搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究

朱宇豪 李瑞

引用本文:
Citation:

基于组态相互作用方法对AuB分子低激发态电子结构和光学跃迁性质的研究

朱宇豪, 李瑞

Study of electronic structure and optical transition properties of low-lying excited states of AuB molecules based on configuration interaction method

Zhu Yu-Hao, Li Rui
PDF
HTML
导出引用
  • 因为AuB分子的电子态信息缺乏相关实验测量, 本文采用高精度的组态相互作用方法开展对AuB分子激发态电子结构的研究, 计算得到12 个Λ-S态的势能曲线. 基于势能曲线, 束缚态的光谱常数通过数值求解薛定谔方程获得. 计算还包括部分低激发态的偶极矩, 展示了分子不同电子态的电荷分布信息. 在计算中也考虑了自旋轨道耦合效应对电子态的影响. 其中能量最低的4个Λ-S态之间的自旋轨道耦合矩阵元, 因为自旋轨道耦合的影响, 这4 个Λ-S态会劈裂为12个Ω态. 由于自旋轨道耦合矩阵元并没有交叉现象, 所以这4个Λ-S态不存在预解离的情况. 本文最后计算得到Ω基态$ {{\mathrm{A}}}^{1}{{{\Pi}}}_{1} $和第一激发态$ {{\mathrm{X}}}^{1}{{{\Sigma }}}_{{0}^{+}} $的光学跃迁矩阵元等信息, 分析Franck-Condon因子和辐射寿命, 发现AuB分子中该光吸收模式被激光冷却的可能性较小. 本文数据集可在https://www.doi.org/10.57760/sciencedb.j00213.00009中访问获取.
    High-level configuration interaction method including the spin-orbit coupling is used to investigate the low-lying excited electronic states of AuB that is not reported experimentally. The electronic structure in our work is preformed through the three steps stated below. First of all, Hartree-Fock method is performed to compute the singlet-configuration wavefunction as the initial guess. Next, we generate a multi-reference wavefunction by using the state-averaged complete active space self-consistent field (SACASSCF). Finally, the wavefunctions from CASSCF are utilized as reference, the exact energy point values are calculated by the explicitly correlated dynamic multi-reference configuration interaction method (MRCI). The Davidson correction (+Q) is put forward to solve the size-consistence problem caused by the MRCI method. To ensure the accuracy, the spin-orbit effect and correlation for inner shell electrons and valence shell electrons are considered in our calculation. The potential energy curves of 12 Λ-S electronic states are obtained. According to the explicit potential energy curves, we calculate the spectroscopic constants through solving radial Schrödinger equation numerically. We analyze the influence of electronic state configuration on the dipole moment by using the variation of dipole moment with nuclear distance. The spin-orbit matrix elements for parts of low-lying exciting states are computed, and the relation between spin-orbit coupling and predissociation is discussed. The predissociation is analyzed by using the obtained spin-orbit matrix elements of the 4 Λ-S states which spilt into 12 Ω states. It indicates that due to the absence of the intersections between the curves of spin-orbit matrix elements related with the 4 low-lying Λ-S states, the predissociation for these low-lying exciting states will not occur. Finally, the properties of optical transition between the ground Ω state $ {\rm A}^{1}{{{\Pi}}}_{1} $ and first excited Ω state $ {{\mathrm{X}}}^{1}{{{\Sigma }}}_{{0}^{+}} $ are discussed in laser-cooling filed by analyzing the Franck-Condon factors and radiative lifetime. And the transition dipole moment is also calculated. But our results reveal that the AuB is not an ideal candidate for laser-cooling. In conclusion, this work is helpful in deepening the understanding of AuB, especially the structures of electronic states, interaction between excited states, and optical transition properties. All the data presented in this paper are openly available at https://www.doi.org/10.57760/sciencedb.j00213.00009.
      通信作者: 朱宇豪, zhu_yuhao@foxmail.com
    • 基金项目: 计算物理全国重点实验室青年基金(批准号: 6142A05QN23003)资助的课题.
      Corresponding author: Zhu Yu-Hao, zhu_yuhao@foxmail.com
    • Funds: Project supported by the National Key Laboratory of Computational Physics, China (Grant No. 6142A05QN23003).
    [1]

    Yannopoulos J C 1991 The Extractive Metallurgy of Gold (Boston, MA: Springer

    [2]

    Saradesh K M, Vinodkumar G S 2020 J. Mater. Res. Tech. 9 2009Google Scholar

    [3]

    Matsuda F, Nakata K, Morikawa M 1984 Science 17 55

    [4]

    Eguchi S, Hoyt J L, Leitz C W, Fitzgerald E A 2002 Appl. Phys. Lett. 80 1743Google Scholar

    [5]

    Janke C, Jones R, Coutinho J, Öberg S, Briddon P R 2008 Mater. Sci. Semicond. Process. 11 324Google Scholar

    [6]

    Bisognin G, Vangelista S, Berti M, Impellizzeri G, Grimaldi M G 2010 J. Appl. Phys. 107 103512Google Scholar

    [7]

    Jones K S, Haller E E 1987 J. Appl. Phys. 61 2469Google Scholar

    [8]

    Uppal S, Willoughby A F W, Bonar J M, et al. 2001 J. Appl. Phys. 90 4293Google Scholar

    [9]

    Wang L 2004 J. Appl. Phys. 96 1939Google Scholar

    [10]

    Mirabella S, De Salvador D, Napolitani E, Bruno E, Priolo F 2013 J. Appl. Phys. 113 031101Google Scholar

    [11]

    Tzeli D, Mavridis A 2001 J. Phys. Chem. A 105 1175Google Scholar

    [12]

    Tzeli D, Mavridis A 2001 J. Phys. Chem. A 105 7672Google Scholar

    [13]

    Smith AM, Lorenz M, Agreiter J, Bondybey VE 1996 Mol. Phys. 88 247Google Scholar

    [14]

    Viswanathan R, Schmude R W, Gingerich K A 1996 J. Phys. Chem. 100 10784Google Scholar

    [15]

    Xing W, Shi D H, Sun J L, Zhu Z F 2017 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 173 939Google Scholar

    [16]

    Metz B, Stoll H, Dolg M 2000 J. Chem. Phys. 113 2563Google Scholar

    [17]

    Pontes M A P, de Oliveira M H, Fernandes G F S, et al. 2018 J. Quant. Spectrosc. Ra. 209 156Google Scholar

    [18]

    Uppal S, Willoughby A F W, Bonar J M, Cowern N E B, Grasby T 2004 J. Appl. Phys. 96 1376Google Scholar

    [19]

    Echeverría E, Dong B, Liu A, et al. 2017 Surf. Coat. Tech. 314 51Google Scholar

    [20]

    Demille D, Shuman E S, Barry J F 2010 Nature 467 820Google Scholar

    [21]

    Norrgard E, Mccarron D, Steinecker M, Demille D. 2014 Nature 512 286Google Scholar

    [22]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [23]

    Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E, Tarbutt M R 2017 Nat. Phys. 13 1173Google Scholar

    [24]

    Zhelyazkova V, Cournol A, Wall T E, et al. 2014 Phys. Rev. A 89 053416Google Scholar

    [25]

    Zhang Y G, Zhang H, Song H Y, Yu Y, Wan M J 2017 Phys. Chem. Chem. Phys. 19 24647Google Scholar

    [26]

    Yuan X, Guo H J, Wang Y M, Xue J L, Xu H F, Yan B 2019 J. Chem. Phys. 150 224305Google Scholar

    [27]

    Stuhl B K, Sawyer B C, Wang D J, Ye J 2008 Phys. Rev. Lett. 101 243002Google Scholar

    [28]

    Yang R, Gao Y F, Tang B, Gao T 2015 Phys. Chem. Chem. Phys. 17 1900Google Scholar

    [29]

    Fitch N J, Tarbutt M R 2021 Adv. Atom. Mol. Opt. Phys. 70 157

    [30]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schtz M 2012 Rev. Comput. Mol. Sci. 2 242Google Scholar

    [31]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schtz M 2012 http://www.molpro.net.

    [32]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053Google Scholar

    [33]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [34]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [35]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [36]

    Peterson K A, Dunning T H J 1993 J. Chem. Phys. 98 1358Google Scholar

    [37]

    Le Roy R 2007 Chemical Physics Research Report CP-663. (University of Waterloo

    [38]

    Halkier A, Helgaker T, Jorgensen P, Klopper W, Koch H, Olsen J, Wilson A K 1998 Chem. Phys. Lett. 286 243Google Scholar

  • 图 1  基于多参考组态相互作用方法计算的AuB分子12个Λ-S态的势能曲线随原子核间距的变化

    Fig. 1.  Potential energy curves of 12 Λ-S states for AuB molecule at multi-reference configuration interaction level.

    图 2  AuB分子的6个单重态偶极矩随核间距的变化, 电子态分别为$ {{\mathrm{X}}}^{1}{{{\Sigma }}}^{+} $, $ {{\mathrm{A}}}^{1}{{\Pi}} $, $ {{\mathrm{C}}}^{1}{{{\Sigma }}}^{-} $, $ {{\mathrm{F}}}^{1}{{{\Sigma }}}^{-} $, $ {{\mathrm{E}}}^{1}{{\Pi}} $ 和 $ {{\mathrm{D}}}^{1}{{{\Sigma }}}^{+} $

    Fig. 2.  Dipole moments of AuB for 6 singlet states versus the bond length, the states are $ {{\mathrm{X}}}^{1}{{{\Sigma }}}^{+} $, $ {{\mathrm{A}}}^{1}{{\Pi}} $, $ {{\mathrm{C}}}^{1}{{{\Sigma }}}^{-} $, $ {{\mathrm{F}}}^{1}{{{\Sigma }}}^{-} $, $ {{\mathrm{E}}}^{1}{{\Pi}} $ and $ {{\mathrm{D}}}^{1}{{{\Sigma }}}^{+} $.

    图 3  AuB分子的4个三重态偶极矩随核间距的变化, 电子态分别为$ {{\mathrm{a}}}^{3}{{{\Sigma }}}^{+} $, $ {{\mathrm{b}}}^{3}{{\Pi}} $, $ {{\mathrm{d}}}^{3}{{\Pi}} $ 和 $ {{\mathrm{e}}}^{3}{{\Pi}} $

    Fig. 3.  Dipole moments of AuB for 4 triplet states versus the bond length. The states are $ {{\mathrm{a}}}^{3}{{{\Sigma }}}^{+} $, $ {{\mathrm{b}}}^{3}{{\Pi}} $, $ {{\mathrm{d}}}^{3}{{\Pi}} $ and $ {{\mathrm{e}}}^{3}{{\Pi}} $.

    图 4  AuB分子部分电子态之间的自旋轨道耦合矩阵元随核间距的变化, 这些矩阵元主要包含4个低激发态, 分别为$ {{\mathrm{X}}}^{1}{{{\Sigma }}}^{+} $, $ {{\mathrm{A}}}^{1}{{\Pi}} $, $ {{\mathrm{a}}}^{3}{{{\Sigma }}}^{+} $ 和 $ {{\mathrm{b}}}^{3}{{\Pi}} $

    Fig. 4.  Absolute values of spin-orbit matrix elements of AuB as a function of bond length. The elements mainly include the four low-lying electronic states which are $ {{\mathrm{X}}}^{1}{{{\Sigma }}}^{+} $, $ {{\mathrm{A}}}^{1}{{\Pi}} $, $ {{\mathrm{a}}}^{3}{{{\Sigma }}}^{+} $ and $ {{\mathrm{b}}}^{3}{{\Pi}} $.

    图 5  AuB分子态跃迁$ {{\mathrm{A}}}^{1}{{{\Pi}}}_{1}-{{\mathrm{X}}}^{1}{{{\Sigma }}}_{{0}^{+}} $的跃迁偶极矩随核间距的变化

    Fig. 5.  The transition dipole moment of AuB for the transition $ {{\mathrm{A}}}^{1}{{{\Pi}}}_{1}-{{\mathrm{X}}}^{1}{{{\Sigma }}}_{{0}^{+}} $ via internuclear distance.

    表 1  势能曲线在不同基组情况下, 核间距1.9 Å能量值与当前计算结果的误差, 其中, 基组分别为tz, qz及外推的cbs

    Table 1.  The error between the energy value with the nuclear distance of 1.9 Å under different basis sets and the current calculation result. The basis sets are tz, qz, and cbs.

    基组$ {{\mathrm{A}}}^{1}{{{\Pi}}}_{} $$ {{\mathrm{a}}}^{3}{{{{\Sigma }}}^{+}}_{} $$ {{\mathrm{b}}}^{3}{{{\Pi}}}_{} $$ {{\mathrm{C}}}^{1}{{{{\Sigma }}}^{-}}_{} $$ {{\mathrm{d}}}^{3}{{{\Pi}}}_{} $$ {{\mathrm{D}}}^{1}{{{\Sigma }}}^{+} $$ {{\mathrm{E}}}^{1}{{{\Pi}}}_{} $$ {{\mathrm{e}}}^{3}{{{\Pi}}}_{} $$ {{\mathrm{F}}}^{1}{{{{\Sigma }}}^{-}}_{} $
    Tz0.23%0.54%0.20%0.45%0.09%0.09%0.03%0.03%0.06%
    Qz0.44%0.40%0.52%0.12%0.51%0.44%0.11%0.51%0.85%
    Cbs0.60%0.30%0.75%0.12%0.75%0.69%0.17%0.87%1.43%
    下载: 导出CSV

    表 2  AuB分子的束缚电子态的光谱常数, 分别为态能量$ {T}_{{\mathrm{e}}} $, 平衡核间距$ {R}_{{\mathrm{e}}} $, 振动和转动频率$ {\omega }_{{\mathrm{e}}} $, $ {B}_{{\mathrm{e}}} $

    Table 2.  Spectroscopic constants of AuB. Specifically speaking, state energy $ {T}_{{\mathrm{e}}} $, equilibrium internuclear distance $ {R}_{{\mathrm{e}}} $, vibrational and rotational frequency $ {\omega }_{{\mathrm{e}}} $, $ {B}_{{\mathrm{e}}} $.

    State$ {T}_{{\mathrm{e}}} $/cm–1$ {R}_{{\mathrm{e}}} $/Å$ {\omega }_{{\mathrm{e}}} $/cm–1$ {\omega }_{{\mathrm{e}}}{x}_{{\mathrm{e}}} $/cm–1$ {B}_{{\mathrm{e}}} $/cm–1
    $ {{\mathrm{X}}}^{1}{{{\Sigma }}}^{+} $01.9199653.46894.30720.4383
    $ {{\mathrm{A}}}^{1}{{{\Pi}}}_{} $21645.31.9588563.268212.48860.4182
    $ {{\mathrm{a}}}^{3}{{{{\Sigma }}}^{+}}_{} $23332.11.9615619.110716.48400.4199
    $ {{\mathrm{b}}}^{3}{{{\Pi}}}_{} $13971.61.9200642.55635.58690.4384
    $ {{\mathrm{C}}}^{1}{{{{\Sigma }}}^{-}}_{} $34906.12.0642458.62186.52140.3835
    $ {{\mathrm{d}}}^{3}{{{\Pi}}}_{} $34844.92.0462500.34645.29600.3858
    $ {{\mathrm{D}}}^{1}{{{\Sigma }}}^{+} $40356.21.8714718.788639.30810.4619
    $ {{\mathrm{E}}}^{1}{{{\Pi}}}_{} $41526.92.0421203.68283.85830.2750
    $ {{\mathrm{e}}}^{3}{{{\Pi}}}_{} $41359.12.2946285.21928.36510.3082
    下载: 导出CSV

    表 3  AuB分子态跃迁$ {{\mathrm{A}}}^{1}{{{\Pi}}}_{1}-{{\mathrm{X}}}^{1}{{{\Sigma }}}_{{0}^{+}} $的爱因斯坦系数$ {A}_{{\nu }'{\nu }''} $(单位s–1)和Franck-Condon因子$ {F}_{{\nu }'{\nu }''} $, 注意本表格中考虑的最高振动态能级是$ \nu =4 $

    Table 3.  Einstein coefficients $ {A}_{{\nu }'{\nu }''} $ (in s–1) and Franck-Condon factors $ {F}_{{\nu }'{\nu }''} $ for the transition $ {{\mathrm{A}}}^{1}{{{\Pi}}}_{1}-{{\mathrm{X}}}^{1}{{{\Sigma }}}_{{0}^{+}} $. Noting that the highest vibrational level $ \nu =4 $.

    $ {\nu }'=0 $$ {\nu }'=1 $$ {\nu }'=2 $$ {\nu }'=3 $$ {\nu }'=4 $
    $ {\nu }''=0 $$ {A}_{{\nu }'{\nu }''} $23178544573.31814.680.00689730.7593
    $ {F}_{{\nu }'{\nu }''} $0.8127040.1768920.0102130.0001510.000025
    $ {\nu }''=1 $$ {A}_{{\nu }'{\nu }''} $50531.014271872172.012638.8708.147
    $ {F}_{{\nu }'{\nu }''} $0.1545910.5039950.2783660.0577030.005151
    $ {\nu }''=2 $$ {A}_{{\nu }'{\nu }''} $9276.9378255.059740.694354.832173.3
    $ {F}_{{\nu }'{\nu }''} $0.0290560.2382520.2131140.3515350.135485
    $ {\nu }''=3 $$ {A}_{{\nu }'{\nu }''} $1125.9521601.791794.94457.9079060.3
    $ {F}_{{\nu }'{\nu }''} $0.0034330.0662900.2797930.0192130.288028
    $ {\nu }''=4 $$ {A}_{{\nu }'{\nu }''} $63.75603977.6648473.763146.99349.84
    $ {F}_{{\nu }'{\nu }''} $0.0001680.0120650.1490990.1942960.024241
    下载: 导出CSV
  • [1]

    Yannopoulos J C 1991 The Extractive Metallurgy of Gold (Boston, MA: Springer

    [2]

    Saradesh K M, Vinodkumar G S 2020 J. Mater. Res. Tech. 9 2009Google Scholar

    [3]

    Matsuda F, Nakata K, Morikawa M 1984 Science 17 55

    [4]

    Eguchi S, Hoyt J L, Leitz C W, Fitzgerald E A 2002 Appl. Phys. Lett. 80 1743Google Scholar

    [5]

    Janke C, Jones R, Coutinho J, Öberg S, Briddon P R 2008 Mater. Sci. Semicond. Process. 11 324Google Scholar

    [6]

    Bisognin G, Vangelista S, Berti M, Impellizzeri G, Grimaldi M G 2010 J. Appl. Phys. 107 103512Google Scholar

    [7]

    Jones K S, Haller E E 1987 J. Appl. Phys. 61 2469Google Scholar

    [8]

    Uppal S, Willoughby A F W, Bonar J M, et al. 2001 J. Appl. Phys. 90 4293Google Scholar

    [9]

    Wang L 2004 J. Appl. Phys. 96 1939Google Scholar

    [10]

    Mirabella S, De Salvador D, Napolitani E, Bruno E, Priolo F 2013 J. Appl. Phys. 113 031101Google Scholar

    [11]

    Tzeli D, Mavridis A 2001 J. Phys. Chem. A 105 1175Google Scholar

    [12]

    Tzeli D, Mavridis A 2001 J. Phys. Chem. A 105 7672Google Scholar

    [13]

    Smith AM, Lorenz M, Agreiter J, Bondybey VE 1996 Mol. Phys. 88 247Google Scholar

    [14]

    Viswanathan R, Schmude R W, Gingerich K A 1996 J. Phys. Chem. 100 10784Google Scholar

    [15]

    Xing W, Shi D H, Sun J L, Zhu Z F 2017 Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 173 939Google Scholar

    [16]

    Metz B, Stoll H, Dolg M 2000 J. Chem. Phys. 113 2563Google Scholar

    [17]

    Pontes M A P, de Oliveira M H, Fernandes G F S, et al. 2018 J. Quant. Spectrosc. Ra. 209 156Google Scholar

    [18]

    Uppal S, Willoughby A F W, Bonar J M, Cowern N E B, Grasby T 2004 J. Appl. Phys. 96 1376Google Scholar

    [19]

    Echeverría E, Dong B, Liu A, et al. 2017 Surf. Coat. Tech. 314 51Google Scholar

    [20]

    Demille D, Shuman E S, Barry J F 2010 Nature 467 820Google Scholar

    [21]

    Norrgard E, Mccarron D, Steinecker M, Demille D. 2014 Nature 512 286Google Scholar

    [22]

    Hummon M T, Yeo M, Stuhl B K, Collopy A L, Xia Y, Ye J 2013 Phys. Rev. Lett. 110 143001Google Scholar

    [23]

    Truppe S, Williams H J, Hambach M, Caldwell L, Fitch N J, Hinds E A, Sauer B E, Tarbutt M R 2017 Nat. Phys. 13 1173Google Scholar

    [24]

    Zhelyazkova V, Cournol A, Wall T E, et al. 2014 Phys. Rev. A 89 053416Google Scholar

    [25]

    Zhang Y G, Zhang H, Song H Y, Yu Y, Wan M J 2017 Phys. Chem. Chem. Phys. 19 24647Google Scholar

    [26]

    Yuan X, Guo H J, Wang Y M, Xue J L, Xu H F, Yan B 2019 J. Chem. Phys. 150 224305Google Scholar

    [27]

    Stuhl B K, Sawyer B C, Wang D J, Ye J 2008 Phys. Rev. Lett. 101 243002Google Scholar

    [28]

    Yang R, Gao Y F, Tang B, Gao T 2015 Phys. Chem. Chem. Phys. 17 1900Google Scholar

    [29]

    Fitch N J, Tarbutt M R 2021 Adv. Atom. Mol. Opt. Phys. 70 157

    [30]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schtz M 2012 Rev. Comput. Mol. Sci. 2 242Google Scholar

    [31]

    Werner H J, Knowles P J, Knizia G, Manby F R, Schtz M 2012 http://www.molpro.net.

    [32]

    Werner H J, Knowles P J 1985 J. Chem. Phys. 82 5053Google Scholar

    [33]

    Knowles P J, Werner H J 1985 Chem. Phys. Lett. 115 259Google Scholar

    [34]

    Werner H J, Knowles P J 1988 J. Chem. Phys. 89 5803Google Scholar

    [35]

    Langhoff S R, Davidson E R 1974 Int. J. Quantum Chem. 8 61Google Scholar

    [36]

    Peterson K A, Dunning T H J 1993 J. Chem. Phys. 98 1358Google Scholar

    [37]

    Le Roy R 2007 Chemical Physics Research Report CP-663. (University of Waterloo

    [38]

    Halkier A, Helgaker T, Jorgensen P, Klopper W, Koch H, Olsen J, Wilson A K 1998 Chem. Phys. Lett. 286 243Google Scholar

  • [1] 冯卓, 索兵兵, 韩慧仙, 李安阳. CaSH分子高精度电子结构计算及用于激光制冷目标分子的理论分析. 物理学报, 2024, 73(2): 023301. doi: 10.7498/aps.73.20230742
    [2] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl阴离子的光谱性质和跃迁性质. 物理学报, 2022, 71(4): 043101. doi: 10.7498/aps.71.20211688
    [3] 尹俊豪, 杨涛, 印建平. 基于${{\bf{A}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Pi}} }}_{{\boldsymbol{1/2}}}{\boldsymbol{\leftarrow }}{{\bf{X}}}^{{\boldsymbol{2}}}{{{\boldsymbol{\Sigma }}}}_{{\boldsymbol{1/2}}}$跃迁的CaH分子激光冷却光谱理论研究. 物理学报, 2021, 70(16): 163302. doi: 10.7498/aps.70.20210522
    [4] 郭芮, 谭涵, 袁沁玥, 张庆, 万明杰. LiCl-阴离子的光谱性质和跃迁性质. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211688
    [5] 张锦芳, 任雅娜, 王军民, 杨保东. 铯原子激发态双色偏振光谱. 物理学报, 2019, 68(11): 113201. doi: 10.7498/aps.68.20181872
    [6] 邢伟, 孙金锋, 施德恒, 朱遵略. AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究. 物理学报, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [7] 李晨曦, 郭迎春, 王兵兵. O2分子B3u-态势能曲线的从头计算. 物理学报, 2017, 66(10): 103101. doi: 10.7498/aps.66.103101
    [8] 刘晓军, 苗凤娟, 李瑞, 张存华, 李奇楠, 闫冰. GeO分子激发态的电子结构和跃迁性质的组态相互作用方法研究. 物理学报, 2015, 64(12): 123101. doi: 10.7498/aps.64.123101
    [9] 李桂霞, 姜永超, 凌翠翠, 马红章, 李鹏. HF+离子在旋轨耦合作用下电子态的特性. 物理学报, 2014, 63(12): 127102. doi: 10.7498/aps.63.127102
    [10] 朱遵略, 郎建华, 乔浩. SF分子基态及低激发态势能函数与光谱常数的研究. 物理学报, 2013, 62(16): 163103. doi: 10.7498/aps.62.163103
    [11] 田原野, 郭福明, 曾思良, 杨玉军. 原子激发态在高频强激光作用下的光电离研究. 物理学报, 2013, 62(11): 113201. doi: 10.7498/aps.62.113201
    [12] 施德恒, 牛相宏, 孙金锋, 朱遵略. BF自由基X1+和a3态光谱常数和分子常数研究. 物理学报, 2012, 61(9): 093105. doi: 10.7498/aps.61.093105
    [13] 邢伟, 刘慧, 施德恒, 孙金锋, 朱遵略. SO+离子b4∑-态光谱常数和分子常数研究. 物理学报, 2012, 61(24): 243102. doi: 10.7498/aps.61.243102
    [14] 王杰敏, 张蕾, 施德恒, 朱遵略, 孙金锋. AsO+同位素离子X2+和A2电子态的多参考组态相互作用方法研究. 物理学报, 2012, 61(15): 153105. doi: 10.7498/aps.61.153105
    [15] 孙羽, 冯高平, 程存峰, 涂乐义, 潘虎, 杨国民, 胡水明. 利用激光冷却原子束测量氦原子精密光谱. 物理学报, 2012, 61(17): 170601. doi: 10.7498/aps.61.170601
    [16] 刘冬梅, 张树东. BeCl分子电子激发态的多参考组态相互作用计算. 物理学报, 2012, 61(3): 033101. doi: 10.7498/aps.61.033101
    [17] 王杰敏, 孙金锋. 采用多参考组态相互作用方法研究AsN( X1 + )自由基的光谱常数与分子常数. 物理学报, 2011, 60(12): 123103. doi: 10.7498/aps.60.123103
    [18] 陈恒杰, 程新路, 唐海燕, 王全武, 苏欣纺. LiC分子基态及其低电子激发态的多参考组态相互作用方法研究. 物理学报, 2010, 59(7): 4556-4563. doi: 10.7498/aps.59.4556
    [19] 高 峰, 杨传路, 张晓燕. 多参考组态相互作用方法研究ZnHg低激发态(1∏,3∏)的势能曲线和解析势能函数. 物理学报, 2007, 56(5): 2547-2552. doi: 10.7498/aps.56.2547
    [20] 钱 琪, 杨传路, 高 峰, 张晓燕. 多参考组态相互作用方法计算研究XOn(X=S, Cl;n=0,±1)的解析势能函数和光谱常数. 物理学报, 2007, 56(8): 4420-4427. doi: 10.7498/aps.56.4420
计量
  • 文章访问数:  2855
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-08-18
  • 修回日期:  2023-11-14
  • 上网日期:  2023-11-29
  • 刊出日期:  2024-03-05

/

返回文章
返回