.7498/aps.55.897
    [19] 袁淑娟, 周仕明, 鹿 牧. Ni纳米线阵列的铁磁共振研究. 物理学报, 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [20] 郭光华, 张海贝. 化合物HoMn6Sn6的磁晶各向异性及自旋重取向相变研究. 物理学报, 2005, 54(12): 5879-5883. doi: 10.7498/aps.54.5879
计量
  • 文章访问数:  2406
  • PDF下载量:  84
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-14
  • 修回日期:  2023-09-08
  • 上网日期:  2023-10-09
  • 刊出日期:  2024-01-05

/

返回文章
返回